
Journal of Information Systems Engineering and Management
2025, 10(26s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

YOLO-Drone: An Efficient Object Detection Approach Using

the GhostHead Network for Drone Images

Hyun-Ki Jung1*

1 Ph.D., Department of Electrical and Computer Engineering, University of Seoul, Seoul, South Korea

* Corresponding Author: stillhk3@uos.ac.kr

ARTICLE INFO ABSTRACT

Received: 30 Dec 2024

Revised: 20 Feb 2025

Accepted: 02 Mar 2025

Object detection using images or videos captured by drones is a promising technology with

significant potential across various industries. However, a major challenge is that drone images

are typically taken from high altitudes, making object identification difficult. This paper proposes

an effective solution to address this issue. The base model used in the experiments is YOLOv11,

the latest object detection model, with a specific implementation based on YOLOv11n. The

experimental data were sourced from the widely used and reliable VisDrone dataset, a standard

benchmark in drone-based object detection. This paper introduces an enhancement to the Head

network of the YOLOv11 algorithm, called the GhostHead Network. The model incorporating this

improvement is named YOLO-Drone. Experimental results demonstrate that YOLO-Drone

achieves significant improvements in key detection accuracy metrics, including Precision, Recall,

F1-Score, and mAP (0.5), compared to the original YOLOv11. Specifically, the proposed model

recorded a 0.4% increase in Precision, a 0.6% increase in Recall, a 0.5% increase in F1-Score,

and a 0.5% increase in mAP (0.5). Additionally, the Inference Speed metric, which measures

image processing speed, also showed a notable improvement. These results indicate that YOLO-

Drone is a high-performance model with enhanced accuracy and speed compared to YOLOv11.

To further validate its reliability, comparative experiments were conducted against other high-

performance object detection models, including YOLOv8, YOLOv9, and YOLOv10. The results

confirmed that the proposed model outperformed YOLOv8 by 0.1% in mAP (0.5) and surpassed

YOLOv9 and YOLOv10 by 0.3% and 0.6%, respectively.

Keywords: Object Detection, Head Network, Improved YOLOv11, Drone Images.

INTRODUCTION

Currently, drone technology is advancing significantly across various fields worldwide. The global market for drones

and unmanned aerial vehicles (UAVs) is projected to triple by 2025, driven by advancements in software development

and manufacturing [1,2]. Drones are increasingly being utilized in industries such as agriculture and delivery services,

as well as in passenger transportation systems like Urban Air Mobility (UAM). UAM has the potential to complement

existing urban and suburban transportation networks while contributing to carbon reduction efforts. Furthermore,

the establishment of ground infrastructure for UAM vehicle manufacturing is expected to create new industrial

markets and employment opportunities, positively impacting the economy [3,4].

Building on these advancements, object detection technology using drone imagery is anticipated to evolve further.

However, a major limitation of drone-captured images is their frequent high-altitude perspective, which makes

distinguishing objects challenging. Since objects in drone images are typically very small, their detection remains a

significant challenge.

To address this issue, extensive research is being conducted to improve the detection of small objects in drone images.

Studies indicate that, despite rapid advancements in the drone and UAV industries, detecting small objects remains

a complex and persistent problem. For example, Chen et al. trained a model using scale-weighted loss to enhance

focus on small-scale objects [5]. Zhang et al. proposed QFDet, significantly improving detection performance for very

small objects [6]. Singh et al. demonstrated that their methodology effectively detected small weed patches with

mailto:stillhk3@uos.ac.kr

237

J INFORM SYSTEMS ENG, 10(26s)

90.5% accuracy [7]. Zheng et al. introduced a network highly effective at segmenting small objects in high-resolution

maps, such as drone and aerial images [8]. Zeng et al. developed SCA-YOLO (Spatial and Coordinate Attention-

enhanced YOLO), a multi-layer feature fusion algorithm employing hybrid attention mechanisms to detect small

objects [9].

Du et al. proposed a head network optimization method based on sparse convolution, balancing accuracy and

efficiency [10]. Abdellatif et al. asserted that DroMOD offers the best trade-off between object detection accuracy,

real-time processing, and resource efficiency compared to existing models [11]. Zhang et al. introduced evolutionary

reinforcement learning agents to optimize scaling for more effective object detection in images [12]. Chen et al.

presented DW-YOLO (Deeper and Wider YOLO) an efficient deep learning model capable of handling objects of

various sizes from multiple perspectives [13]. Thus, the primary objective of this paper is to evaluate how efficiently

and accurately small objects can be distinguished.

