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Introduction: The rapid expansion of biomedical literature poses a significant challenge for healthcare 

professionals, researchers, and clinicians seeking efficient knowledge retrieval. Traditional search engines 

often fail to interpret complex biomedical terminologies, leading to suboptimal query results. Biomedical QA 

systems have evolved through various approaches, including information retrieval, knowledge base-driven 

models, and deep learning techniques. However, existing models still face challenges such as semantic 

disambiguation, high computational overhead, and inadequate answer ranking. This study introduces 

BioMedQ&A, a BioGPT-Powered Concept Vector and Transformer-Based Pretrained Language Model 

designed for high-fidelity biomedical QA. By integrating Concept2Vec embeddings, BioGPT, and attention-

enhanced semantic similarity networks, BioMedQ&A enhances precision and relevance in biomedical 

information retrieval. 

Objectives: The objectives of this research are to develop a transformer-based biomedical QA system 

leveraging BioGPT and Concept2Vec for improved contextual understanding, to enhance semantic 

relationship mapping between biomedical terminologies using Concept2Vec embeddings, to implement a 

multi-layer semantic ranking algorithm for precise and relevant answer retrieval, and to evaluate 

BioMedQ&A against existing biomedical QA models in terms of accuracy, F1-score, Mean Reciprocal Rank 

(MRR), and execution time. 

Methods: BioMedQ&A follows a structured methodology incorporating data preprocessing through 

tokenization, stop-word removal, and biomedical concept mapping using SNOMED-CT ontology. The query 

embedding process utilizes BioGPT transformer layers to generate high-dimensional query embeddings. 

Semantic similarity calculation is performed through cosine similarity computation for contextual matching. 

Multi-layer answer ranking is achieved using a hybrid ranking function combining similarity scores and 

transformer-based attention mechanisms. Model training and optimization involve fine-tuning on the 

MedQuAD dataset using the Adam optimizer and a cross-entropy loss function. 

Results: BioMedQ&A was evaluated using the MedQuAD dataset and benchmarked against BioBERT and 

MedQA models. Key performance metrics include 99.8% accuracy, 98.6% F1-score, 0.92 Mean Reciprocal 

Rank (MRR), and an execution time of 0.98s. Additional performance indicators include 98.5% precision, 

98.7% recall, 99.2% specificity, and 0.96 MCC. The results confirm BioMedQ&A's superiority over traditional 

biomedical QA models in terms of accuracy, retrieval speed, and contextual understanding. 

Conclusions: BioMedQ&A effectively enhances biomedical knowledge retrieval by leveraging BioGPT, 

Concept2Vec embeddings, and a multi-layer semantic ranking algorithm. The model demonstrates high 

accuracy and retrieval efficiency, making it a valuable tool for healthcare professionals and researchers. 

Future work will focus on neural-symbolic reasoning, domain-adaptive reinforcement learning, and 

federated knowledge augmentation to further improve model robustness and domain adaptability. 

Keywords: Biomedical question-answering, BioGPT, transformer-based language models, Concept2Vec, 

semantic hierarchy, contextualized embeddings, MedQuAD, deep learning, neural-symbolic reasoning, 

federated biomedical knowledge retrieval. 

 

INTRODUCTION 

The exponential growth of biomedical literature poses a significant challenge for healthcare professionals, biomedical 
researchers, and clinical practitioners who require efficient, context-aware, and semantically enriched question-
answering (QA) systems for precise knowledge retrieval. Conventional search engines and keyword-based retrieval 
systems fail to interpret complex semantic structures, often returning redundant or irrelevant results that do not 
address specific biomedical queries. Over the past two decades, Biomedical QA systems have evolved significantly, 
leveraging    advancements in    Natural Language Processing (NLP), deep learning, and domain-specific 
transformers. Existing systems primarily follow five key approaches: standard retrieval-based methods, information 
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retrieval (IR), knowledge base-driven models, machine reading intelligence, and question entailment techniques. 
While these methodologies have improved the accuracy of biomedical QA, challenges persist due to specialized 
medical terminology, evolving biomedical concepts, and complex relationships between entities in biomedical 
literature. 

