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ARTICLE INFO ABSTRACT

The field of approximate computing has garnered significant interest as a promising area for relatively error-resistant
applications. At its core, approximate computing revolves around a trade-off between efficiency and accuracy. To
Revised: 16 Feb 2025 optimize power consumption, delay, and area, a certain level of accuracy is sacrificed, provided it remains within
acceptable limits. This research introduces a novel design for an approximate 4:2 compressor. Two distinct
configurations for implementing this compressor are proposed and evaluated within the framework of an 8x8 Dadda
multiplier. The study assesses both technology-dependent and technology-independent parameters, comparing them
with the most recent approximate multipliers reported in recent literature. The performance of these multipliers is tested
using a 45-nm standard CMOS technology node. Additionally, the quality and precision of the proposed approximate
multiplier are evaluated using a range of statistical metrics. To demonstrate their practical utility, the proposed
multipliers are applied to image processing tasks. The results indicate that the proposed designs outperform existing
approximate multipliers in terms of efficiency for image processing applications.
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INTRODUCTION

In the realm of computer arithmetic, digital logic circuits are widely employed due to their exceptional reliability and
precision. However, in many applications, particularly those related to machine learning, multimedia and image
processing, a certain level of computational error or imprecision is not only tolerated but can also produce useful results.
In such cases, striving for the highest accuracy and precision in models and algorithms may not always be the most
efficient or practical approach. To address the power and speed requirements of these applications, various methods have
been proposed across different design abstraction levels. Approximate computing methods, in particular, are explicitly
designed to meet these specifications by allowing for a controlled reduction in computational accuracy. This approach is
well-suited for applications that do not require a single correct answer but instead need acceptable results that are
sufficiently close to the actual solution.

Approximate computing has demonstrated significant success in numerous error-resilient applications. For instance, in
multimedia data processing, minor inaccuracies are often imperceptible to human senses, making approximation an
acceptable trade-off. Similarly, in large-scale data mining and pattern recognition, approximate results can still provide
meaningful insights. In machine learning, particularly during the training phase, approximate computations can
accelerate convergence while maintaining the overall effectiveness of the model [1], [2].

Multiplier design generally involves three key steps. Firstly, generating partial products which are intermediate products
obtained using arrays of AND logic gates. Secondly, summing the intermediate results. And finally, computing the result
(product) using intermediate adder circuits. Among these stages, the stage where the partial products are reduced is the
most computationally demanding, consuming the most power and requiring the largest area. [3], [4]. This is quite evident
as the partial product reduction stage has the most amount of raw calculation. Hence, optimizing this step is critical to
increase the efficiency and energy use of the multiplier. Reducing partial products is done using computational modules
called compressors. Full adders play a crucial role in both Dadda and Wallace multipliers. Nonetheless, more advanced
compressor designs, like 4:2 or 5:2 structures, offer greater efficiency in the stage where intermediate results are summed
facilitating the development of more efficient multiplier architectures [5].

In this study, we present and analyze a novel design for an approximate 4:2 compressor. Our findings show that this
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optimized compressor achieves superior performance with respect to delay and power efficiency when contrasted with
traditional 4:2 compressor designs referenced in prior research [5]. The proposed compressors are integrated into the
Dadda multiplier through two unique inexact multiplication approaches. Additionally, we provide simulation results
based on 45nm CMOS technology, focusing on key metrics including delay, chip area, and power efficiency. The accuracy
of the multiplier is assessed, and its application in image processing tasks is explored. Findings suggest that these
proposed architectures are highly effective for approximate computing, achieving an optimal balance between accuracy
and computational efficiency.

This paper is divided into five sections. Section 2 presents an overview of the fundamental concepts that serve as the
foundation for this research. Section 3 details the development of the proposed approximate 4:2 compressor and its
integration into the Dadda multiplier. Section 4 focuses on the simulation results, assessing design accuracy and
performance in image processing applications. Lastly, Section 5 summarizes the key findings and conclusions derived
from this study.

BACKGROUND

In the approximate computing literature, one can find numerous techniques are utilized to enhance efficiency while
preserving an acceptable degree of accuracy. Components like full-adders, half-adders, and compressors are often
replaced with their approximate versions to improve efficiency. In some cases, basic logic gates are also employed to
simplify the reduction of partial products. Moreover, since the least significant bits have very little affect over the final
result of the multiplication, their results are often not calculated but are rather set to a constant (either o or 1).

