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Background: The development and visual impairment caused by cataracts, the primary cause of 

blindness in many other nations, must be addressed with regular screening and prompt 

treatment. Vision distortion is a typical result of eye illnesses such as cataracts. The greatest 

method of reducing the risk and preventing blindness is early and accurate cataract 

identification. Research attention has recently been drawn to artificial intelligence-based 

cataract detection methods.  

Purpose: The research enhances diagnosis accuracy and care timeliness, improving clinical 

outcomes for patients with detected cataract illness. 

Methods: The Kaggle Cataract Disease detection dataset is utilized in the research for detection 

purposes. Resize and color adjustment are used to improve the quality of the images and make 

feature extraction smoother afterward. Global Contrast Normalization (GCN) is used during the 

preprocessing step. Utilize the Oriented FAST and rotated BRIEF (ORB) algorithm, and Efficient 

Net to extract features in images of cataract illness, ensuring a reliable and efficient method for 

identifying distinguishing characteristics. The research proposed a Whale Optimized 

Convolutional Gated Recurrent NeuroNet (WOCGRN) to improve diagnosis accuracy and care 

timeliness, thereby improving clinical outcomes for cataract patients. This novel model combines 

the spatial learning power of Convolutional Neural Nets (CNNs) with Whale Optimization's 

Gated Recurrent Unit layers to fine-tune the research model. 

Result: Furthermore, the model has been designed to concentrate on symmetrical areas of 

interest within images, enhancing its sensitivity to microscopic structural alterations linked to 

cataract disease. Using the Python tool and comparative analysis demonstrates that the model 

outperforms existing methods. Compared to previous models, the proposed WOCGRN model 

achieves superior performance metrics: 99.49% accuracy, 99.00% precision, 98.00% recall, 

98.00% F1 score, 97% sensitivity, and 96% specificity. 

Conclusion: These results underscore the potential of integrative approaches in developing a 

robust diagnostic tool for the early detection of cataract diseases, ultimately contributing to 

improved patient outcomes. 

Keywords: Cataract Diseases (CD), Global Contrast Normalization (GCN), Oriented FAST and 

rotated BRIEF (ORB), Whale Optimized Convolutional Gated Recurrent NeuroNet (WOCGRN). 

 

I.INTRODUCTION 

A cataract can develop from protein accumulation on the lens of the eyes. This will obscure the lens and stop light 

from traveling through it, which will impair vision[1]. These changes often begin after the age of 40 and are a normal 

part of aging. By the time they are 80, more than half of all Americans will have undergone cataract surgery or have 

cataracts[2]. Figure 1 shows the affected cataract eye. 

mailto:saleemaparvin.s.b@jbascollege.edu.in
mailto:ismailkalilulah.cse@drmgrdu.ac.in


812  
 

J INFORM SYSTEMS ENG, 10(25s) 

 

Figure 1: Cataract eye 

A common eye ailment that frequently manifests before the age of sixty is cataract. Diabetes, trauma, medications, 

and other health issues can all be associated with early cataract development[3]. A traumatic eye injury, such as 

being struck by a ball, poked or wounded by a sharp instrument, being exposed to UV radiation, receiving ionizing 

radiation therapy for an eye tumour, getting chemicals in the eye, or suffering electrical damage to any part of the 

body, is the most frequent cause among young individuals. Cataracts develop gradually, often starting with subtle 

vision changes that can go unnoticed at first [4].  

1.1 Early cataract symptoms  

Cataracts are a common eye condition characterized by the clouding of the lens, which can significantly impair vision. 

In their early stages, cataracts can produce subtle symptoms that can easily be overlooked or attributed to normal 

aging. However, recognizing these symptoms is crucial for timely intervention and effective management. One of the 

initial signs of early cataracts is the alteration in color perception; individuals often report that colors appear faded 

or yellowed, diminishing the vibrancy of their surroundings [5]. As the condition progresses, increased sensitivity to 

glare becomes apparent, particularly when driving at night, where bright headlights can create discomfort and visual 

disturbances. Another notable symptom is double vision in one eye, which occurs due to irregularities in the lens, 

causing light to scatter and resulting in a perception of seeing two images[6]. Additionally, those affected can find 

themselves needing more light for close work, such as reading or sewing, as the clouding of the lens decreases the 

amount of light that reaches the retina. Finally, blurred vision, often experienced in one eye, can manifest early on 

and worsen over time, leading to a significant impact on daily activities. Understanding these early symptoms is 

essential for individuals to seek prompt evaluation and treatment, ultimately preserving their quality of vision and 

overall quality of life. 

1.2 Causes of Early Cataracts 

Early cataract is a disorder in which the lens of the eye clouds early in life, usually before the age of 50[7]. If left 

untreated, symptoms like blurred vision, increased light glare, and difficulty seeing at night can have a major negative 

impact on daily activities and quality of life. The illustration of causes is shown in Figure 2. 