A robust Biomedical QA system is critical for: 

Empowering patients with instant access to reliable health information, enhancing their participation in medical 
decision-making. 

Supporting clinicians in differential diagnosis and treatment planning by providing accurate, evidence-based 
answers. 

Enhancing medical education by facilitating real-time knowledge acquisition for healthcare professionals. 

Despite recent advancements, current Biomedical QA models struggle with: 

1. Semantic Disambiguation – Traditional keyword-based approaches fail to recognize contextual 
relationships between biomedical terminologies. 

2. High Computational Overhead – Transformer-based models require substantial processing power, 
making them inefficient for real-time applications. 

3. Limited Domain Adaptability – Many models lack integration with biomedical ontologies, 
restricting their ability to accurately interpret domain-specific queries. 

4. Inadequate Answer Ranking – Existing methods often prioritize syntactic similarity over contextual 
accuracy, leading to suboptimal retrieval results. 

To address these challenges, this study introduces BioMedQ&A, a BioGPT-Powered Concept Vector and Transformer-
Based Pretrained Language Model designed for high-fidelity biomedical question answering. The BioMedQ&A 
framework incorporates: 

Concept2Vec embeddings to capture hierarchical semantic relationships within biomedical terminologies. 

BioGPT, a domain-specific transformer model, pretrained on biomedical corpora and fine- tuned for QA tasks. 

Attention-enhanced semantic similarity networks to refine contextualized vectorized knowledge embeddings. 

A multi-layer semantic ranking algorithm to enhance answer precision and relevance. 

        2. RELATED WORK 

The field of Biomedical Question-Answering (QA) systems has undergone significant advancements, leveraging 
Natural Language Processing (NLP), deep learning, and transformer-based models to improve accuracy, efficiency, 
and contextual understanding. Over time, different approaches such as information retrieval, knowledge-based 
reasoning, and neural network-based models have been applied to enhance biomedical QA performance. While 
models like BioASQ, MedQA, and BioBERT have demonstrated improvements in biomedical NLP applications, they 
still face challenges related to computational inefficiency, deep contextual comprehension, and scalability. Emerging 
trends, such as neural-symbolic reasoning and federated learning, are now being explored as potential solutions to 
further enhance biomedical QA models. 

Biomedical QA Models Based on Transformers and Neural Networks 

Luo et al. [1] introduced BioMedGPT, an advanced multimodal generative pre-trained transformer tailored for 
biomedical applications. This model allows seamless interaction across different biological data modalities using free-
text inputs. The BioMedGPT-10B variant surpasses both human experts and larger general-purpose models in 
biomedical QA, particularly for molecular and protein-related questions. Additionally, BioMedGPT-LM-7B, based on 
Llama2, offers a commercially viable large-scale language modeling solution for biomedical domains. 

Haddouche et al. [2] trained BERT and RoBERTa on the COVID-QA dataset, yielding strong results for pandemic-
related QA tasks. The RoBERTa model achieved an Exact Match (EM) score of 0.38 and an F1 score of 0.64, 
demonstrating its effectiveness in retrieving COVID- 19-related medical information. 

Kim et al. [3] explored various biomedical QA enhancement techniques, including data preprocessing, model training 
improvements, data augmentation, and ensemble learning methods. The study evaluated BioLinkBERT and GPT-4, 
achieving top rankings in the BioASQ Task 11b-Phase B competition, particularly in yes/no question answering, while 
demonstrating moderate performance for factoid and list-type questions. 

Yang et al. [4] proposed a two-stage retrieval model, where BM25 was first used for document retrieval, followed by 
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fine-tuned large language models (LLMs) to improve query- document relevance. The BioASQ and TREC-COVID 
datasets were used for evaluation, where this model performed comparably to existing retrieval-based approaches. 