In [7], Momeni et. al. have designed two approximate compressors. They are created by altering the truth table of a
precise compressor. Two distinct approaches for implementing each of these proposed approximate compressors have
been introduced (in total four multiplier designs are proposed in the paper). The initial compressor design yields 12
errors out of 32 possible results. On the other hand, the second compressor generates just 4 errors out of 16 possible
outcomes, reducing the error rate to 25%.

Ahmadinejad et al. [8] presented a new method to develop a simplified logic function for an approximate 4:2 compressor.
By evaluating the likelihood of inputs to the compressor, the researchers adjusted the truth table of the exact compressor.
Their 4:2 approximate design computes the Sum and Carry outputs using only the four input bits from the partial
products, disregarding Cin and Cout. This simplification results in seven errors out of 16 possible input states. The design
can be implemented using just 16 transistors. Additionally, the authors developed a very compact approximate 5:2
compressor that also omits Cin and Cout, requiring only 20 transistors for implementation. The compressors are
designed keeping in mind the balance between computational accuracy and hardware cost. Ahmadinejad et. al. have
provided two multiplier designs each employing the two inexact compressors respectively. The two proposed multiplier
designs ignore the last four columns of partial products, in total setting 10 partial products to *0”.

In [9], a 4:2 compressor is proposed by fixing Cin and Cout to '0'. This design employs only six transistors to produce the
Sum and Carry, aiming to minimize energy consumption. Notably, the input x2 is ignored in this approach. The multiplier
presented by Ejtahed [9] is segmented into three regions. However, since one input bit is disregarded by the compressor,
certain products are also excluded. Moreover, in this design, the Carry output from the in Stage 1, generated by the
compressors functions as an alternative input (x2) for the subsequent compressors, effectively skipping the computation
of Carry in three instances and reducing the number of partial products by 29.

Minaeifar et al. [6] introduced three multiplier architectures that discard the least significant bits (LSBs) of operands to
simplify calculations. By predefining the LSBs as zero, the design significantly cuts down transistor usage by eliminating
28 AND operations necessary for generating partial products. Their proposed models integrate both exact and
approximate 4:2 compressors along with different types of adders to streamline partial product reduction and facilitate
final result computation.

One notable feature of these designs [6] is the use of an OR gate instead of the conventional XOR gate for generating Sum
outputs in the approximate half-adder, leading to hardware efficiency. Additionally, the Carry output remains functional
through an AND gate, requiring 12 transistors for proper operation. The approximate full adder design simplifies the
Sum output assignment by directly linking it to the x1 input. Meanwhile, the Carry output is derived using a three-input
OR gate, incorporating x1, x2, and Cin, enabling the full adder to function with just eight transistors.
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PROPOSED DESIGN

This section presents a design of an approximate compressor and two schemes for 8-bit multiplier using the proposed
approximate compressor are presented.

Our design incorporates approximate half-adders and full-adders, along with the proposed approximate compressor. In
the approximate half-adder design, the Sum output is obtained by utilizing an OR gate instead of the traditional XOR
gate. Meanwhile, the Carry output continues to function through an AND gate, necessitating the use of 12 transistors for
its realization [6]. Likewise, in the approximate full adder, the XOR gate is replaced with an OR gate to simplify the Sum
computation. Meanwhile, the Carry output is derived from the AND operation of the three input signals. Thus, the
implementation of the given approximate full adder requires 20 transistors. To the best of our knowledge, the
approximation of the Carry output has not been implemented in this manner. In contrast, the approximation of the Sum
output, as described, is frequently seen in the approximate computing literature.

1.1 Approximate Compressor Design
X7 X2 X3 Xyq
Full Adder
— Cin
| |
Cout
Full Adder

o J

Carry Sum

Figure 1: Schematic of a 4:2 compressor

Figure 1 illustrates a 4:2 compressor constructed using full adders. When implemented in CMOS technology, it typically
uses 116 transistors. By replacing the conventional full-adder cells with their approximate counterparts, as discussed
earlier, an accuracy level of 75% is achieved, calculated as the proportion of correct outputs relative to the total number
of outputs. To further reduce transistor usage while maintaining this accuracy, we propose an innovative method. Our
approach involves utilizing the same hardware configuration for generating both the Carry and Cout signals in the 4:2
compressor. Based on our review, no previous work has introduced a 4:2 compressor in the manner depicted in Figure
2. By reusing the hardware components, this design improves efficiency, maintaining an accuracy rate of 75% (24 correct
outputs out of 32).