 

Figure 2: Causes of early cataract 

1.3 Research objective 

The study improves diagnosis accuracy and care timeliness, leading to improved clinical outcomes for patients with 

detected cataract illness. 
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The remainder of the research:Section 2 contains the study's review of the literature, and Section 3 illustrates 

the methodology. The results of the study are presented in Section 4. The conclusion is established in Section 5. 

II.LITERATUR REVIEW 

Table 1 summarizes the literature on various types of cataracts, detailing the year of publication, the datasetused, 

research objectives, methodologies employed, advantages, and identified limitations of each study, providing a 

comprehensive overview of the current state of research in the field. 

Table 1: Overview of various articles related to cataract disease 

REFEREN

CE & 

YEAR 

OBJECTIVE DATA 
PROPOSED 

METHOD 
ADVANTAGES 

DRAWBAC

KS 

[8], 2024 

To enhance 

early and 

preciserecogni

tion of the 

cataracts as 

well as 

glaucoma to 

reduce the risk 

of blindness. 

The 

experiments 

utilized 

publicly 

available 

datasets 

containing 

images of 

cataracts and 

normal eyes, 

and 

glaucoma 

and normal 

eyes. 

The study employed 

MobileNetV1 along 

withMobileNetV2th

at are optimized 

architectures for 

lightweight deep 

neural networks 

using the depth-wise 

separable 

convolutions. 

The suggestedapproach 

achieved the highest 

precision compared to 

the other approaches. 

Study is 

limited by 

the use of 

publicly 

available 

datasets, 

which 

cannot 

represent all 

variations of 

cataract and 

glaucoma 

cases. 

[9], 2024 

To develop a 

reliable model 

for classifying 

eye diseases to 

advance 

medical 

science and 

increase 

patient 

outcomes. 

 

Fundus 

images of 

various eye 

diseases, 

including 

cataracts, 

glaucoma, 

and diabetic 

retinopathy. 

BayeSVM500, a 

Support Vector 

Machine (SVM) 

classifier trained on 

features extracted 

from Efficient Net 

and reduced to 500 

dimensions. 

The 

methodattainedaccuracy

(95.33 ± 0.60%), 

indicating highly 

accurate classification 

and potentially 

improving diagnosis 

speed and patient 

outcomes. 

4o mini 

 

The model's 

performance 

can depend 

on the 

quality and 

diversity of 

the training 

dataset; it 

cannot 

generalize 

well to 

unseen data. 

[10], 2024 

To classify 

fundus images 

into two 

classes: 

normal and 

cataract, 

enabling early 

detection and 

prevention. 

Fundus 

images from 

the Kaggle 

repository 

are divided 

into training 

data, 

validation 

data, and test 

data. 

Utilization of the 

EfficientNet 

architecture in 

convolutional neural 

networks (CNN) and 

comparison of 

various optimizers 

The comparison of 

multiple optimizers 

provides insights into 

their effectiveness, 

aiding future research in 

selecting the best 

optimization strategy for 

similar tasks. 

The model's 

performance 

can be 

influenced 

by the 

limited size 

of the 

training 

dataset, 

potentially 

affecting 

generalizabil

ity. 
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[11], 2024 

To detect, 

recognize, and 

classify 

cataracts using 

deep learning 

(DL) models 

applied to 

retinal fundus 

color images, 

intended for 

early detection 

and treatment. 

A dataset of 

400 

colourimages

has been 

classified 

into 300 

normal 

images and 

100 cataract 

images. 

Utilization ofCNN 

models, GoogleNet, 

ResNet101, and 

DenseNet201applied 

in three scenarios. 

The model's potential for 

early detection and 

classification of cataracts 

weredemonstrated 

through performance 

metrics evaluation, 

enhancing its reliability 

and improving eye 

health. 

Not explicitly 

mentioned 

in the 

abstract, but 

potential 

limitations 

include 

dependency 

on the 

quality of the 

dataset and 

variability in 

image 

capture 

conditions. 

[12], 2024 

To classify 

congenital 

cataracts for 

personalized 

treatment and 

to predict 

visual 

outcomes. 

Medical 

records of 

164 children 

with 

congenital 

cataracts, 

involving 299 

eyes 

Hierarchical cluster 

analysis to identify 

different clusters 

based on ocular 

features 

Identified two clusters 

with different visual 

outcomes, aiding in 

treatment decisions. 

The study is 

retrospective

, which can 

introduce 

biases. 

[13], 2024 

To enhance 

the accuracy of 

cataract 

diagnosis. 

Fundus 

images of 

normal eyes 

and cataracts 

from Kaggle. 

SVM and a 

Harmony Search 

algorithm. 

 

Improved computational 

efficiency through better 

exploration of the search 

space. 

Potential 

issues with 

the dataset's 

quality and 

diversity 

[14], 2024 

To develop an 

AI-based 

network for 

high-precision 

classification 

and grading of 

cataracts using 

fundus images 

1,340 color 

fundus 

images from 

875 

participants 

from the 

Beijing Eye 

Study 2011. 

Developed a 

DualStream 

Cataract Evaluation 

Network (DCEN) for 

simultaneous 

cataract type 

classification and 

severity grading. 