Renqian Luo et al. [5] introduced BioGPT, which achieved state-of-the-art performance in biomedical NLP, 
particularly in end-to-end relation extraction and question answering tasks. Compared to GPT-2, BioGPT 
demonstrates enhanced text generation abilities, particularly when natural language prompts are used instead of 
structured inputs. 

Gupta et al. [6] identified limitations in Dense Passage Retrieval (DPR) models, originally trained on Wikipedia, 
which fail to effectively answer biomedical queries. To address this, they fine-tuned DPR using PubMed articles, 
resulting in an F1 score of 0.81, showcasing a significant improvement in biomedical question retrieval accuracy. 

Graph-Based and Neural Network-Based Biomedical QA Approaches 

GREASELM, a model developed by Zhang et al. [7], combines pre-trained language models with Graph Neural 
Networks to enhance context-aware reasoning in biomedical question answering. This approach was evaluated on 
multiple datasets, including CommonsenseQA, OpenBookQA, and MedQA-USMLE. While GREASELM achieved an 
impressive 84.8% accuracy on OpenBookQA, its performance on MedQA-USMLE was limited to 38.5%, highlighting 
the difficulties in processing complex medical inquiries. 

Zhao et al. [8] created SPARTA, a neural retrieval model that utilizes sparse vector representations and dense vector 
nearest neighbor search to enhance document retrieval efficiency. SPARTA was tested on four OpenQA datasets, 
yielding F1 scores of 66.5%, 36.8%, 79.9%, and 74.6%. However, the model's lack of multi-hop reasoning capabilities 
restricts its effectiveness for intricate biomedical queries. 

Kapanipathi et al. [9] introduced NSQA (Neuro-Symbolic Question Answering), a modular KBQA (knowledge-based 
QA) system that eliminates the need for extensive end-to-end training. The model attained F1 scores of 31.26% and 
44.45% on QALD-9 and LC-QuAD 

1.0 datasets, respectively. However, it encountered difficulties in complex biomedical reasoning, mainly due to 
insufficient integration with domain-specific medical knowledge. 

Yasunaga et al. [10] created QA-GNN (QA-Graph Neural Network), which incorporates Knowledge Graphs (KGs) for 
combined reasoning in biomedical QA. The model was evaluated on three datasets: CommonsenseQA, OpenBookQA, 
and MedQA-USMLE, achieving accuracy scores of 76.1%, 82.8%, and 38%, respectively. Although the model excelled 
in entity linking, it had difficulty extracting deep contextual biomedical knowledge. 

Biomedical QA Models with Generative Capabilities 

An unsupervised question generation model for biomedical text was developed by Lyu et al. [11], utilizing dependency 
parsing heuristics to create training questions. The model's performance was assessed on various datasets, including 
SQuAD1.1, Natural Questions, TriviaQA, NewsQA, BioASQ, and DuoRC, yielding F1 scores of 74.5%, 53.5%, 43%, 
50.1%, 43.2%, and 46.5%, respectively. Despite its ability to generate diverse biomedical questions, the model 
encountered difficulties in training complexity and adapting to biomedical corpora. 

Yagnik et al. [12] examined the performance of general versus medical-specific distilled Language Models (LMs) for 
biomedical question answering. Their findings revealed that fine-tuned biomedical LMs surpassed generic models. 
The top-performing model achieved a Rouge-L score of 0.216 on the MedQuAD dataset, highlighting the significance 
of domain- specific fine-tuning. 

A hybrid retrieval pipeline combining pre-trained LLMs with BM25 for improved document ranking was introduced 
by Lamichhane et al. [13]. When tested on the Cancer category of the MedQuAD dataset, the model attained a recall 
of 0.881 and an MRR of 0.804. However, the reader component's Semantic Answer Similarity score of 0.677 
suggested room for improvement. 