•The main contributions of this paper are as follows:

1) This paper proposes an efficient object detection model using drone images. To achieve this, the latest version

of the widely used and highly reliable VisDrone dataset was employed to develop a model optimized for the

efficient detection of small objects.

2) This study explores performance improvements by modifying the Head network of the YOLOv11 algorithm, with

a particular focus on enhancing accuracy and image processing speed. In these experiments, the GhostHead

network was introduced by replacing the Conv and C3k2 layers in the original YOLOv11 model’s Head network

with GhostConv and C2f layers.

3) The YOLO-Drone model, which integrates the proposed GhostHead network, demonstrated performance

improvements in Precision, Recall, F1-Score, and mAP (0.5) compared to the original YOLOv11 model.

Additionally, it achieved enhancements in the Inference Speed metric, reflecting improved image processing

speed. Furthermore, based on mAP (0.5), the YOLO-Drone model outperformed state-of-the-art (SOTA) object

detection models, including YOLOv8 [14], YOLOv9 [15], and YOLOv10 [16], by 0.1%, 0.3%, and 0.6%,

respectively.

RELATED WORKS

OBJECT DETECTION MODELS

Object detection models can be broadly categorized into 1-Stage Detectors and 2-Stage Detectors. A 2-Stage Detector

performs object detection in two steps. First, it identifies potential regions where objects might exist. Then, these

regions are analyzed in detail to predict the object's location and class. Representative methods for region proposal

include Selective Search and the Sliding Window technique. Selective Search identifies regions where objects are

likely to exist by grouping adjacent pixels with similar textures and colors. In contrast, the Sliding Window method

generates predefined-sized boxes that move across the image to extract potential object regions. However, a major

drawback of this approach is its relatively complex inference process compared to a 1-Stage Detector. Representative

2-Stage Detection models include R-CNN [17], Fast R-CNN [18], Faster R-CNN [19], and Mask R-CNN [20].

In contrast, a 1-Stage Detector performs region proposal and classification simultaneously using a Convolutional

Neural Network (CNN). In other words, all tasks are processed concurrently within the convolutional layer, which

handles feature extraction. The primary goal of a 1-Stage Detector is to achieve high detection speed, making it

significantly faster than a 2-Stage Detector. It also offers the advantage of a simpler training and inference process.

Representative 1-Stage Detection models include the You Only Look Once (YOLO) series [21–27], Single Shot

MultiBox Detector (SSD) [28], Focal Loss [29], and RefineDet [30].

The YOLO method used in this study is generally considered to outperform models in the R-CNN series. A key feature

of YOLO is that it treats object detection as a single regression problem. This approach involves determining the

coordinates corresponding to image pixels and calculating the probability of the associated class.

YOLOv11 ALGORITHM

The fundamental structure of YOLOv11, as presented in this paper, incorporates the BottleneckCSP architecture from

the Cross Stage Partial Network (CSPNet) [31]. This design evenly distributes computational loads across layers,

eliminates operational bottlenecks, and enhances the utilization of Convolutional Neural Network (CNN) layers. Key

238

J INFORM SYSTEMS ENG, 10(26s)

components include the Basic Conv layer, which consists of Conv2d and BatchNorm2d, followed by the Sigmoid-

Weighted Linear Units (SiLU) activation function [32]. Additionally, Spatial Pyramid Pooling Fast (SPPF) is

employed as a more efficient implementation of Spatial Pyramid Pooling (SPP), a feature introduced in previous

YOLO series. While delivering the same outcome, SPPF operates with greater efficiency.

The SPPF module applies a 5 × 5 max pooling layers to the input feature map, then reapplies it to the result and

repeats the process once more. The Concat layer then combines the initial input feature map with the second and

third results, summing up the operations of the two Conv layers. A significant enhancement in YOLOv11 [33] is the

inclusion of the C2PSA layer, which improves spatial attention within the feature map, enabling the model to focus

more effectively on significant regions of the image. The Upsample layer doubles the number of elements in each

array of the feature map.

