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Since new generations of malware become more diverse and complex nowadays the conventional approaches 

and methods of malware detection and categorization do not always prove to be efficient. In this work, the 

combined and optimized CNN, and RNN architecture for the Firefly Algorithm is suggested to accurately 

classify and detect complex and unseen malware. To detect subtle patterns depicting the behavior of the 

malware, the framework utilizes a comprehensive feature extraction process while reducing the complexity 

as much as possible. In our future work, we aim to expand the proposed idea to use a deeper model utilizing 

CNN in combination with GANs, which we would fine-tune with firefly algorithm, on the similar dataset to 

bolster the detection performance. The optimization algorithm enhances effectiveness and decreases the 

consumption of resources while retaining high detection capability. Experimental results demonstrate that 

the model achieves a training and validation accuracy exceeding 99% after a few epochs, showcasing its 

suitability for real-world, large-scale cybersecurity applications. This novel approach provides a high-

accuracy solution for malware detection, incorporating innovative features for both whitelist and blacklist 

classification. 

Keywords: Malware Detection, Deep Neural Networks (DNNs) Signature Based Techniques Cyber 

Security. 

 

INTRODUCTION 

Malware has continued to be on the top of the most dangerous threats in the cybersecurity space due to its continually 

changing and broad nature. More conventional approaches for identifying malware, such as signature based or by 

structural analysis do not work in the case of the newly emerging unknown, unknown and polymorphic malware. With 

increased advancement in the kind of threats being experienced online, there is a call for better means through which 

one can easily detect the different kinds of malware, with high efficiency and accuracy.  

Malware detection is thus a problem that has been targeted for deep learning solutions due to the capability of deep 

learning in complex pattern recognition of big data. By using deep neural network one can extract the meaningful features 

from the behavior of the malware and, therefore, have better accuracy of the classification. However, to apply such models 

there are challenges that include the following: computational complexity as well as the consumption of the resources. 

Reducing running time of these models and, in particular, the resources they consume when being run can be essential 

for the application of these models in real-life cybersecurity settings.  

This paper presents an overall framework to tackle these problems. It particularly concentrates on proposing and 

deploying an optimized deep learning deep learning architecture for enhanced learning capability to detect and classify 

malware efficiently with a feature extraction mechanism to minimize computing costs. In addition, optimization is being 

implemented to improve the effectiveness of the framework when run through an optimization algorithm to reduce the 

number of computations needed to find the vector. The work described here also enhances the detection capability for 

sophisticated and previously unseen malware and does so in a manner that can be expanded and optimized for other 

tasks, making it ideal for a range of cybersecurity applications. This paper outlines the problems with current approaches 

to malware detection, details how the proposed framework would be put in to practice and assesses the findings from 

experiments involving the frame. The results suggest that this approach can significantly enhance the capabilities of 

current methods to fight against malware by proposing a stable, fast, and resource-conscious approach. In figure.1 bar 

chart depicts the comparison of various Anti-Malware Techniques and results reveal the accuracy by deep learning 
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methods (90% whereas the old school methods like signature-based detection have an accuracy of 50%). It underlines 

one of the developments in the deep learning techniques in the detection of malware. 

Decision trees, Support Vector Machines (SVMs), and Random Forest are many of the most typical algorithms in the 

context of malware detection. Both supervised and unsupervised learning models determine which files are malicious 

early use known data characteristics. Although the ML models derived here offer reasonable accuracy classification, their 

dependence on selected features restricts feature space scalability and transferability to other unknown variations of 

malware (Ucci et al., 2019; Ye et al., 2017). The problem with these methods is that they are fairly static – not the best 

approach given the continuously changing world of malware threats. 

CNN models and RNN models are even more attractive as opponents of machine learning and automated feature 

extraction for better detection of new strands of malware. These models have been applied to measure the difference in 

the distance of paths obtained from executable traces, API calls and binary code representations. The studies reveal that 

the advancement of deep neural networks outperforms other approaches of traditional ML in aspects of detection rate 

(LeCun et al., 2015; Pascanu et al., 2015). However, they incur a high computational cost and high demand for resources 

and thus are not easily deployable in constrained environments. Other research has tried some variations of the CNNs, 

for example integrating them with recurrent neural networks or trying the transformer-based models which improve 

both accuracy and performance (Venkatraman et al., 2019; Ullah et al., 2022).  