Mutabazi et al. [14] created a deep learning-based Medical Forum Question Classification (MFQC) model that 
employed Word2Vec embeddings, CNNs, and BiLSTMs for classifying medical queries. While this model achieved a 
classification accuracy of 93.33%, it faced challenges in handling complex contextual semantics. 

In a study by Uzcategui et al. [15], two OpenQA setups were created using ColBERTv2 for retrieving passages in 
biomedical question answering. Their ColBERTv2 model demonstrated a 3% enhancement compared to baseline 
models, reaching an accuracy of 0.70. However, the model's high computational demands pose limitations for its use 
in real-time biomedical QA applications. 

The research sought to enhance the recall and mean average precision (MAP) scores of a biomedical document 
retrieval system by utilizing large language models (LLMs) such as GPT-3.5 and Gemini to create pseudo-documents 
for augmenting their hybrid retrieval approach. By enriching the initial queries with biomedical entities extracted 
from LLM- generated pseudo-documents, the recall of the first BM25 lexical retrieval phase was improved. 
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Additionally, the MAP scores were enhanced by employing a BiomedBERT [16] cross-encoder re-ranker trained on a 
combination of golden-standard data, synthetic data, and LLM-generated pseudo-documents, which better captured 
the contextual relationships between test questions and pseudo-documents. 

The suggested approach of enhancing BioBERT's[17] self-attention layer with biomedical and named entity data 
yields cutting-edge outcomes on multiple biomedical question answering datasets. This enhancement technique 
boosts the attention scores for biomedical and named entities, which frequently constitute the answer to the question, 
resulting in enhanced model performance. 

The Hybrid Gradient Regression-Based Transformer Model (RBTM)[18] incorporates semantic similarity 
quantification with deep learning methodologies for biomedical question answering. This model utilizes 
LemmaChase Lemmatizer, SNOMED-CT ontology, and Concept2Vec for feature extraction and domain-specific 
representation. By combining XGBoost with transformer architecture, RBTM enhances similarity-based answer 
selection. Upon evaluation using the MedQuAD dataset, the model achieved 99.09% accuracy, 97.07% R², and 
0.00227 MSE, thus demonstrating superior performance compared to existing models in the field of biomedical 
question answering. 

Table 1. Recent works table 

Researcher 
s & Citation 

Methodologies 
Employed 

Data Corpus Utilized Efficacy Metrics Constraints 
Identified 

Luo et al. [1] BioMedGPT 
(Multimodal Generative 
Pre- trained 
Transformer) 

Biomedical datasets High accuracy in 
molecular and protein-
related queries 

Requires high 
computational resources 

Haddouche et 
al. [2] 

BERT and 
RoBERTa trained on 
COVID-QA 

COVID-QA 
dataset 

EM: 0.38, F1: 
0.64 

Limited to COVID-19 
Domain 

Kim et al. BioLinkBERT, BioASQ Task 11b Top-ranked for Struggles with 
[3] GPT-4, data 

augmentation, ensemble 
learning 

 Yes/No QA, 
moderate for factoid QA 

complex factoid QA 

Yang et al. [4] BM25 + Fine- tuned 
LLM retrieval 

BioASQ, TREC- COVID Comparable to existing 
retrieval models 

Limited optimization 
for document 
ranking 

Renqian Luo et 
al. [5] 

BioGPT (Biomedical 
Text Generation and 
QA) 

Biomedical NLP datasets State-of-the-art 
performance in QA & text 
generation 

Dependent on 
structured natural 
language 
prompts 

Gupta et al. [6] DPR fine-tuned on 
PubMed 

Biomedical QA dataset F1: 0.81 Requires domain-
specific 
fine-tuning 

Zhang et al. [7] GREASELM 
(Graph-based QA with 
GNNs) 

CommonsenseQ A, 
OpenBookQA, MedQA-
USMLE 

84.8% 
(OpenBookQA), 38.5% 
(MedQA- USMLE) 

Limited adaptation to 
medical queries 

Zhao et al. [8] SPARTA (Sparse 
Transformer for 
retrieval) 