X1
x2
X3 Cin Sum
4
Carry
Cout

Figure 2: Schematic of 4:2 compressor

1.2 Multiplier Design

In this section, we integrate the proposed approximate compressor (figure 2) into an 8x8 Dadda multiplier. As discussed



715 J INFORM SYSTEMS ENG, 10(25s)

earlier, the paper presents two unique designs for integrating these approximate components. Typically, parallel
multipliers are organized into three stages. Firstly, partial products are generated using AND gates, while the second
stage focuses on summing these partial products with the help of compressors and adders.

The third stage involves generating the final result, which is achieved through a ripple Carry adder. This stage completes
the multiplication process by combining all the partial results into the final output. Approximation methods are
typically applied in the initial two stages: generating partial products and reducing them. In the first stage, optimization can
involve skipping the generation of lower-bit partial products entirely. In [8], the authors suggested truncating the lower four
bits of the generated partial products, setting them to 0. In [6], a novel approach was introduced where the two most least
significant bits (LSB) of the multiplier and multiplicand are ignored. Furthermore, the lower four bits of the product are set
to ‘1’. Drawing inspiration from these methods, we truncated the lower five-bit and four-bit partial products in the first and
second proposed multipliers, respectively, setting the corresponding product bits to 0. The approximate components,
depicted in Figure 3 and Figure 4, are employed in the second stage. As discussed before, partial product reduction takes
place in the second stage. Furthermore, in the final ripple Carry adder stage, we used approximate full adders and
approximate half adders instead of the traditional full and half adders to compute the final output.

In Noveli, the C;, bit of the approximate compressor in the 8t and 6th column (8th/6th column from the LSB) is set to o.
Similarly, the x, bit of the compressor in the 9th column is set to 0 for both Novel1 and Novel2. It is important to note
that in Novel2, the output of the OR operation in 5t column is not only the 5t output bit but also the C;, for the
compressor in next column.

Approximate Half-Adder Approximate Half-Adder

Approximate
Compressor

Approximate
Compressor

Approximate
Full-Adder

Exact
Full-Adder

; i
D : :OR Operation

io o o o

Figure 3: Design of NOVEL1 Multiplier Figure 4: Design of NOVEL2 Multiplier

RESULTS

In this section, the proposed multipliers are scrutinized based on technology dependent and technology independent
metrics. This section also describes the methods and criteria used to quantify the performance and accuracy of the
multipliers in basic mathematical image processing problems, covering error evaluation metrics and comprehensive
performance analysis. For a fair comparison, all approximate multipliers which are been used for comparison and along
with the proposed designs are implemented using Python in the PyCharm IDE, following the guidelines outlined in the
referenced articles. The performance of the two proposed multipliers is analyzed through transistor-level simulations
using CMOS technology with a 45nm process node, conducted using Cadence’s Genus and Innovus tools.

4.1 Error Evaluation Metrics

This section offers an overview of key aspects and widely recognized measures for evaluating the effectiveness of
approximate multipliers. Typically, the discrepancy between two values, one being erroneous (a) and the other correct
(b), is quantified using a metric called Error Distance. This is determined by computing the absolute difference between
the two values, represented mathematically as Eg;f.

Eqirr = la —b| 4)
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The Normalized Mean Error Distance (NMED) and the Mean Relative Error Distance (MRED) are well-established
metrics frequently used to quantify the accuracy of approximate circuits. These measures work by computing the average
error distances across multiple test scenarios and then normalizing the obtained results [12].

1 \2 2N Egiff
NMED = (=) 227 %2% (5)
22N ff
1 < Egi
MRED = —Z 6

i=1
Where Mi is the maximum possible product.