The basic structure of YOLOv11 is broadly divided into the Backbone network, responsible for feature extraction, and

the Head network, which converts the extracted features into bounding box parameters, as shown in Figure 1. The

Backbone network is classified into five types based on depth and width multiples. Increasing the depth multiple

results in more repetitions of the BottleneckCSP module, making the model deeper, while increasing the width

multiple increases the number of Conv layer filters in corresponding layers. This categorization divides YOLOv11 into

YOLOv11n (Nano), YOLOv11s (Small), YOLOv11m (Medium), YOLOv11l (Large), and YOLOv11x (Extra Large).

Fundamentally, accuracy and speed in the model have an inverse relationship. YOLOv11n is the fastest but the least

accurate, while YOLOv11x is the slowest but the most accurate.

In this study, YOLOv11n was used for all comparative experiments. For YOLOv11n, the depth multiple parameters

are set to 0.5, while the width multiple parameters are set to 0.25. The Head network performs detection at three

different scales, targeting small, medium, and large objects, respectively. YOLOv11 retains a structure similar to its

predecessors, utilizing convolutional layers to downsample images. These layers progressively reduce spatial

dimensions while increasing the number of channels.

One of the critical improvements in YOLOv11 is the introduction of the C3k2 layer. The C3k2 layer is a more efficient

implementation of the Cross Stage Partial (CSP) Bottleneck, replacing a single large convolution in YOLOv8 with two

smaller convolutions. The "k2" in C3k2 denotes the smaller kernel size, which enhances processing speed while

maintaining performance. Additionally, the C3k2 layer is designed to improve overall efficiency and feature

aggregation. After upsampling and concatenation, this enhanced block is integrated into the Head network of

YOLOv11, boosting both speed and performance.

Figure 1. The original basic flowchart of the YOLOv11 network

METHODOLOGY

IMPROVED YOLOv11 NETWORK

This paper proposes two major modifications to the Head Network of the YOLOv11 model. First, the most critical and

fundamental convolutional (Conv) layers in the architecture have been revised. While the original YOLOv11 utilized

standard Conv layers, this study introduces GhostConv layers [34] as a replacement. Unlike traditional Conv layers,

239

J INFORM SYSTEMS ENG, 10(26s)

which generate all output feature maps directly, GhostConv efficiently produces a subset of the features and

supplements the rest using computationally cheaper operations. This approach preserves representational power

while improving inference speed, a critical factor for efficient training.

Figure 2 provides a comparison between Conv layers and GhostConv layers. Figure 2(a) on the left illustrates the

previously used standard Conv layer, whereas Figure 2(b) on the right depicts the GhostConv module. In the

YOLOv11 architecture, standard Conv layers process input sequentially through a Conv2d block, a BatchNorm2d

block, and a SiLU (Sigmoid-Weighted Linear Units) activation function block. In contrast, GhostConv layers, which

are part of the Ghost module based on the ResNet [35] structure, utilize both standard Conv layers and Depthwise

Convolution (DWConv) layers [36].

Unlike traditional Conv layers, DWConv layers omit BatchNorm2d blocks during computation, further distinguishing

them from standard Conv layers. Convolutional Neural Networks (CNNs) often exhibit significant redundancy in the

intermediate feature maps they compute. To address this, GhostConv is designed to reduce resource usage by

minimizing the number of convolutional filters required to generate these feature maps.

Equation (1) represents the operation of an arbitrary convolutional layer that produces 𝑛 feature maps. Given the

input data X ∈ ℝ𝑐 × ℎ × 𝑤, 𝑐 denotes the number of input channels, while ℎ and 𝑤 represent the height and width of

the input data, respectively. Additionally, ∗ represents the convolution operation, 𝑏 denotes the bias term, Y ∈

 ℝℎ′ × 𝑤′ × 𝑛 refers to the output feature map with 𝑛 channels, and 𝑓 ∈ ℝ𝑐 × 𝑘 × 𝑘 ×𝑛 represents the convolutional filters

of the corresponding layer.

𝑌 = 𝑋 ∗ 𝑓 + 𝑏, (1)

Hear, 𝑐 and 𝑤′ represent the height and width of the output data, respectively, and 𝑘 × 𝑘 denotes the kernel size of

the convolution filter 𝑓. The Floating Point Operations (FLOPs) required for this convolution process can be

represented as 𝑛 ∙ ℎ′ ∙ 𝑤′ ∙ 𝑐 ∙ 𝑘 ∙ 𝑘. The feature maps of Ghost are generated from m intrinsic feature maps, denoted

as 𝑌′ ∈ ℝℎ′ × 𝑤′ × 𝑚. Details are expressed in Equation 2.