Four OpenQA datasets F1: 66.5%, 
36.8%, 79.9%, 
74.6% 

Lacks multi-hop 
reasoning 

Kapanipathi et 
al. [9] 

NSQA (Neuro- Symbolic 
KBQA) 

QALD-9, LC- QuAD 1.0 F1: 31.26%, 
44.45% 

Ineffective in handling 
biomedical complexity 

Yasunaga et al. 
[10] 

QA-GNN (Graph- 
based Neural Network 
for QA) 

CommonsenseQ 
A, OpenBookQA, 
MedQA-USMLE 

76.1%, 82.8%, 
38% 

Low accuracy on 
biomedical datasets 

Lyu et al. [11] Unsupervised Question 
Generation 

SQuAD1.1, 
Natural Questions, 
BioASQ, 
TriviaQA 

F1: 74.5%, 
53.5%, 43%, 
50.1%, 43.2% 

High training 
complexity, domain 
adaptability 
issues 

Yagnik et al. 
[12] 

Medical-Specific 
Distilled LMs 

MedQuAD Rouge-L: 0.216 Inconsistent 
performance on 
biomedical 
corpora 

Lamichhane et Pre-trained LLM reader MedQuAD (Cancer Recall: 0.881, Reader component 
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al. [13] + BM25 retriever Category) MRR: 0.804 needs improved 
semantic similarity 

Mutabazi et al. 
[14] 

MFQC (Word2Vec, CNN, 
BiLSTM for medical 
classification) 

Medical Forum Data 93.33% 
Accuracy 

Lacks deep contextual 
understanding 

Uzcategui et al. 
[15] 

ColBERTv2 for OpenQA MedQA dataset 3% 
improvement, accuracy: 
0.70 

Computationally 
expensive, struggles 
with 
real-time QA 

KEY CHALLENGES AND FUTURE DIRECTIONS 

Despite notable advancements in Biomedical QA, existing models face persistent challenges, including: 

1. Limited Performance on Biomedical Datasets – Many general-domain QA models show strong 
performance, but their accuracy deteriorates in domain-specific biomedical datasets. 

2. Semantic Complexity Handling – Current models struggle with multi-hop reasoning, concept 
disambiguation, and hierarchical knowledge retrieval in biomedical texts. 

3. Computational Inefficiencies – Most transformer-based approaches require high computational resources, 
making real-time medical QA applications impractical. 

4. Inadequate Knowledge Integration – Existing models lack deep biomedical ontology integration, 
restricting their ability to fully understand medical terminologies and contextual relationships. 

1. Proposed Methodology: BioMed Q&A Algorithmic Approach 

The BioMed Q&A framework is designed as a Bio GPT-powered, Concept Vector-enhanced, and Transformer-based 
model to accurately retrieve biomedical answers from the MedQuAD database. The model incorporates 
preprocessing, semantic representation, transformer-based reasoning, similarity scoring, and multi-layer answer 
ranking to ensure precise biomedical question answering. The methodology is structured into the following 
algorithmic steps: 

Fig 1: BioMed Q&A Algorithmic Approach 

Algorithm: BioMed Q&A – A Transformer-Based Biomedical QA Model  

Step 1: Input Preprocessing and Concept Extraction 

Input: User’s biomedical question Q 
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Output: Tokenized, pre-processed query with concept mappings 

1. Tokenization: 

Split the input query Q into tokens [T1, T2 ...Tn] 

Prompt: “What are the symptoms of Parkinson’s disease?" Tokens: 
["What", "are", "the", "symptoms", "of", "Parkinson’s", "disease?"] 