Simultaneous 

classification and 

grading streamline 

assessments. 

Limited 

generalizabil

ity due to 

data from a 

single 

location 

(Beijing). 

[15], 2024 

To evaluate 

outcomes 

related to 

fusing visual 

characteristics 

of the left as 

well as right 

eye cataract 

features for 

improved 

classification 

of ocular 

disorders. 

 

Ocular 

Disease 

Intelligent 

Recognition 

(ODIR5k) 

dataset. 

 

Introduced 

CataractNetDetect, a 

multi-label DL 

classification system 

that fuses the 

characteristicillustra

tions from pairs of 

fundus images using 

architectures. 

 

Streamlines the 

diagnostic process, 

allowing for quicker and 

more efficient 

evaluations of ocular 

disorders. 

The research 

used an 

exact 

dataset, 

which can 

affect its 

generalizatio

n to other 

populations. 

 

III.METHODOLOGY 

To improve the diagnosis of cataract disease, the Whale Optimized Convolutional Gated Recurrent NeuroNet 

(WOCGRN) is utilized in the suggested technique. The temporal processing strengths of Gated Recurrent Unit (GRU) 
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layers are combined with the spatial learning powers of CNN in the present novel model. To optimize the GRU 

parameters and ensure effective model fine-tuning, the Whale Optimization Algorithm is utilized. Through the 

integration of these advancededge methods, WOCGRN seeks to enhance patient care timeliness as well as diagnostic 

precision. The ultimate goal of this strategy is to improve clinical results and the way cataract illness is managed in 

general. Figure 3 depicts the overall block diagram. 

 

Figure 3: Overall Methodological design 

3.1 Dataset 

Research gathers ocular disease intelligence recognition (ODIR) 

(https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k?select=ODIR-5K) dataset from 

Kaggle, it’s a database of 5,000 patients, containing age, colour fundus images, and doctors' diagnostic keywords. It 

represents real-life patient information from hospitals and medical centers using cameras like Canon, zeiss, and 

kowa, resulting in varied image resolutions. The dataset represents a real-life set of patient information. Figure 4 

illustrates the sample images of data. 

 

Figure 4: Example images in the database 

3.2 Data Pre-processing  

Two crucial methods used to improve image quality are resizing and color modification, which allow for more fluid 

feature extraction in later stages. One essential pre-processing procedure that helps standardize image contrast and 

provide similar visual qualities across different images is called global contrast normalization, or GCN. By using these 

techniques, the images' overall clarity and detail are enhanced, which eventually leads to more accurate analysis and 

interpretation. When combined, these pre-processing methods provide a strong basis for machine learning (ML) and 

image processing applications. 

3.2.1 Histogram Equalization (HE) 

Splitting pixel intensity values improves image contrast and makes features more visible in both dark and bright 

areas. This process is known as HE. This technique improves the visibility of details in images taken in dimly lit 

environments. HE enhances the contrast in images, making subtle differences in consistencyand quality more 

apparent. Figure 5 represents the quality image of pre-processed HE. By normalizing brightness and contrast, this 

https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k?select=ODIR-5K
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pre-processing step increases the accuracy of feature extraction and classification, allowing for the distinction of 

affected.Eq. (1-3) represents the HE.  

𝑙 = 0,1, … . . 𝐾 − 1         (eq. 1) 

𝑑(𝑤) = ∑ 𝑜(𝑊𝑖)
𝑙
𝑖=0          (eq. 2) 

𝑒(𝑤) = 𝑊0 + (𝑊𝐾−1 − 𝑊0)𝑑(𝑤)        (eq. 3) 

In the equations, 𝑙 represents the possible intensity levels of the image, 𝑑(𝑤) denotes the cumulative distribution 

function for the intensity levels, and𝑒(𝑊) signifies the equalized intensity value. The high performance of the HE to 

enhance the image contrast due to the dynamic range expansion, which can be easily understood by the image output 

of the HE, is as shown in Eq. (4 & 5). 

𝑍 = 𝑒(𝑊)           (eq. 4) 

{𝑒(𝑊(𝑗, 𝑖))|∀𝑊(𝑗, 𝑖) ∈ 𝑊}         (eq. 5)  

𝑍is the enhanced output image after HE, and 𝑊 represents the original image intensity values at pixel locations (𝑗, 𝑖). 

 

Figure 5: After using histogram equalization (HE) 

3.2.2 Global Contrast Normalization (GCN)  

To provide a consistent visual representation, GCN modifies the mean and variance across pixel intensities to 

normalize the contrast of images. By minimizing lighting-related differences, this approach makes it possible to 

compare and analyse images more effectively for ML tasks. GCN is crucial for improving the quality of medical 

images, particularly in ODIR for cataracts. GCN enhances image contrast, making important characteristics like 

cataract opacities easier to see(Eq. 6). It also standardizes image intensity levels, reducing unpredictability caused 

by uneven lighting or camera settings. This enhances the overall image quality, making it easier to compare samples 

and identify signs of cataract existence or severity. 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑥, 𝑦) =
𝐼(𝑥,𝑦)−𝜇 

𝜇
. 𝛼 + 𝛽        (eq. 6) 

𝐼(𝑥, 𝑦)is the original pixel intensity at coordinates (𝑥, 𝑦), 𝜇 is the mean intensity of the image, 𝜎 is the standard 

deviation of the image intensities,  𝛼 is a scaling factor that controls the contrast, and 𝛽 is a bias that can be adjusted 

to shift the intensity values.Figure 6 illustrates after using normalized data. 