Studies indicate that the Mean Relative Error Distance (MRED) exhibits exponential growth as the count of lower-order
bits in an adder increases. While MRED serves as a valuable measure for evaluating adder performance, it may introduce
bias when adders contain varying quantities of lower-order bits, leading to fluctuations in maximum error. To mitigate
this issue, a refined version of MRED, referred to as the Normalized Error Distance (NMED), has been introduced as a
standardized assessment metric [10].

Additionally, the concept of the Number of Effective Bits (NoEB) has been proposed, with ERMS denoting the root mean
square error associated with approximate multipliers [13]. The NoEB value is determined through the equation provided
below.

NoEB = 2N -log.(1 — ERMS) )
1.3 Accuracy Analysis

A detailed list of accuracy metrics for the 8x8 approximate multipliers can be found in Table: 1. These values were obtained
by assessing all 65,536 likely input combinations. The data indicate that proposed ‘Novel1’ and ‘Novel2’ multipliers do
not significantly outperform the multipliers referenced form the articles in terms of the statistical metrics namely the
NoEB, MRED, and NMED. This is partly due to the fact that the multipliers have their lower bits truncated.

Table 1: Multiplier Accuracy Analysis

Multiplier MRED | NMED | NoEB

Minaeifar mul1 [6] | 0.0685 | 0.0047 | 7.3

Minaeifar mul3 [6] | 0.1208 | 0.0135 | 5.7

Momeni 0.8 0.0601 | 3.9
multiplier1[7]

Momeni 0.59 0.082 3.5
multiplier2 [7]

Ejtahed [9] 0.0998 | 0.008 | 6.7
Ahmadinejad 4 2 | 0.0901 | 0.0195 | 4.9
81 _

Ahmadinejad 5 2 | 0.0875 | 0.019 4.9
81 _

NOVEL1 0.1622 | 0.0478 | 3.5
NOVEL2 0.1759 | 0.039 3.8

14 Image Processing Methods

This section evaluates the effectiveness of approximate multipliers in practical applications by utilizing them in three
fundamental image processing tasks: image multiplication, sharpening, and smoothing.
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For image multiplication, the multiplier processes two images on a pixel-by-pixel basis, combining them to generate a
single resultant image. Figure 5 presents both the input images and the final processed output. Additionally, Equation 8
is used to compute the enhanced image in the sharpening process.

Y(x' Y) = ZX(X, y) -1+ ;?anz—z Z%:—z MaSksharpening(m +3,n+ 3) : X(x -my - n) (8)

Here, variables X and Y denote the input and output images, respectively, while the sharpening mask matrix is
characterized as follows:

1,4,7,4,1;
4,16,26,16,4;
Masksharpening =|7,26,41,26,7; 9
4,16,26,16,4;
1,4,7,4,1

Additionally, in the smoothing process, the final image is generated through the following approach:

2 2
1
Y(x,y) = 20 Z z Masksmoothing(m + 3,n+3) - X(x —m,y —n) (10)

m=-2n=-2
Here the smoothing mask matrix used is

1,1,1,1,1;
1,4,4,4,1;
Masksmoothing =11,4,12,4,1; (10)
1,4,4,4,1;
1,1,1,1,1

It is crucial to emphasize that in both of these methods, fundamental computations like addition, subtraction, and
division are expected to be performed with precision.

Within the realm of image processing, key metrics commonly aid in evaluating image quality: the Mean Structural
Similarity Index Metric (MSSIM) and the Peak Signal-to-Noise Ratio (PSNR) [11]. PSNR plays a significant role in
measuring image quality across different processing applications and is derived using the following equations:

M-1N-1

1
MSE=- %" ) (x)-y@p)  (2)

x=0 y=0

MSE refers to Mean Square Error, where M and N define the size of the image, while x(i,j) and y(i,j) denote the pixel
values of the images under analysis.

PSNR =10 - logy, (M) (13)

MSE

The variable MAXI is the highest possible pixel value within an image.
Within digital image processing, the Mean Structural Similarity Index (MSSIM) serves as a widely used measure for
comparing two images. Compared to conventional methods such as Mean Square Error (MSE) and Peak Signal-to-Noise

Ratio (PSNR), MSSIM considers human visual perception rather than merely relying on pixel-level differences to provide
a more precise assessment.