2. Stop word Removal: 

Remove non-informative words (e.g., "what, are, the, of"). Filtered Query: ["symptoms", "Parkinson’s disease"] 
Concept Mapping Using SNOMED-CT Ontology 

3. Map medical terms to standardized ontology concepts. 

Mapped Query Terms: "Symptoms" → SNOMED-CT ID: C0036341 

"Parkinson’s Disease" → SNOMED-CT ID: C0030567 

4. Concept2Vec Embedding Generation: 

Convert medical concepts into vector representations for better semantic understanding: 

CV (Ti) =F (W (Ti), C(Ti)) 

where W (Ti) is the word embedding, and C (Ti) is the contextual embedding. 

Step 2: Query Embedding Using BioGPT-Based Transformer  

    Input: Pre-processed biomedical query vector 

   Output: Encoded query embedding for answer retrieval 

Transform the input query into a high-dimensional vector using BioGPT transformer layers. Self-Attention 
Mechanism:                                                                     𝑄𝐾𝑇 

Attention(𝑄, 𝐾, 𝑉) = softmax ( ) 𝑉 

√𝑑𝑘 

Where Q,K,V represent query, key, and value embeddings. 

Pass the transformed query through BioGPT layers trained on MedQuAD, BioASQ, and PubMedQA datasets. 

Identify similar biomedical question-answer pairs in MedQuAD. 

Step 3: Semantic Similarity Calculation 

Input: Query embedding and candidate answer embeddings 

Output: Similarity scores between query and answers 

Retrieve answer candidates from MedQuAD using initial transformer-based search. Compute Cosine Similarity for 
Contextual Matching: 

For each candidate answer Ai, calculate similarity with query Q 

Rank answers based on similarity score S(Q, Ai)  

 

Filter top-k answers for ranking based on threshold similarity S>θ. 

Step 4: Multi-Layer Answer Ranking 

Input: Top-k answer candidates with similarity scores 

Output: Best-ranked biomedical answer Apply a hybrid ranking function: 

  

Score (Ai) = w1⋅Sim (Q, Ai) + w2⋅Attention (Ai)  

 where:  Sim (Q,Ai) is cosine similarity. 
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Attention (Ai) is the BioGPT transformer score. w1, w2 are tunable weight parameters. 

Select the highest-scoring answer as the final biomedical response. 

Step 5: Model Training and Optimization 

Dataset: MedQuAD 

Optimization: Adam Optimizer, Cross-Entropy Loss 

Loss Function: Cross-Entropy Loss 

To train the BioMed Q&A model, we use Cross-Entropy (CE) Loss, which measures the difference 
between the true answer labels and the predicted probabilities. The loss function is computed as: 

 

Where: 

yi represents the true answer label. 

Yi represents the predicted probability of the correct answer. N is the total number of training samples. 

The objective is to minimize L, ensuring that the model assigns higher probabilities to correct answers and 
reduces misclassification errors. 

Optimization Algorithm: Adam Optimizer 

To update model parameters efficiently, the Adam optimizer is used. It combines momentum- based 
gradient descent and adaptive learning rate adjustments to improve convergence. The update rule for 
parameters θ at time step t is given by: 

Where:  

θt represents the current model parameter at step t. 

η is the learning rate, controlling the step size for updates. 

mt and vt are the first and second moment estimates of gradient 

4. EXPERIMENTAL RESULTS AND EVALUATION 

4.1 Dataset – MedQuAD 

The Medical Question Answering Dataset (MedQuAD) is a large-scale biomedical question- answering 
dataset compiled from official National Institutes of Health (NIH) websites. It consists of 47,457 expertly 
curated question-answer pairs, covering a wide range of medical topics, including disease symptoms, 
diagnosis, treatment options, drug interactions, and preventive healthcare measures. MedQuAD serves as 
a high-quality knowledge base for training and evaluating biomedical question-answering models, ensuring 
that responses are accurate, evidence-based, and contextually relevant. Each question-answer pair is 
structured, with questions representing real-world medical inquiries posed by patients, healthcare 
professionals, and researchers, while answers are sourced from trusted medical organizations to ensure 
credibility. The dataset spans various medical disciplines, including rare diseases, chronic conditions, 
mental health, pediatrics, geriatrics, infectious diseases, and public health concerns, making it a valuable 
resource for developing transformer-based QA models like BioMedQ&A. The structured format of 
MedQuAD enables deep learning models to understand the contextual relationships between queries and 
responses, improving semantic comprehension and retrieval accuracy. Additionally, MedQuAD serves as a 
benchmark dataset for evaluating biomedical QA models, assessing their performance in terms of accuracy, 
recall, precision, and contextual alignment. 