 

Figure 6: After using GCN 

3.3 Feature extraction using oriented fast and rotated brief (ORB) algorithm 

Rotating BRIEF and FAST algorithms are well-liked due to their good performance and low time requirements. Real-

time FAST detector finds keypoints that meet specific visual qualities; ORB uses Harris corner measure to sort the 

keypoints into order. To find more than 𝑁 important locations, ORB sets a low threshold in the first phase. The Harris 
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measure is then used to order the points and select the top𝑀. The FAST detector uses a scale pyramid to measure and 

filter FAST characteristics at each level rather than creating multi-scale features. ORB determines corner orientation 

using the intensity centroid approach, which based an orientation on the intensity of a corner. Rosin computes patch 

moments using Eq.(7). 

𝑛𝑜𝑟 = ∑ 𝑤𝑜𝑧𝑟𝐽(𝑤, 𝑧)𝑤,𝑧          (eq. 7) 

Next, the centroid is going to be depicted in Eq. (8): 

𝐷 = (
𝑛10

𝑛00
,
𝑛01

𝑛00
)          (eq. 8) 

(𝑂𝐷⃗⃗⃗⃗⃗⃗ )is the possible vector that forms from the centroid (𝐷) to the center of the corner (𝑝), and the orientation of this 

patch is represented in Eq. (9):  

𝜃 = atan 2(𝑛01, 𝑛10)         (eq. 9) 

Where the quadrant aware form of atan is ((𝑏 𝑡𝑎𝑛 2)). Within the specified circular zone, the moments are monitored 

in the 𝑤 and 𝑧 directions to improve rotation invariance. The BRIEF descriptor is a faster, less memory-intensive, 

and more efficient image comparison method compared to vector-based feature descriptors. It uses binary tests 

across pixels in a smoothed image region and prioritizes the search of hierarchical clustering trees, even without GPU 

acceleration. ORB can match signature images by over two orders of magnitude. The descriptor also generates a 

bitstring description of image patches and effectively steers key pointalignment. As demonstrated in Eq. 10, a feature 

set at (𝑤𝑗,𝑧𝑗) may be represented as a 2 ×mmatrix for m binary tests. 

𝑇 = (
𝑤1 …𝑤𝑚

𝑧1 …𝑧𝑚
)           (eq. 10) 

The steered version (𝑇𝜃)of (𝑇)is calculated as Eq. (11)using the orientation of the patch () and the corresponding 

rotationmatrix(𝑄𝜃). 

𝑇𝜃 = 𝑄𝜃𝑇          (eq. 11) 

Then Eq. (12)is the guided BRIEF operator: 

ℎ𝑚(𝑂, 𝜃) = 𝑒𝑚(𝑂)(𝑤𝑗 , 𝑧𝑗) ∈ 𝑇𝜃        (eq. 12) 

The binary descriptor ORB encodes patch information as a binary string using image intensity comparisons, which 

is a faster method than the gradient histograms with merely the hamming separation, ORB can pair up two photos 

in a single request. Figure 7 shows an example of extracting features from data. 

 

Figure 7: After extracted features 

3.4 Whale Optimized Convolutional Gated Recurrent NeuroNet (WOCGRN) 

The proposed technique uses the WOCGRN to enhance cataract diagnosis. This model combines the temporal 

processing strengths of GRU layers with the spatial learning powers of CNN, aiming to improve patient care 

timeliness and diagnostic precision. 

3.4.1 Convolutional Neural Network (CNN) 

A CNN model is used to improve the accuracy of early cataract classification. Through the use of advanced DL 

techniques, the model can interpret and classify early cataract detectionwith effectiveness. This method facilitates 

real-time applications by increasing identification speed and reliability. The CNN approach, which consists of a fully 

SoftMax Layer, connected layer, convolutional layer, andpooling layer, has been designed to identify early cataract 

detection. 



818  
 

J INFORM SYSTEMS ENG, 10(25s) 

i. Convolutional layer 

It contains feature maps, such as depth slices along with every feature map including collections of neurons. Eq. 

(13)provides the outcome of the convolution process in the convolutional layer. Where 𝐸 indicates the kernel (filter) 

dimension, 𝑛 denotes feature maps, 𝐴 represents bias, and 𝑋𝑖 indicates kernel weight. The convolutional layer 

outcome is represented as𝑧𝑗
𝑘, where 𝑗 signifies the 𝑗𝑡ℎ feature map within a layer designated by𝑘.  