𝑌′ = 𝑋 ∗ 𝑓′, (2)

 𝑓′ ∈ ℝ𝑐 × 𝑘 × 𝑘 ×𝑚 represents the filters used, where 𝑚 ≤ 𝑛 with the bias omitted. To obtain 𝑛 feature maps, a linear

operation is applied to the feature maps in 𝑌′, as defined by Equation (3) below. 𝑦𝑖
′ is the i-th feature map in 𝑌′, and

Φ𝑖,𝑗 is the j-th linear operation used to generate the j-th ghost feature map 𝑦𝑖𝑗 .

𝑦𝑖𝑗 = 𝜙𝑖,𝑗(𝑦𝑖
′), ∀ 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑠, (3)

Consequently, using Equation (3), 𝑛 = 𝑚 ∙ 𝑠 feature maps 𝑌 = [𝑦11, 𝑦12 , ∙ ∙ ∙ , 𝑦𝑚𝑠] can be generated as the output

data of the Ghost module. The linear operation Φ operates on each channel, and its computational cost is significantly

lower than that of standard convolution.

(a) (b)

Figure 2. Comparison Graph of the Conv Layer and the GhostConv Layer: (a) The Conv Layer; (b) The GhostConv

Layer

240

J INFORM SYSTEMS ENG, 10(26s)

The second modification is illustrated in the architectures shown in Figures 3 and 4. First, the C2f layer, depicted

in Figure 3, consists of two convolutional layers and serves as a more efficient implementation of the CSP Bottleneck.

The Bottleneck itself is composed of two convolutional layers. A distinctive feature of this Bottleneck is that both the

initial input value and the output value after passing through the convolutional layer are fed into the Concat layer

before the convolution operation. Essentially, the Bottleneck is structured as a Cross Stage Partial (CSP) module and

is divided into two types of blocks.

The first type, Bottleneck 1, generates its output using shortcut connections from the Residual Network (ResNet).

The second type simply performs convolution operations. Additionally, the C2f layer is a component that has also

been used in the backbone and head networks of YOLOv8. In this study, the C3k2 layer, which was previously used

in the head network of YOLOv11, has been replaced with the C2f layer for experimentation.

Figure 3. Flowchart of the C2f Layer

Based on the first and second modifications mentioned above, the revised layers were applied to the Head network

of the existing YOLOv11 model. Figure 4 presents the overall flowchart of the GhostHead network, which

incorporates these two proposed modifications. In this paper, the architecture shown in Figure 4 is referred to as

YOLO-Drone. To facilitate comparison with the original layers, the modifications are highlighted using red text and

dotted boxes. It is important to note that, for experimental purposes, the GhostConv layer and the C2f layer were

applied exclusively to the Head network, excluding the Backbone network. This approach plays a crucial role in

demonstrating the correlation between the proposed modifications in the Head network and the final accuracy and

image processing speed metrics used to evaluate the original YOLOv11 model.

Figure 4. The final architecture with the proposed GhostHead network applied

241

J INFORM SYSTEMS ENG, 10(26s)

EXPERIMENTAL EVALUATION METRICS

In this paper, the primary evaluation metrics used to measure the accuracy of the experiments are Precision (P),

Recall (R), F-1 Score, Average Precision (AP), and Mean Average Precision (mAP), as represented in Equations (4–

9). Additionally, the following terms are defined. True Positive (TP) refers to cases where the model correctly predicts

the actual value. False Positive (FP) refers to cases where the model incorrectly predicts a value as correct. False

Negative (FN) refers to cases where the model incorrectly predicts a value as incorrect. True Negative (TN) refers to

cases where the model correctly predicts a value as incorrect.

Precision (P) is the ratio of true positives among the cases classified as positive by the model. For example, in the

context of identifying people in images, it represents the proportion of objects predicted as people that are actually

people. Recall (R) is the ratio of true positives correctly identified by the model. Like Precision, it indicates the

proportion of actual people that the model successfully detects as people. The F-1 Score is the harmonic mean of

Precision and Recall, making it particularly useful for evaluating model performance, especially when the dataset is

imbalanced.