For the BioMedQ&A framework, MedQuAD plays a crucial role in fine-tuning the BioGPT- powered 
transformer model, enabling it to generate reliable, medically sound answers. By leveraging MedQuAD, the 
model effectively learns to interpret complex medical queries, rank relevant answers, and provide high-
fidelity responses. The dataset’s diverse and structured nature ensures that BioMedQ&A meets the highest 
standards of medical accuracy and relevance, making it a valuable tool for healthcare professionals, medical 
researchers, and patient education initiatives. 
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t p n 

4.2 Performance metrics Accuracy: 

In the performance analysis, the accuracy is one of the most significant measure to evaluate the proposed 
method efficiency and enhancement rate. The accuracy predicts the correct solution from the number of 
cases examined. 

To compute the accuracy by considering the following expression: 

4.1 Accuracy: 

In the performance analysis, the accuracy is one of the most significant measure to evaluate the 

proposed method efficiency and enhancement rate. The accuracy predicts the correct solution from 

the number of cases examined. 

To compute the accuracy by considering the following expression: 
 

A = 
t p + tn

 

(1.1) 

y + t + f 
p 

+ fn

where, the true positive is t p , the true negative is tn , the false positive is represented as, f p 

and the false negative is denoted as, f n . 

 
A higher accuracy indicates that the model correctly classifies more biomedical queries, 

improving the overall retrieval performance. 

Precision: 

 
Precision is another effective method for evaluating the accuracy of the proposed approach. It 

quantifies the amount of information conveyed by a particular value. The mathematical formula for 

precision is shown below

Pn = 

p 

t p 

+ f p 

 

(1.2)

where, t p is the true positive value and f p is the false positive value.

t 
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A higher precision indicates that the model retrieves fewer incorrect answers, enhancing the 

trustworthiness of biomedical QA. 

Specificity: 

 
Specificity is the ratio of true positive value to the summation of true negative value and false 

positive value. The expression for specificity is given as follows: 

 

TNR = 

tn 

tn + f p 

 

(1.3) 

where, tn denotes the true negative value. 

 
A high specificity ensures the model effectively filters out incorrect biomedical responses. 

 
Sensitivity: 

Sensitivity, also known as recall, refers to the ability to accurately detect the smallest changes in images. 

It is an absolute measure that represents the ratio of true positives to the sum of true positives and false 

positives. The mathematical formula for sensitivity is derived from this relationship. This metric is crucial 

in determining the precision of image analysis techniques in identifying subtle alterations. 

 

Sensitivity = 

 

t p 

t p + f n 

 

(1.4) 

F-measure: 

 
The F-measure represents the harmonic average of precision and recall, offering a way to 

compare these two metrics. A flawless F1-score of 1 signifies optimal precision and recall. On the 

other hand, the F1-score reaches its minimum value of zero when either precision or recall is 

zero. The mathematical representation of the F-measure can be expressed as: 

F − measure = 
2 Pr ecision  Sensitivity (Recall) 

Pr ecision + Sensitivity 

 

(1.5) 
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(t + f )(t + f )(t + f )(t + f ) 

t p  tn − f p  fn 

p p p n n p n n 

False positive rate (FPR): 

 
The False Positive Rate (FPR) is also referred to as the false alarm ratio or fall out. A superior outcome 

is achieved when the False Positive (FP) value is zero, indicating no false positives. This metric 

represents the proportion of negative instances incorrectly classified as positive in relation to the 

total count of negative instances. The FPR can be calculated using the following formula: 

 

FPR = 

 

f p 

f p + tn 

 

(1.6) 

False negative rate (FNR): 

 
FNR, also known as miss rate, becomes zero when there are no false positives, resulting in a zero FP 

rate. The FNR is calculated by dividing the total number of false negatives by the sum of false 

negatives and true positives. The formula for FNR can be expressed as follows: 

 

FNR = 

 

fn 

f n + t p 

 

(1.7) 

A lower FNR means the model retrieves more correct biomedical answers without missing 

crucial information. 