𝑧𝑗
𝑘 = 𝐴𝑗

1 + ∑ 𝐸𝑗,𝑖𝑘 × 𝑋𝑖
(𝑘−1)𝑛1(1−1)

𝑖=1                (eq. 13) 

ii. Pooling layer 

To reduce the quantity of variables and network computations, the pooling layer is typically utilized between the 

convolutional layers. As a consequence, using the sub-sampling function, the input dimension is reduced in every 

depth division, preventing over-fitting during network training. Since the input spatial dimension is reduced through 

the pooling procedure, the depth size has not altered. The output height and width are accomplished in the pooling 

layer using Eq. (14&15). Where 𝑋1 represents the input's width, 𝐺1 represents the input's height, 𝑇 denotes the stride 

dimension, and 𝐸 indicates the kernel dimension. 

𝑋2 = (
𝑋1+𝐸

𝑇
) + 1                           (eq. 14) 

𝐺2 = (
𝐺1+𝐸

𝑇
) + 1                 (eq. 15) 

iii. Fully connected layer 

The final layer of the framework represents a fully connected layer. In the fully connected layer, every neuron in that 

layer has been connected with every neuron in the preceding layer. Eq. (16) provides the fully connected procedures, 

with 𝑘 𝑎𝑛𝑑 (𝑘 − 1) representing fully linked layers. The 𝑗𝑡ℎ unit in layer 𝑘 represents the outcome of the final fully 

linked𝑧𝑗
𝑘. Layer 𝑘 contains feature maps of 𝑛1

(𝑘−1)
 through 𝑛2

(𝑘−1)
× 𝑛3

(𝑘−1)
dimensions that are specified as inputs. 

𝑋𝑗,𝑖,𝑞,𝑡
𝑘 Represent the weighted relations of the 𝑗𝑡ℎ unit in layer 𝑘 as well as 𝑍𝑗, which is indicated as the 𝑖𝑡ℎ layer unit(𝑘 −

1) in the (𝑞, 𝑡) position. 

𝑧𝑗
𝑘 = 𝑒(𝑧𝑗

𝑘) 𝑤𝑖𝑡ℎ𝑧𝑗
𝑘 = ∑ ∑ ∑ 𝑋𝑗,𝑖,𝑞,𝑡

𝑘  (𝑧𝑖
𝑘−1)𝑞,𝑡

𝑛3
(𝑘−1)

𝑡=1

𝑛2
(𝑘−1)

𝑞=1

𝑛1
(𝑘−1)

𝑖=1
    (eq. 16) 

iv. SoftMax layer 

In general, during the final layer of the framework, the SoftMax function has been employed to determine the 

possibility of every ground truth label of outcomes from0 𝑡𝑜 1, and the value of the outcome is converted to a 

perceptible value. Eq. (17)defines the SoftMax function. In this equation, 𝑙 denotes the size of randomized values (𝑦), 

which are transformed into significant values from zero to one through the softmax function 𝑒(𝑦). 

𝑒(𝑦)𝑗 =
𝑓𝑦𝑖

∑ 𝑓𝑦𝑙𝑙
𝑙=1

 𝑓𝑜𝑟 𝑖 = 1,… , 𝑙              (eq. 17) 

CNN features detect early injury cataracts, anomalies, and early warning symptoms, improving data management 

and enabling prompt intervention and personalized rehabilitation strategies, thereby improving early cataract 

efficiency. 

3.4.2 Gated recurrent unit (GRU)  

GRUs utilize gating mechanisms to control the flow of sequential data, making them ideal for tasks like language 

modeling, timeseries prediction, and video analysis that require an understanding of sequence and context over time. 

The GRU techniqueissimplerand quicker than traditional LSTMsince it combines the input and forgetting gates into 

a single update gate. Large datasets can benefit greatly from this, as it saves time and reduces performance disparities. 

Using different gates, the LSTM and GRU models both maintain important characteristics, making sure they hold up 

over extended transmissions. Eq. (18)can be used to determine the new state at time𝑠. 

𝑣𝑠 = (1 − 𝑦𝑠) ∘ 𝑣𝑠−1 + 𝑏ℎ ∘ 𝑣̃𝑠        (eq. 18) 
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Where𝑏ℎ is the advance gate, 𝑣𝑠 is the presentapplicant state with a fresh set of data, 𝑣𝑠−1 is the prior GRU state, and 

𝑣𝑠 is the innovative GRU state. By modifying the value of 𝑏ℎ, the update gate controls how prior data is incorporated 

into the present state. A higher number denotes a larger integration of earlier data. Its main purpose is to strike a 

balance between adding new information and preserving older information. Eq. (19)defines the procedure for 

upgrading the update gate. 

𝑏ℎ = 𝛿(𝑋𝑦𝑤𝑠 + 𝑄𝑦𝑣𝑠−1 + 𝑏𝑔)        (eq. 19) 

Where 𝑏ℎ is biasing, 𝑋𝑦 is the apprise gate weights, 𝑄𝑦 is the update gate weights at time 𝑠 −  1, and 𝑤𝑠is the data 

vector at time 𝑠. Eq. (20)is used to determine the current candidate state. 