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4)

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5)

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (6)

Precision (P) and Recall (R) generally exhibit a trade-off relationship, where a high Precision typically results in a low

Recall and vice versa. To more accurately assess performance variations, a Precision-Recall curve is used. Average

Precision (AP) quantifies the performance of an object detection algorithm as a single value, calculated as the area

under the Precision-Recall curve. A higher AP value indicates better model performance. In this paper, mean Average

Precision (mAP) is used as the final metric to evaluate the model’s performance, computed by averaging the AP values

across all classes.

𝐴𝑃 = ∫ 𝑃(𝑟)𝑑𝑟
1

0

 (7)

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 (8)

RESULTS AND ANALYSIS

EXPERIMENTAL ENVIRONMENT AND PARAMETER SETTINGS

The experimental environment was primarily based on Google Colab. Python (3.10.12) was used as the programming

language, and PyTorch (2.3.0) was employed as the deep learning framework. The system had 25 GB of installed

RAM, and the CUDA version was 12.2. The GPU used was an Nvidia Tesla T4, and the number of epochs was fixed at

100. A summary of the detailed specifications is provided in Table 1. The initial input image size was set to 640 ×

640 pixels. Additionally, the experiments conducted for this study were based on the default parameters of YOLOv11n

(depth multiple: 0.5, width multiple: 0.25) and its configuration settings.

242

J INFORM SYSTEMS ENG, 10(26s)

Table 1. Hardware and Software Parameters of the Training System

Name Parameters

Development environment Google Colab
Graphics Nvidia, Tesla T4

Installed RAM 25GB
CUDA Version 12.2

Programming language Python 3.10.12
Deep learning framework PyTorch 2.3.0

Additionally, the data used in this experiment is based on the highly reliable and widely used VisDrone dataset [37].

The VisDrone dataset is commonly utilized to evaluate the performance of object detection models using images

captured by drones. It comprises a total of 8,629 images, with 6,471 used for training, 548 for validation, and 1,610

for testing. The objects to be detected are categorized into 10 classes: pedestrian, people, bicycle, car, van, truck,

tricycle, awning-tricycle, bus, and motor. These classes were selected because objects in drone-captured images are

typically small and difficult to distinguish. An example of the dataset used in the actual experiment is shown in

Figure 5.

Figure 5. Sample Images from the VisDrone Dataset Used in the Experiment

EXPERIMENTAL RESULTS

The number and distribution of classes in the training set used for the experiment are detailed in Figure 6. Figure

6(a) presents the class names along with their respective instance counts, demonstrating that the training set

contains a sufficient number of instances for effective use in the experiment.

Figure 6(b) illustrates the distribution of tags, where the x-axis represents the ratio of the label center to the

image width, and the y-axis represents the ratio of the label center to the image height. As shown in the figure, the

data is widely and evenly distributed, with a noticeable concentration near the center of the image.

Finally, Figure 6(c) depicts the sizes of the classes, with the x-axis representing the ratio of the label width to the

image width and the y-axis representing the ratio of the label height to the image height.

(a) (b) (c)

Figure 6. Number of Instances and Label Distribution by Class: (a) Number of Instances; (b) Label Positions; (c)

Label Sizes

243

J INFORM SYSTEMS ENG, 10(26s)

The experiments were independently conducted using both YOLOv11 and the proposed YOLO Drone model, which

integrates the GhostHead network. Specifically, the YOLO Drone model applied the C2f and GhostConv layers to the

Head network of the existing YOLOv11 for comparative analysis. Following this, accuracy metrics such as Precision,

Recall, F1-Score, and mAP (0.5) were calculated.

The experimental results revealed that compared to YOLOv11, the Precision value increased by 0.4 from 39.6 to 40,

the Recall value increased by 0.6 from 30.9 to 31.5, and the F1-Score increased by 0.5 from 34.7 to 35.2. Additionally,

the mAP (0.5) value improved by 0.5 from 29.9 to 30.4. The Inference Speed metric, which measures image

processing speed, also showed an improvement. These results are summarized in Table 2.