The Structural Similarity Index is calculated using the following equation: (14)
1

SSIM(x,y) = gl ) (14)

(u2+u3+C1)(of+03+C2)

Where,
. ox2? and oy?: Variance of images x and y respectively.
. L and y,: Denotes the mean intensity values of images x and y.

o Oxy: Indicates the covariance between images x and y.
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. C. and C.: Constants used to maintain stability in division operations.

The MSSIM is calculated by averaging the SSIM values from the three channels (15).

MSSIM (x,y) =~ L. SSIM (x;, y;) (15)

M
More information on MSSIM as given in eq. could be found in [14]

Table 2: PSNR and MSSIM Values for Multiplication Operation

Lighthouse x PlaneLena
Multiplier

PSNR MSSIM |PSNRMSSIM
Novel1 29.985 |0.760 31.172 [0.852
Novel2 30.511  |0.528 31.800(0.778

Minaeifar muli [6] 43.797  0.991 43.624/0.984

Minaeifar mul3 [6] 32.535 [0.956 35.110 [0.958

Momeni multiplier1[7]29.517 [0.768 290.211 |0.652

Momeni multiplier2[7]i30.253 [0.793 29.748(0.708

Ahmadinejadg 2 [8] [32.432 [0.861 33.287/0.879

Ahmadinejad 5 2 [8] [32.249 [0.870 34.255(0.889

Ejtahed [9] 40.830 [0.984 141.006/0.971

(a) Grayscale Image (b) RGB Image (c) Exact output

Figure 5: (a) and (b) used for multiplication application.

(b) Novel2

(d) Minaeifar mul3 (e) Momeni mul1  (f) Momeni mul2
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(h) Ahmadinejad 5:2 (i) Ejtahet (j) Ahmadinejad 4:2
Figure 6: Output images of multiplication operation using approximate multiplier.

Table 3: PSNR and MSSIM values for Image Sharpening Algorithm

Multiplier PSNR MSSIM

Plane [LighthouseBoat |[Lena [PlaneLighthouseBoat [Lena
INOVEL1 26.509[25.261 24.919 [25.342/0.938 [0.912 0.953(0.926
INOVEL2 24.451 29.137 28.956[27.416|0.938 |0.870 0.916(0.904
Momeni multiplier1 [7] 13.265 [10.727 11.238 [11.133 [0.882/0.758 0.7550.766
Momeni multiplier2 [77]14.367 [11.743 12.381 [12.224/0.901 (0.780 0.796(0.787
Minaeifar muli1 [6] 44.612 [42.571 13.112 [41.454/0.995 [0.995 0.995(0.994
Minaeifar mul3 [6] 22.605[26.131 24.82825.353/0.990 [0.991 0.991(0.991
Ejtahed [9] 33.440|36.909 37.394[36.271/0.989 [0.987 0.984/0.981
Ahmadinejad 4 2 [8] [32.543|35.225 32.12833.364(0.975 |0.972 0.973/0.970
Ahmadinejad 5 2 [8] [34.883|37.112 34.420|35.679/0.970 [0.974 0.977(0.977

Table 4: PSNR and MSSIM values for Image Smoothing Algorithm

Multiplier PSNR MSSIM

Plane [LighthouseBoat [Lena [PlaneLighthouseBoat [Lena
INOVEL1 21.617 12.637 21.667 [13.564 [0.926 |0.636 0.9080.717
INOVEL2 30.790(12.938 24.866(13.849/0.918 |0.637 0.874/0.722
Momeni multiplier1 [7] 11.048 [28.920 7.706 [25.003/0.760 |0.897 0.661/0.875
Momeni multiplier2 [7]j11.474 [25.339 8.122 [22.105/0.783 [0.841 0.694(0.854
Minaeifar muli [6] 31.782[13.470 35.221 [14.230(0.991 |0.647 0.992(0.735
Minaeifar mul3 [6] 28.634[13.255 30.780[14.084(0.996 |0.646 0.997/0.732
Ejtahed [9] 33.123 [13.882 33.842(14.431 |0.983 |0.646 0.973/0.742
Ahmadinejad 29.058(14.147 23.540[14.711 [0.909 |0.645 0.935/0.751
42[8] -
Ahmadinejad 5 2 [8] [31.071 14.135 24.8290[14.721 [0.944 [0.645 0.948|0.751

1.5 Multiplier Performance

As observed from the data in table that the proposed multipliers outperform the multipliers referenced form different
articles with respect to delay and chip area. We believe this occurs because the lower bits are truncated, and the
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multipliers being almost entirely constructed out of approximate counterparts. ‘Novelt’, is 55% better regarding area and
70% better concerning power consumption ‘Novel2’ as ‘Novel1’. This could be understood from the fact that ‘Novel1’ has
one more bit truncated than ‘Novel2’ and employs approximate full-adder modules instead of the exact ones in its last
stage.