𝑣̃𝑠 = tanh(𝑋𝑦𝑤𝑠 + 𝑞𝑦 ∘ 𝑄𝑦𝑣𝑠−1) 𝑏𝑦       (eq. 20) 

Additionally, 𝑞𝑦 denotes a reorganized gate at time 𝑠. The GRU network extends unidirectional networks, allowing 

hidden-to-hidden connections to flow in the opposite temporal sequence, improving models' understanding and data 

utilization from both directions. 

3.4.3 Whale optimization (WO) 

Study discusses the use of WO for early detection of cataracts.The WO model intends to maximize problem-solving 

efficiency by leveraging the concepts of the Whale Optimization Algorithm (WOA). This model effectively searches 

the solution space to identify optimal solutions by emulating the social behaviours of humpback whales. The 

algorithm is inspired by the humpback whale bubblenet feeding method, which involves encircling prey and 

attacking, resulting in both exploration and exploitation phases during the optimization process. This approach has 

proven effective in finding optimal parameters for complex models. The goal of this optimization strategy is faster 

convergence, which accelerates the solution-finding process. It is particularly suitable for challenging optimization 

problems, as it emphasizes increasing accuracy while minimizing computational costs. The WO model's ultimate goal 

is to deliver trustworthy outcomes for a wide range of applications. Assume the search space has 𝑁 dimensions and 

𝐵 search agents are in the swarm.In the search space, each search agent is represented as{𝑡ℎ1, 𝑡ℎ2, 𝑡ℎ3. . . 𝑡ℎ𝑚}, where𝑢 =

 {1,2,3. . . . 𝐵}; Swarm ={𝐴1, 𝐴2, 𝐴3. . . 𝐴𝑚}. The three steps of the whale optimization method are as follows: 

• encompassing prey 

• Phase of exploitation 

• investigation stage 

The first thing the search agents do is locate the best option and circle it. After that, the objective function is utilized 

to establish the current best candidate answer. The best-realized response, which is currently the best candidate, is 

seen to be a close substitute for the ideal answer. Once the most suitable option has been identified, additional 

potential options or searchers attempt to improve their positions in favor of the best candidate solution. The search 

agents' positions are updated following Eq. (21 & 22). 

𝑋 = |𝑆. 𝑄∗(𝑎) − 𝑄(𝑎)|                                (eq. 21) 

 𝑄(𝑎 + 1) = 𝑆. 𝑄∗(𝑠) − 𝑉𝑋     (eq. 22) 

A stand for 𝑉 and 𝑋 are vectors, the current iteration number, and with equal coefficients. Using the symbol | | 

indicates that the values used are absolute. 𝑄 designates the position vector of the current search agent and represents 

the position vector of the best candidate solution. The importance of 𝑉 𝑎𝑛𝑑 𝑋 are determined using Eq. (23& 24), 

respectively. 

𝑉 = 2. 𝑣.𝑚. 𝑣          (eq. 23) 

𝑆 = 2.𝑚𝑒                                                                                                                                             (eq. 24)                 

When 𝑚 is an arbitrary path with a range of [0, 1], the components linearly lowered from 2 to 0 throughout execution. 

The exploitation phase immediately follows the grade of encircling the victim. The strategies of humpback whales 

served as the inspiration for this stage. The name bubblenet also knows the mechanism. Two methods are taken into 

consideration for modeling the humpback whales' bubble net behavior: 
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• Consequently, 𝑉′s value is determined randomly within the choice. The value declines evenly over the 

repetitions, from 0 to1. 

• The positionupdating spiral mechanism estimates how far apart the present place and the search agency are 

the ideal location of a searching agent. A revolving equation is next. Corresponds to the humpback whales' spiral-

shaped movement. Eq. (25) is used to represent this movement. 

𝑄(𝑎 + 1)  = 𝑋′. 𝑑𝑥𝑤 . 𝑐𝑜𝑠(2𝜋𝑘) + 𝑋∗(𝐴)                                                                                            (eq. 25) 

Where 𝑎 is a constant and 𝑙 is a random value within the range, 𝑑 indicates the separation between the ideal search 

agent location and the present position. The search agent's site is updated throughout this phase using both 

approaches. It is presumed that there is a 50% chance of choosing one of these two processes. According to, Eq.(26) 

the exploitation phase's whole operation is shown. 

𝑄(𝑎 + 1)  = {
𝑄(𝑎 + 1) = 𝑄∗(𝑠) − 𝑉. 𝑋 𝑖𝑓 𝑜 < 0.5

𝑋′. 𝑑𝑝ℎ. 𝑐𝑜𝑠(2𝜋𝑗) + 𝑄∗(𝑡) 𝑖𝑓 𝑜 ≥ 0.5
     (eq. 26) 

Where [0, 1] is a range of possible numbers for 𝑜. The exploration phase, the last stage of the algorithm, involves the 

search agents moving randomly across the search space in pursuit of the optimal solution while updating their 

positions under the positions of other agents. The value of 𝑉 utilized is 𝑒𝑖𝑡ℎ𝑒𝑟 > 1 𝑜𝑟 1 to shift the reference search 

agent; the search agents are separated. The investigation stage's theoretical model is presented by Eq. (27 & 28). 