The final results demonstrate that the proposed method outperforms the existing YOLOv11 across various

performance evaluation metrics, indicating higher accuracy. To further validate the effectiveness of the proposed

model, comparative experiments were conducted with other state of the art object detection models. The results

showed that the YOLO-Drone model achieved mAP (0.5) values that were 0.1, 0.3, and 0.6 higher than those of

YOLOv8, YOLOv9, and YOLOv10, respectively. Among these, YOLOv8 exhibited the smallest difference, with a gap

of 0.1, while YOLOv10 showed the largest difference, with a gap of 0.6. Detailed information is provided in Table 3.

Furthermore, Figure 7 presents the final image data results obtained from experiments with the proposed YOLO-

Drone model. As shown in the figure, the dataset includes drone images captured under varying lighting conditions.

It was observed that images taken in the afternoon or at night posed greater challenges for object detection compared

to those captured in the morning or on clear days. This highlights the significant impact of ambient lighting on object

detection, with nighttime conditions yielding the lowest detection accuracy.

Figure 7 presents the object detection results from drone images, where the lowest detection accuracy was recorded

for the car class. The minimum value of 0.26 was derived from images captured in a dark environment near the

shadows of buildings. Additionally, Table 4 presents the experimental results for each class tested with the proposed

YOLO-Drone model. Relatively lower mAP (0.5) values were observed for bicycles and awning tricycles, suggesting

that these objects are more difficult to distinguish and have fewer instances in the dataset. The lower mAP (0.5)

values indicate that these objects are more challenging to detect.

Moreover, Figure 8(a) on the left displays the Precision-Recall curves for each class of the YOLO-Drone model. The

awning tricycle class recorded the lowest value at 0.102, while the car class achieved the highest value at 0.739. The

overall Precision-Recall value for all classes was recorded as 0.304. Additionally, Figure 8(b) illustrates the loss

values across epochs during training, confirming that the model's training progressed as expected.

Table 2. Comparison of Experimental Results Between YOLOv11 and YOLO-Drone

Method Precision (%) Recall (%) F-1 Score (%)
Inference

Speed
(ms)

mAP 0.5 (%)

YOLOv11 39.6 30.9 34.7 2.0 29.9

YOLO-Drone 40.0 31.5 35.2 1.8 30.4

Table 3. Comparison of Results with Various State-of-the-Art (SOTA) Object Detection Models

Method Precision (%) Recall (%) F-1 Score (%) GFLOPs mAP 0.5 (%)

YOLOv8 41.2 30.6 35.1 8.2 30.3
YOLOv9 41.0 30.0 34.6 7.9 30.1
YOLOv10 40.6 30.2 34.6 8.2 29.8
YOLOv11 39.6 30.9 34.7 6.6 29.9

YOLO-Drone 40.0 31.5 35.2 6.7 30.4

244

J INFORM SYSTEMS ENG, 10(26s)

Figure 7. Final Image Samples from the Dataset Used in the YOLO-Drone Model Experiment

Table 4. Comparison of Experimental Results for Each Class in the YOLO-Drone Model

Class Instances Precision (%) Recall (%) F-1 Score (%) mAP 0.5 (%)

All 38759 40.0 31.5 35.2 30.4
Pedestrian 8844 38.3 34.6 36.3 31.9

People 5125 49.2 21.5 29.9 25.3
Bicycle 1287 21.4 9.0 12.6 6.5

Car 14064 60.0 74.0 66.2 73.9
Van 1975 42.2 37.2 39.5 35.9

Truck 750 37.4 26.9 31.2 25.1
Tricycle 1045 35.2 19.4 25.0 17.6

Awning-Tricycle 532 22.7 13.5 16.9 10.2
Bus 251 52.3 41.0 45.9 44.3

Motor 4486 41.1 37.5 39.3 33.2

(a) (b)

Figure 8. Final Results of the YOLO-Drone Model Experiment: (a) The left figure represents the Precision-Recall

curve; (b) The right figure shows changes in key indicators across training epochs

245

J INFORM SYSTEMS ENG, 10(26s)

CONCLUSIONS

This paper explores methods to enhance algorithm performance for efficiently detecting small objects in images

captured by drones. The proposed GhostHead network improves the Head network of the existing YOLOv11, resulting

in higher accuracy in object detection for drone images. Specifically, the GhostHead network replaces the Conv layer

and C3k2 layer of the original YOLOv11 Head network with GhostConv and C2f layers, respectively. Accordingly, this

study aimed to improve accuracy metrics by modifying the Head network in the YOLOv11 algorithm. The model

incorporating all the proposed modifications was named YOLO-Drone.