Table 5: Comparison of Multiplier Performance

Multiplier Area (um2)Delay (ps)Power (mW)PDP [FOM1FOM2|
INOVEL1 507.61 1000 0.254 0.254(0.266 0.009
INOVEL2 700.07 750 0.432 0.324(0.337 0.013
Minaeifar mul1 [6] 850.61 1800 0.284 0.511 [0.513 |0.011
Minaeifar mul3 [6] 870.77 1400 0.269 0.377/0.382 |0.011
Momeni multiplier1[7] 1332.89 1400 0.584 0.818/0.871 0.046
Momeni multiplier2[7]{1180.5 1600 0.439 0.703|0.766 (0.034
Ejtahed [9] 788.52 1600 0.283 0.453/0.457 [0.011
Ahmadinejad 4 2 [8] [992.19 1400 0.439 0.615(0.627 [0.021

For a more effective evaluation and scrutiny of our multipliers, Figure 7 illustrates the equilibrium between the adjusted
Power Delay Product (PDP) and the precision metric, specifically the Normalized Mean Error Distance (NMED) [6].

Two performance indicators (FoM) are utilized for a more comprehensive and fair analysis. Each FoM emphasizes a
different factor: FoM1 underscores the relationship between energy consumption and computational reliability, whereas
FoM2 offers a detailed assessment of the efficiency of approximate multipliers by examining their power utilization and
impact in image analysis [15]. The formulas for FoM1 and FoM2 are presented below:

FOM1 = PDP/(1 — NMED)
FOM2 = PDP/(PSNR * MSSIM)

The Mean Structural Similarity Index Metric (MSSIM) and the Peak Signal-to-Noise Ratio (PSNR) values for the
multiplication operation of the two images, as provided in the table, are utilized in this analysis. The two FOMs are plotted
in Fig: 8 where the FOM2 values have been normalized.

CONCLUSION

This study presents, we have designed two innovative multipliers which demonstrate a notable reduction in area and delay
while preserving a good level of accuracy. By employing exact and approximate circuits, including 4:2 compressors and
various adder circuits, we have effectively enhanced the efficiency of our approximate multipliers. This approach
underscores the growing importance of approximate computing in reducing energy consumption and improving
performance in digital circuits.



721 J INFORM SYSTEMS ENG, 10(25s)

FOM2  ®FOMI

@ NOVEL1

NMED

@ NOVEL2

® Ahmadinejad 1
@ Minacifar3 ° °
05 | | |
@ Ejtahed * [ L ®

® Minaeifarl ¢

Minagifari Minagifar3 Memenil Momeni 2 Ejtahed Ahmadine]ad MOVELL NOVELZ
PDP

Figure 7: PDP vs Normalized NMED Figure 8: FOM1 and Normalized FOM2

The proposed multipliers, NOVEL1 and NOVEL2, exhibit impressive improvements over existing designs. NOVEL1 achieves
a 61.9% reduction in area compared to the Momeni multiplier1 [7] and outperforms Minaeifar mul1 [6] with a 44.4%
reduction in delay. Additionally, NOVEL1 also benefits from 10.7% lower power consumption than Minaeifar mul3 [6]. On
the other hand, NOVEL2 stands out with the lowest delay, being 46.4% faster than Minaeifar mul1 [6], and offers a
compact design with 33.4% less area compared to Ahmadinejad 4:2, providing an excellent balance between speed and
power efficiency.

In summary, the design and implementation of our approximate multipliers showcase substantial improvements in both
circuit-level performance and error metrics. Through the optimization of approximate compressor designs, we have
developed multipliers that minimize area and delay while maintaining an effective balance between power consumption
and computational speed. These achievements underscore the promise of approximate computing in enabling more
efficient digital systems.
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