The advanced feature of XAI brings a significant aspect of fairness in the detection process since it breaks the “Dark box” 

challenges that deep learning present in the malware detection process. In their research, both Barredo Arrieta et al 

(2020) and Das & Rad (2020) focused on how interpretability should be included in AI systems even more in 

cybersecurity. XAI techniques give understanding of the eventual output of the model for malware classification and 

hence leads to better confidence and reliability. In Liu et al. (2022), the authors describe the role of XAI to provide insight 

on why models deliver good results so as to enhance feature selection and classification techniques. 

Feature extraction is a critical step employed in designing malware detection systems, as it is designed to enhance the 

efficiency of the process by possibly eliminating data that contributes little to the process. Feature reduction methods 

like PCA and auto encoders are used to pre-process input data so that models pay attention to what is useful. To increase 

speed and utilization of other resources, excessive accuracy of malware detection is used modern optimization techniques 

such as genetic algorithm and swarm intelligence (Mustafa Majid et al., 2023; Vijayakumar et al., 2019). New studies 

investigate the possibilities of combining the two approaches, for instance, firefly algorithms to optimize the solution 

between computation time and detection accuracy.Table 1 shows the various approaches taken in past few years. 

Table 1. Comparison of CNN and RNN-Based Approaches for Malware Detection (2020–2023) 

Study Year Model Focus/Findings Strengths Limitations 
Venkatraman 

et al. 
2020 CNN Hybrid image-based malware 

detection using CNN for spatial 

feature extraction. 

High detection 

accuracy for image-

based data. 

High computational 

cost for feature 

extraction. 
Barredo 

Arrieta et al. 
2020 RNN + XAI Integration of RNNs with 

explainable AI (XAI) to interpret 

sequential data for malware 

classification. 

Improved 

interpretability of 

results. 

Limited focus on 

large-scale datasets. 

Ullah et al. 2022 Transformers + 

CNN 
Explored CNN and transformers for 

visual representation of malware 

combined with transfer learning. 

Effective in detecting 

obfuscated malware. 
Complex model with 

high resource needs. 

Liu et al. 2022 CNN + RNN + 

XAI 
Combined CNN for spatial features 

and RNN for temporal features, 

integrating XAI for model 

explanations. 

High accuracy and 

transparency. 
High complexity and 

training time. 

Mustafa Majid 

et al. 
2023 CNN + 

Optimized 

Models 

Applied CNN with heuristic 

optimization for faster malware 

classification. 

Improved efficiency 

using optimization. 
Focused only on 

static datasets. 

Vijayakumar 

et al. 
2023 CNN + RNN Explored hybrid models combining 

CNN and RNN for detecting 

unknown malware using sequential 

behavior. 

Balanced spatial and 

temporal feature 

analysis. 

Increased training 

complexity. 
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Ansari et al. 2023 CNN + RNN + 

GAN 
Combined CNN and RNN with 

GAN for generating synthetic 

malware data and improving 

training robustness. 

Effective for 

imbalanced datasets. 
GANs add 

computational 

overhead. 

 

 

Figure 1. Comparison of Malware Detection Methods: Accuracy vs. Resource Efficiency 

Figure 1 shows similarities in accuracy and resource use between different malware detection techniques. Although deep 

learning yields the best result, it is associated with a higher consumption of resources than other alternatives, implying 

an inherent compromise of precision and resource usage. 

EXISTING METHODOLOGY AND ARCHITECTURES 

2.1 Traditional Signature-Based Detection 

Signature-based malware detection is one of the simplest and most traditional approaches, relying on identifying threats 

based on known patterns or signatures stored in a database. This process includes extracting called functions or byte 

sequences and hash-values and comparing them with a signature database a priori. Although effective for detecting 

known threats, this approach is therefore strongly categorized as weak when dealing with newer, unknown, or 

polymorphic malware primarily because it is incapable of generalization other than from previously identified patterns 

hence leading to high false negatives for new and emerging threats. 

2.2.  Heuristic-Based and Behavioral Analysis 

Some of the methods are heuristic based and behavioral analysis in that they tend to identify malware based on the 

functions that the malware performs. These encompass observing subtle characteristics related to running malware 

including system call traces, memory and network behavior which are normally noticed in a sandbox context. Though 

useful in identifying suspicious activity, these techniques are computationally expensive because they require time-tested 

real-time monitoring and sandbox execution of files, and hence not ideal for massive use. 