As a result, the proposed YOLO-Drone model demonstrated superior performance compared to the original YOLOv11

in terms of Precision, Recall, F1-Score, and mAP (0.5). Additionally, it was confirmed that Inference Speed, a metric

related to image processing efficiency, also improved. These findings suggest that YOLO-Drone is an efficient model.

Furthermore, to obtain more precise experimental results, the YOLO-Drone model was compared with other state-

of-the-art models, including YOLOv8, YOLOv9, and YOLOv10, revealing that YOLO-Drone achieved the highest mAP

(0.5) value. The findings of this study can be applied not only to drone images but also to various other fields requiring

small object detection [38-41].

FUNDING

This research received no external funding.

DATA AVAILABILITY STATEMENT

All the data used in the experiments was based on the VisDrone: 2019 dataset.

CONFLICTS OF INTEREST

The author declares no conflict of interest.

REFERENCES

[1] Emimi, M., Khaleel, M., Alkrash, A. (2023). The current opportunities and challenges in drone technology, Int.

J. Electr. Eng. And Sustain, 74–89.

[2] Kapustina, L., Izakova, N., Makovkina, E., Khmelkov, M. (2021). The global drone market: main development

trends, In SHS Web of Conferences, 11004.

[3] Pak, H., Asmer, L., Kokus, P., Schuchardt, B. I., End, A., et al. (2024). Can Urban Air Mobility become reality?

Opportunities and challenges of UAM as innovative mode of transport and DLR contribution to ongoing

research, CEAS Aeronautical Journal, 1–31.

[4] Chae, M., et al. (2024). Potential market based policy considerations for urban air mobility, Journal of Air

Transport Management, 119, 102654.

[5] Chen, Z., Ji, H., Zhang, Y., Zhu, Z., Li, Y. (2020). High-Resolution Feature Pyramid Network for Small Object

Detection on Drone View, IEEE Transactions on Circuits and Systems for Video Technology.

[6] Zhang, Y., Xu, C., Yang, W., He, G., Yu, H., Yu, L., Xia, G. S. (2023). Drone-based RGBT tiny person detection,

ISPRS Journal of Photogrammetry and Remote Sensing, 61–76.

[7] Singh, V., Singh, D., Kumar, H. (2024). Efficient application of deep neural networks for identifying small and

multiple weed patches using drone images, IEEE Access.

[8] Zheng, Q., Xu, L., Wang, F., Xu, Y., Lin, C., Zhang, G. (2024). HilbertSCNet: Self-attention networks for small

target segmentation of aerial drone images, Applied Soft Computing, 150, 111035.

[9] Zeng, S., Yang, W., Jiao, Y., Geng, L., Chen, X. (2024). SCA-YOLO: A new small object detection model for UAV

images, The Visual Computer, 1787-1803.

[10] Du, B., Huang, Y., Chen, J., Huang, D. (2023). Adaptive sparse convolutional networks with global context

enhancement for faster object detection on drone images, In proceedings of the IEEE international conference

on computer vision, 13435–13444.

[11] Abdellatif, T., Sedrine, M. A., Gacha, Y. (2023). DroMOD: A Drone-Based Multi-Scope Object Detection System,

IEEE Access.

[12] Zhang, J., Yang, X., He, W., Ren, J., Zhang, Q., Zhao, Y., Liu, J. (2024). Scale Optimization Using Evolutionary

Reinforcement Learning for Object Detection on Drone Imagery, In Proceedings of the AAAI Conference on

Artificial Intelligence, 410–418.

246

J INFORM SYSTEMS ENG, 10(26s)

[13] Chen, Y., Zheng, W., Zhao, Y., Song, T. H., Shin, H. (2023). Dw-yolo: An efficient object detector for drones and

self-driving vehicles, Arabian Journal for Science and Engineering, 1427–1436.

[14] Glenn-jocher. Available online: https://docs.ultralytics.com/models/yolov8, (accessed on: 11 November 2023).

[15] Yang, C. Y., Yeh, I. H., Liao, M. (2024). YOLOv9: Learning what you want to learn using programmable gradient

information, European Conference on Computer Vision, In European conference on computer vision, 1–21.

[16] Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., Ding, G. (2024). YOLOv10: Real-Time End-to-End Object

Detection, arXiv, arXiv: 2405, 14458.