𝑋 = |𝑆. 𝑄𝑟𝑎𝑛𝑑 − 𝑄|         (eq. 27) 

𝑄(𝑎 + 1)  =  𝑄𝑟𝑎𝑛𝑑 − 𝑉. 𝑋        (eq. 28) 

Enhancing performance, the WOCGRN combines the efficacious feature extraction of CNNs with the sequential data 

processing strength of GRUs and the efficient search capabilities of WO. Accuracy in challenging pattern recognition 

tasks, especially with timeseries data, is enhanced by this combination. Furthermore, by minimizing over-fitting and 

computational cost, the hybrid technique guarantees quicker convergence and improved generalization. Algorithm 

1 depicts the WOCGRN. 

Algorithm 1:WOCGRN 

Initialize the population of whales (search agents) with random positions in the solution space. 

Evaluate the fitness of each whale using the objective function. 

Identify the best-performing whale as the leader. 

For each whale in the population: 

Update position based on the leader's position (encircling prey). 

If random number < 0.5 (exploitation phase): 

Choose between shrinking encircling or spiral updating: 

If shrinking, reduce the distance to the leader's position. 

Else, use a spiral update mechanism for a new position. 

Else (exploration phase): 

Move randomly in the search space. 

Evaluate new positions and update fitness. 

If any whale outperforms the leader, update the leader. 

Repeat steps for a defined number of iterations or convergence criteria. 

Return the position of the best whale as the optimal solution. 

 

IV. PERFORMANCE ANALYSIS 

4.1 Experimental Setup 

An HP brand system with an Intel Core i912900 processor, an Intel Core i713700 CPU type, 3.50 GHz clock speed, 

64 GB RAM, Windows 11 Home operating system, Python version 3.10.0, and a 16 MB L3 cache size is described in 

Table 2, along with the hardware and software components of the computer. 
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Table 2: Experimental setup 

PROCESSOR MODEL INTEL(R) CORE(TM) I912900 

Brand HP 

CPU Type Intel Core i713700 

Clock Speed 3.50 GHz 

Memory (RAM) 64 GB 

Operating System Windows 11 Home 

Python Version 3.10.0 

L3 Cache Size 16 B 

 

4.2 Comparative Analysis 

The study improves diagnosis accuracy and care timeliness, leading to improved clinical outcomes for patients with 

detected cataract illness. The suggested approach is contrasted with existing approaches, including Stacking EL of 3 

CNN[16],CNN with 2D-discrete Fourier transform (2D DFT) [17], LeNet-CNN (LeNet-CNN) [18],Visual Geometry 

Group (VGG) 19 [19], and CNN with an ensemble of SVM, NB, RF (CNN+SVM+NB+RF)[20]. 

4.2.1 Accuracy 

It calculates the percentage of instances of both cataracts and non-cataracts that are properly diagnosed out of all of 

the cases. It displays the detection model's total efficacy. WOCGRN achieves 99.49% accuracy, outperforming models 

like CNN+SVM+NB+RF (97.34%), Stacking EL of 3CNN (93.97%), CNN with 2DDFT (93.10%), LeNet-CNN (96%), 

and VGG 19 (93.12%).Figure 8 and Table 3 depict the graphical and numerical outcomes of accuracy. 

Table 3: Numerical outcomes of accuracy 

Methods Accuracy (%) 

Stacking EL of 3CNN [16] 93.97 

CNN with 2D DFT [17] 93.10 

LeNet-CNN [18] 96 

VGG 19 [19] 93.12 

CNN+SVM+NB+RF [20] 97.34 

WOCGRN [Proposed] 99.49 

 

 

Figure 8: Graphical representation of accuracy 

4.2.2 Precision 

It indicates the proportion of correctly detected cataract cases (true positives) out of all cases flagged as cataracts 

(true positives + false positives), reflecting the model's reliability in identifying cataracts without false alarms. With 

a 99.00% precision, the research model surpasses Stacking EL of 3 CNN (94.20%), CNN+SVM+NB+RF (93.87%), 

VGG 19 (92%), and CNN with 2DDFT (93.08%).Table 4 depicts the numerical findings of precision; Figure 9 

illustrates the graphical findings of precision. 
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Table 4: Numerical Findings of Precision 

Methods 
Precision 

(%) 

Stacking EL of 3CNN [16] 94.20 

CNN with 2D DFT [17] 93.08 

VGG 19 [19] 92 

CNN+SVM+NB+RF [20] 93.87 

WOCGRN [Proposed] 99 

 

 

Figure 9: Graphical Consequences of Precision 

4.2.3 Recall  

It represents the proportion of actual cataract cases correctly detected out of all real cataract cases. It measures how 

well the model identifies cataract cases. Research model achieves a 98.00% recall, higher than VGG 19 (96%), and 

Stacking EL of 3 CNN (94.89%).Table 5 demonstrates the numerical outcomes of recall and Figure 10 shows the 

graphical outcomes of recall. 