2.3.  Machine Learning-Based Malware Detection 

In supervised machine learning, the discrete attributes of malware like opcode sequences, system calls and permission 

usage, static and dynamic attributes are extracted and trained into classifiers such as Random Forests, SVMs, or gradient 

boosting decisions to classify benign and malicious software. Implementations of these models are learned with labeled 

data to predict whether a given data point is of the same class or belongs to another class. However, this approach has 

the following restraining factors; fresh features are hard to find and can be untrustworthy, the process of feature 

engineering is time-consuming, and the approaches cannot cope up with the dynamic nature of malware where static 

features alone are insufficient for proper detection. 

2.4.  Deep Learning for Malware Detection 

Traditional methods included use of rule-based or signature matching, where a specific sequence of instructions or 

algorithm was used to detect malware, deep learning models like CNN and RNN automatically detect features from the 

raw data without human interjection apart from programming the autoencoder. All these methods have been proved to 

hold the potential to enhance the accuracy of the detection of malware. 
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2.5.  Convolutional Neural Networks (CNNs) 

Malware can be given grayscale images, or it can be byte plotted for spatial features to be classified. Organizing the 

malware by the visual representation of these visual architectures allows for easy tracking of patterns and structures 

present. However, a major drawback of this method is that standard analysis tools based on the Convolutional Neural 

Networks (CNNs), which are used for frequency feature extraction, consider only spatial properties and do not take into 

account temporal characteristics inherent in the malware or in the sequence of its actions. This limitation is the reason 

why there is the need to add methods that capture both the spatial and temporal patterns for a better analysis of the 

malware. 

2.6.  Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are used in malware classification to process sequence data including opcode 

sequences or API calls to capture temporal characteristics of malware. However, the usage of RNNs has some problems: 

the vanishing gradient problem, and the inability to process long sequences. The integration of deep learning models to 

learn spatial features from the CNN models and temporal features from the RNN models make the hybrid approaches to 

gain better detection performance. However, these hybrid models are time-consuming in execution and may not 

recommend themselves for use in environments characterized by limited resources because of their complexity. 

2.7.  Optimization Techniques in Malware Detection 

In feature selection and hyperparameter optimization, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) 

algorithms are utilized for malware detection to find out decision margins to enhance the classifier. These optimizations 

begin by working out the few features or parameters that are most informative for the detection models and therefore 

improving the level of accuracy in their functioning. Initially, they easily over-fit their models and are not very generalized 

in dealing with unseen and diverse forms of malware samples. 

PROPOSED METHODOLOGY  

3.1.  Data Preparation and Preprocessing 

Data cleaning and processing is the process without which data has to go through the foundational step of being cleaned, 

organized and cleaned for easy use in training deep learning models. Using the IoT-23 dataset, which contains 

comprehensive benign and malicious network traffic data, the data is first downloaded and read into a panda DataFrame 

for exploration and preprocessing. Libraries are used to load data from multiple files, standardize column names, and 

merge datasets into a unified structure using pandas, enabling consistent and efficient analysis. All labels except "Benign" 

are simplified to "Malicious" using lambda functions. This binary classification simplifies the detection task. When it 

comes to IP addresses, they are hashed out with SHA 256 to change the actual addresses while still keeping them unique 

and private. To make the computational work optimized, the number of dimensions of hashed IP addresses is reduced in 

order to involve groups of them like 1000 buckets and so on. 

3.2.  Exploratory Data Analysis (EDA) and Feature Selection 

Exploratory Data Analysis (EDA) is very important in determining important details regarding data distribution and 

patterns while the feature selection makes it certain that the model only considered the right details. While performing 

data exploration statistical summaries include mean, median value and standard deviation for numerical variables which 

can be displayed as df.describe(). Gaps and twofold values are detected and treated, and condition of the dataset’s form 

and organization is checked. To do so, different visualizations such as histograms, scatter plots and heatmaps are then 

used to single out patterns in the data. 

A Random Forest classifier contains a method that outputs feature importance levels. This classifier selects and sorts out 

the ten essential features out of the features in the model depending on their respective feature importance scores. Based 

on SMOTE Synthetic Minority Oversampling Technique, synthetic examples are created to have a balanced quantity of 

samples for the minority class. 