[17] Girshick, R., Donahue, J., Darrell, T., Malik, J. (2015). Rich feature hierarchies for accurate object detection and

semantic segmentation, In Proceedings of the IEEE Conference on computer vision and pattern recognition,

580–587.

[18] Girshick, R. (2015). Fast r-cnn, In Proceedings of the IEEE/CVF Conference on computer vision, 1440–1448.

[19] Ren, S., He, K., Girshick, R., Sun, J. (2016). Faster R-CNN: Towards real-time object detection with region

proposal networks, IEEE transactions on pattern analysis and machine intelligence, 1137–1149.

[20] He, K., Gkioxari, G., Dollár, P., Girshick, R. (2017). Mask r-cnn, In proceedings of the IEEE international

conference on computer vision, 2961–2969.

[21] Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified real-time object detection,

In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, 779–788.

[22] Redmon, J., Farhadi, A. (2017). YOLO9000: better, faster, stronger, In Proceedings of the IEEE/CVF

Conference on computer vision and pattern recognition, 7263–7271.

[23] Redmon, J., Farhadi, A. (2018). Yolov3: An incremental improvement, arXiv, arXiv: 1804, 02767.

[24] Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection,

arXiv, arXiv: 2004, 10934.

[25] Glenn-jocher. Available online: https://github.com/ultralytics/yolov5, (accessed on: 23 November 2022).

[26] Li, C., Li, L., et al. (2022). YOLOv6: A single-state object detection framework for industrial applications, arXiv,

arXiv: 2209, 02976.

[27] Wang, C. Y., Bochkovskiy, A., Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-

art for real-time object detectors, In Proceedings of the IEEE/CVF Conference on computer vision and pattern

recognition, 7464–7475.

[28] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A. C. (2016). Ssd: Single shot multibox

detector, In Computer Vision-ECCV 2016: 14th European Conference, 21–37.

[29] Lin, T. Y., Goyal, P., Girshick, R., He, K., Dollár, P. (2017). Focal loss for dense object detection, In Proceedings

of the IEEE international conference on computer vision, 2980–2988.

[30] Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S. Z. (2018). Single-shot refinement neural network for object detection,

In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, 4203–4212.

[31] Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y., Hsieh, J. W., Yeh, I. H. (2020). CSPNet: A new backbone that

can enhance learning capability of CNN, In Proceedings of the IEEE/CVF Conference on computer vision and

pattern recognition workshops, 390–391.

[32] Nwankpa, C. E., Ijomah, W., Gachagan, A., Marshall, S. (2018). Activation functions: Comparison of tends in

practice and research for deep learning, arXiv, arXiv: 1811, 03378.

[33] Glenn-jocher. Available online: https://docs.ultralytics.com/ko/models/yolo11, (accessed on: 30 September

2024).

[34] Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C. (2020). Ghostnet: More features from cheap operations, In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 1580-1589.

[35] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition, In Proceedings of the

IEEE/CVF Conference on computer vision and pattern recognition workshops, 770–778.

[36] Guo, Y., Li, Y., Wang, L., Rosing, T. (2019). Depthwise convolution is all you need for learning multiple visual

domains, In Proceedings of the AAAI Conference on Artificial Intelligence, 8368-8375.

[37] VisDrone. Available online: http://aiskyeye.com, (accessed on 2019).

[38] Wang, H., Liu, C., Cai, Y., Chen, L., Li, Y. (2024). YOLOv8-QSD: An Improved Small Object Detection Algorithm

for Autonomous Vehicles Based on YOLOv8, IEEE Transactions on Instrumentation and Measurement.

[39] Dai, L., Liu, H., Song, P., Tang, H., Ding, R., Li, S. (2024). Edge-guided representation learning for underwater

object detection, CAAI Transactions on Intelligence Technology.

247

J INFORM SYSTEMS ENG, 10(26s)

[40] Su, Y., Tan, W., Dong, Y., Xu, W., Huang, P., Zhang, J., Zhang, D. (2024). Enhancing concealed object detection

in Active Millimeter Wave Images using wavelet transform, Signal Processing, 216, 109303.

[41] Li, Y., Xu, H., Zhu, X., Huang, X., Li, H. (2024). THDet: A Lightweight and Efficient Traffic Helmet Object

Detector based on YOLOv8, Digital Signal Processing, 155, 104765.