Table 5: Numerical Consequences of Recall 

Methods Recall (%) 

Stacking EL of 3CNN [16] 94.89 

VGG 19 [19] 96 

WOCGRN [Proposed] 98 

 

 

Figure 10: Graphical Outcomes of Recall 
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4.2.4 F1-score  

It is defined as the harmonic mean of recall and accuracy, balancing both measures. It helps ensure that neither false 

positives nor false negatives predominate in cataract detection when both accuracy and recall are crucial. Figure 11 

depicts the graphical outcome of f1-score. WOCGRN achieves the findings of an F1-score is 98.00%, outperforming 

Stacking EL of 3 CNN (94.89%),CNN with 2D-DFT (93.09%), and VGG 19 (94%), as shown in Table 6. 

Table 6: Numerical findings of F1-score 

Methods F1-Score (%) 

Stacking EL of 3CNN [16] 94.89 

CNN with 2D - DFT [17] 93.08 

VGG 19 [19] 94 

WOCGRN [Proposed] 98 

 

 

Figure 11: Graphical outcomes of F1score 

4.2.5 Sensitivity 

It assesses how effectively the model detects true cataract cases, highlighting how a framework can detect every 

affirmative instance. Figure 12 and Table 7 shows the outcomes of the proposed; it achieves a 97.00% sensitivity, 

compared to Stacking EL of 3 CNN (95.59%), CNN with 2D - DFT (93.13%), LeNet-CNN (95%), and 

CNN+SVM+NB+RF (95.63%). 

Table 7: Numerical Findings of Sensitivity 

Methods 
Sensitivity 

(%) 

Stacking EL of 3CNN [16] 95.59 

CNN with 2D - DFT [17] 93.13 

LeNet-CNN [18] 95 

CNN+SVM+NB+RF [20] 95.63 

WOCGRN [Proposed] 97 

 

 

Figure 12: Graphical results of Sensitivity 
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4.2.6 Specificity 

It measures the proportion of non-cataract cases correctly identified out of all definite non-cataract cases. With 

96.00% specificity, the WOCGRN also outperforms models like CNN+SVM+NB+RF (97.92%) and Stacking EL of 3 

CNN (91.67%) in Table 8 and Figure 13. 

Table 8: Numerical Outcomes of Specificity 

Methods 
Specificity 

(%) 

Stacking EL of 3CNN [16] 91.67 

CNN+SVM+NB+RF [20] 97.92 

WOCGRN [Proposed] 96 

 

 

Figure 13: Graphical representation of Specificity 

4.2.7 Confusion matrix 

A confusion matrix is a table that shows the counts of true positives, true negatives, false positives, and false negatives 

and is used to assess how well a classification model performs. Figure 14 displays the confusion matrix's results. 

The effectiveness of a classification model is displayed in this confusion matrix throughout four classes (Class 0, Class 

1, Class 2, and Class 3). Class 0 was predicted correctly 109 times with no misclassifications classes. Class 1 was 

correctly predicted 33 times, while 14 instances of Class 1 were misclassified as Class 0, with one misclassified as 

Class 2. For Class 2, the model achieved 19with one misclassified as Class 3 and for Class 3, the model attained 23 

correct predictions with no misclassifications classes. 

 

Figure 14: Confusion Matrix 

4.3 Discussion 

The cataract detection technique has a number of shortcomings. Its efficacy on novel situations may be diminished 

by overfitting the training data because to the complexity of stacking EL of 3 CNN[16]. CNN's reliance on feature 
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extraction in 2D DFT [17] may result in missed detections and higher processing requirements. Lower accuracy and 

the absence of crucial parameters like precision and recall compromise LeNet-CNN's [18] dependability. VGG 19 

[19] generalizability may be compromised by overfitting and resource consumption. Finally, the CNN + SVM + NB 

+ RF [20] ensemble approach is involved, computationally demanding, and may lead to increased false positive 

rates. By merging convolutional and recurrent layers, the WOCGRN improves cataract diagnosis by enabling better 

feature extraction and temporal analysis of eye images. When compared to conventional techniques, this results in 

increased accuracy and resilience in the identification of cataract patients. 

V. CONCLUSION 

Research improves the efficiency and accuracy of cataract recognition from medical images by integrating the 

capabilities of GRU with CNNs. WO strategies ensure fast convergence and accurate forecasts by enhancing the 

performance of the model even more. By enabling early intervention and improved patient outcomes, this novel 

paradigm has the potential to revolutionize standard eye exams. In summary, this method represents a positive 

advancement in the use of artificial intelligence (AI) for cataract early diagnosis. The proposed WOCGRN model 

demonstrates significantly higher performance metrics, achieving 99.49% accuracy, 99.00% precision, 98.00% 

recall, 98.00% F1 score, 97% sensitivity, and 96% specificity compared to existing models. 

Drawbacks and future scope: The WOCGRN has the potential for early cataract diagnosis, but its limited 

resource effectiveness can hinder its application. Future research should focus on model resilience and transfer 

learning strategies. 
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