3.3.  Optimization Techniques in Malware Detection 

In feature selection and hyperparameter optimization, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) 

algorithms are utilized for malware detection to find out decision margins to enhance the classifier. These optimizations 

begin by working out the few features or parameters that are most informative for the detection models and therefore 
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improving the level of accuracy in their functioning. Initially, they easily over-fit their models and are not very generalized 

in dealing with unseen and diverse forms of malware samples 

PROPOSED METHODOLOGY  

4.1.  Data Preprocessing 

Using the IoT-23 dataset, which contains comprehensive benign and malicious network traffic data, the data is first 

downloaded and read into a panda DataFrame for exploration and preprocessing. Libraries are used to load data from 

multiple files, standardize column names, and merge datasets into a unified structure using pandas, enabling consistent 

and efficient analysis. The percentage of missing data in each column is then calculated to determine whether to impute 

the missing values or drop the columns entirely. The percentage of missing values in each column of the Data Frame 

highlights that some columns, such as service, duration, and local_orig, have significant missing values (e.g., 99.91% for 

service). The missing values were calculated after replacing '-' with NaN. All labels except "Benign" are simplified to 

"Malicious" using lambda functions. This binary classification simplifies the detection task. IP addresses are hashed out 

with SHA 256 to change the actual addresses while still keeping them unique and private. 

Let the dataset D consist of N samples, where each sample has M features as shown in equation 1: 

D = {(x1,y1),( x2,y2),…,(xN,yN)},         xi ∈ RM, yi ∈ {0,1}…….(1) 

where: 

• xi represents the feature vector for the i-th sample. 

• yi=0 for benign and yi=1 for malicious labels. 

 After balancing via SMOTE, D becomes balanced with equal benign and malicious samples: 

Nbenign=Nmalicious 

4.2 Feature Selection Using Random Forest and Model Building 

The model selects and sorts out the ten essential features out of the features in the model depending on their respective 

feature importance scores. Based on SMOTE Synthetic Minority Oversampling Technique, synthetic examples are 

created to have a balanced quantity of samples for the minority class. In current research, CNNs and RNNs are integrated 

in the hybrid model enabling better detection of malware. This is particularly helpful in dictating hierarchical features 

from the data through applying convolutional filters to enhance the identification of spatial relations in malware data. 

Max Pooling layers continue to further down-sampling and limiting feature dimensions while preserving important 

features keeping computation efficient. Since temporal characteristics of malware behavior need to be captured to model 

sequential nature of malware actions, Simple RNN layer is included. The extracted features are then passed into fully 

connected Dense layers for final probability predictions with SoftMax or sigmoid activation function. Meanwhile, in 

model compilation, Adam optimizer is used for optimizing the weight update and binary cross entropy loss is used for 

both the binary classifications. 

Feature importance Ij for each feature j is calculated based on the decrease in impurity in the Random Forest: 

Ij =   ∑
∆Gt (f j) 

Total nodes in t
 

𝑇

𝑡=1
……………..(2) 

where: 

• T is the total number of trees in the Random Forest. 

• ΔGt (f j) is the decrease in Gini impurity for feature fj at a given split in tree t. 

In equation 3 the top k features are selected based on the highest Ij: 

Fselected = {f1,f2,…,fk},   k < M……………(3) 

Convolutional Layer:  

The output of the l-th convolutional layer is: 

h(l)
i,j  = σ ( ∑  𝑤𝑘

𝑚=1 m . xi+mj
(l-1) + b(l) )……(4) 



633   J INFORM SYSTEMS ENG, 10(25s) 

where: 

• 𝑤m are convolutional filter weights. 

• x(l−1) is the input to the l-th layer. 

• b(l) is the bias term. 

• Σ is the activation function (e.g., ReLU). 

Max Pooling: 

Max pooling reduces dimensionality: 

pi,j = max ( h(l)
i:i+k,j:j+k )………(5) 

Recurrent Layer (SimpleRNN): 

The RNN processes sequential data: 

ht = σ (Wh ⋅ ht−1 + Wx ⋅ xt+ bh)………….(6) 

where: 

• ht is the hidden state at time t. 

• Wh are weight matrices for hidden and input states, respectively. 

• bh is the bias term. 

Output Layer: 

The final Dense layer outputs probabilities for the two classes using the sigmoid activation: 

y^ = σ (Wo . h + bo)…………..(7) 

where: 

• y^ ∈ [0,1] represents the probability of the sample being malicious. 

Loss Function 

Binary Cross-Entropy (BCE) loss is used to optimize the model: 

L = - 
1 

N
 ∑  𝑁

𝑖=1 [yi.log (yi^) + (1-yi) log(1- yi^)]……..(8) 

4.3 Optimization Technique 

 To improve the efficiency and effectiveness of the model, Firefly Algorithm is included as a component in the 

proposed hybrid model. This algorithm designs a method to select appropriate hyperparameters like the number of 

neurons in the CNN and other RNN layers following the manner of fireflies. Firefly Algorithm compares a number of 

scenarios and chooses the best one; this optimizes model quality to computational resource usage, and therefore 

enhances the general performance. 

RESULTS AND DISCUSSION 

The Figure 1 shows multiple histograms representing the distribution of different variables or features in a dataset. Here’s 

a breakdown of what this likely represents: 

Each subplot in the histogram corresponds to a feature (or column) in the dataset, illustrating how its values are 

distributed. The x-axis represents the range of values for each feature, while the y-axis shows the frequency (or density) 

of values within each bin. Observations from the histograms reveal that some distributions are skewed, with a heavy 

concentration on one side, while a few variables may display outliers or extreme values, visible as spikes or long tails. 

Additionally, uniform distributions or features with low variance appear as flat histograms or narrow peaks. These 

insights suggest that skewed data may require normalization or transformation, uniform or constant features might be 

irrelevant for predictive models, and outliers may need to be addressed depending on the specific use case. 
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Figure 1. Feature Density Grid 

Table 2 below depicts the feature observation from the dataset. 

Table 2. Summary of Feature Distributions from Density Plots 

Feature Range Distribution 
Characteristics 

Observations 

millisecond (e.g., 0–1100) Uniform distribution High frequency across the range with no 
clear peaks. 

state (e.g., ~0–3e7) Right skewed Most values concentrated near 0. 
pro (e.g., -4e-5–2e-5) Multi-modal Several distinct peaks in the 

distribution. 
static_pro (e.g., ~0–35000) Skewed Higher density at lower values, with 

some distinct peaks. 
syn_truncate_count (e.g.,~10000-

27000) 
Multi-modal Multiple peaks observed in the range. 

tree_area_cache (e.g., ~0–100) Right-skewed Majority of values near 0. 
ram_users (e.g., ~600–800) Multi-modal Concentration in certain ranges, 

possibly groups/clusters. 
map_count (e.g., ~2000–

30000) 
Skewed Higher density near lower values. 

total_vm (e.g., ~0–3000) Right skewed Most values near 0, with a rapid drop-
off. 

sec_vm (e.g., ~120–380) Multi-modal Clear clusters or repeated values in the 
range. 

mserver_vm (e.g., ~0–800) Skewed Most density at lower values. 
last_interval (e.g., ~0–10000) Right skewed Most values concentrated near 0. 
rcrw (e.g.,~340000-

360000) 
Multi-modal Noticeable peaks, indicating recurring 

values. 
ltime (e.g., ~0–42000) Right skewed Concentration of values in a smaller 

range. 
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Figure 2. Feature Count Grid 

This image presented in figure 2 shows a grid of bar charts, which could be the distribution of some categorical variable or the count 

of some feature in data set. Table 3 below list out the features and their value distribution. 

Table 3. Histogram Feature Distributions 

Feature Name Distinct Values Comments 
classification 2 (malware, benign) Balanced distribution 
usage_counter 1 Single value 
normal_prio 1 Single value 
policy 1 Single value 
vm_pgoff 1 Single value 
task_size 3 (112, 114, 120) Skewed towards higher values 
cached_hole_size Multiple (0-256) Most data concentrated at lower values 
hwater_rss 3 (112, 114, 120) Similar pattern to task_size 
shared_vm Multiple (0-10) Highly skewed; most at lower range 
nr_ptes 1 Single value 
lock 1 (3,046,412,536) Single value 
end_data 3 (112, 114, 120) Similar distribution to task_size 
mm_rss Multiple (0-10+) Highly skewed distribution 
ma_rss 3 (112, 114, 120) Similar pattern to task_size 
gtime 3 (4, 6, 7) Balanced 
ctime 1 Single value 
signal_nvcsw 1 Single value 

 

Figure 3 displays the training and validation accuracy of a machine learning model over multiple epochs. The x-axis 

represents the number of epochs (training iterations), while the y-axis represents accuracy. Here's an analysis: 
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Figure 3 Training and Validation Accuracy Over Epochs 

The training accuracy for the model is shown by the red line of accuracy trends and as evidenced by the curve it starts low but 

increases progressively in the first epoch and later stabilizes at very high training accuracy of 0.99+ as indicated above. The blue line 

represents the validation accuracy, and just as with the training accuracy, the validation accuracy is above the initial 50% and 

increases at a slower rate reaching a steady state that is almost the same as the training accuracy in a few epochs. After about 3-4 

epochs, both training and validation accuracy are consistent suggesting that the model has probably identified the underlying patterns 

within the data. Most importantly, the training accuracy is almost paralleled by validation accuracy without any steep drops or gaps 

between these two which imply that the network is staying generalized to unseen data and there is no overfitting in the present model. 

It is clear that the accuracy for both training and validation set are high and relatively stable, this suggests that the model is well fits 

the training data and it is also generalized well to the validation set. This phenomenon indicates that the model architecture, the 

applied regularization techniques, as well as the quality of the dataset that has been used in this work are suitable for this task. 

 

Figure 4 Training and Validation Loss Over Epochs 

The plot in figure 4 denotes the training and validation loss in epochs which is a good measure of how a machine learning model is 

performing while training.  

From the plotted figure, one can observe that the training loss is represented by the green color which clearly show that after the 

initial epoch of training it has consistently decreased gradually epoch after epoch, which clearly depicts that the training of the model 

has been good, and it is fitting well for the training data. The first plot represents the solid line which shows the validation loss, the 

yellow line gives fluctuations through slight increase and decrease before the later epochs of sharp decrease. This indicates some 

inconsistency in the performance of the model in the early episodes but there is a positive trend of improving generalization capability 

of the model. Insights from the loss curves reveal that the initial sharp decrease in training loss indicates the model learns quickly at 

the start. The validation loss being lower than the training loss in the early epochs could point to some regularization effect, such as 

dropout, that helps reduce overfitting early on. As the training progresses, both the training and validation losses converge, suggesting 

the model is generalizing well to unseen data. Overall, the model performs well with no significant signs of overfitting or underfitting. 

If the loss values plateau in subsequent epochs without large divergence, the training can be considered successful. 
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CONCLUSION  

The proposed deep neural network-based framework for malware detection and classification demonstrates significant 

effectiveness and efficiency. The dataset used for training shows a balanced distribution between malware and benign 

classes, ensuring unbiased model training and evaluation. The feature distribution analysis focuses depicts the dispersion 

of several features where several of them are skewed and contain outliers which may impact recognition capability; these 

should be preprocessed. While some of the features are fairly consistent or grossly skewed, others provide good 

discriminant characteristics, as is evident from the histograms. Features could be removed or contained very little or 

irrelevant information which could be optimized to minimize the amount of computation done without any effects on its 

performance. In the training process, maximum accuracy values of model training and validation set are identified to be 

almost 99% after several epochs. This means that the session has been able to find the fundamental relations and features 

of the data input. The strong correspondence of validation accuracy to the training accuracy also indicates that the overall 

generalization ability of the model is excellent and does not suffer from overfitting. Moreover, the training loss keeps on 

reducing with epochs while the validation loss slightly oscillates and converges with the training loss which supports our 

proposition of good generalization capability of the model over the unseen data. 

In total, the presented experimental results confirm the applicability of the proposed framework in terms of scalability, 

execution time, and safety for real-world cybersecurity scenarios. Here, efficient resource utilization and high detection 

rate make this approach a realistic and viable solution for addressing complicated and undiscovered malware. For 

example, future studies might build upon the various methods discussed in current literature to refine, feature selection, 

and feature optimization procedures to achieve better computational performance and flexibility. 

FUTURE WORK 

For future work, the integration of Convolutional Neural Networks (CNNs) with Generative Adversarial Networks 

(GANs) can be further explored to enhance malware detection systems. CNNs can extract intricate spatial features from 

malware representations, while GANs can generate synthetic datasets to address imbalances and expand the diversity of 

training data. Future studies may focus on optimizing the GAN-generated datasets to ensure the inclusion of realistic and 

representative malware variations, improving the generalization of CNN models. Additionally, combining GANs with 

advanced optimization techniques, such as reinforcement learning or meta-learning, could further enhance detection 

accuracy and reduce computational overhead. Research can also address the challenges of adversarial attacks and 

computational efficiency, ensuring the deployment of CNN-GAN architectures in real-time, resource-constrained 

environments. 
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