Matthew’s correlation coefficient (MCC): 

 
The Matthews Correlation Coefficient (MCC) indicates the level of agreement between actual values 

and predicted outcomes. It is equivalent to Pearson's correlation, with a range from -1 to 1. A perfect 

detection is represented by an MCC value of 1.0, while any other value suggests an imperfect 

detection. The mathematical formula for MCC is provided below. 

 

MCC = (1.8) 

 

 
An MCC close to 1 indicates strong model performance, while an MCC near 0 or negative suggests 

poor classification. 
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Negative predictive value (NPV): 

 
NPV is defined as, in a perfect detection if it returns no false negative means the NPV becomes 1 i.e. 

it attains maximum. Otherwise the value of NPV is zero because it gives no true negative. The NPV 

formula is stated as follow, 

 

NPV = 

 

tn 

tn + fn 

 

(1.9) 

A high NPV means the model accurately discards irrelevant answers, improving precision. 

 
False discovery rate (FDR): 

 
The False Discovery Rate (FDR) is calculated by dividing the number of false positive detections by 

the sum of false positive and true positive detections. This ratio can be represented as follows: 

 

FDR = 
( 

 

f p 

f p + t p ) 

 

(1.10)

Mean squared error (MSE): 

 
Mean Squared Error (MSE) is calculated by dividing the sum of the squared differences between 

actual and predicted values by the total number of actual values. The following equation represents 

the mathematical formula for MSE: 

(y − yˆ )2 

MSE =  i i  

n 

(1.11) 

 

here, yi represents the actual value, yˆi is the predicted value and n denotes the total number of 

actual values. 

 
A lower MSE ensures that the model's predictions closely match actual biomedical answers. 
 

Jaccard index (JI): 
 
The Jaccard index is a comparative statistical measure that evaluates the similarity between datasets. 

This coefficient is calculated by dividing the intersection of the datasets by their union. The index 

ranges from 0 to 1, with values closer to 1 indicating greater similarity between the two datasets. The 

mathematical expression for this index can be represented as follows: 

 

          JI =                  
P  Q                    (1.12) 

                P  Q 

 
A JI closer to 1 indicates high model similarity with ground truth biomedical responses. 
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Area under the curve (AUC): 

 
The Area Under the Curve (AUC) serves as an indicator of overall classification performance quality. 

A higher AUC value suggests superior classifier performance, as each point on the Receiver 

Operating Characteristics (ROC) curve indicates the True Positive (TP) and False Positive (FP) rates 

at various cut-off points. 

AUC-ROC measures the model’s ability to distinguish between correct and incorrect biomedical 

answers. 

AUC close to 1 → Perfect classification 

AUC < 0.5 → Poor classification 

Higher AUC values indicate superior biomedical answer retrieval performance 

 
Cross Entropy (CE): 

 
The performance of the classification system is computed using this cross entropy loss. This 

performance value is ranges among 0 to 1, here 1 denotes the worst and 0 represents the flawless 

classification model. The equation of cross entropy can be provided as 

CE = 
1 

( )
 
 

(1.14) 

 

c=1 
bq,c log pq , c 

 
Where, the amount of classes are represented as N , the true classification is denoted as c , the 

parameter q is the observation, the prediction probability is p and for the accurate class label, b is 

the binary indicator. 

Lower CE loss ensures accurate answer prediction with minimal classification errors. 

 
Table 2: Final Evaluation Summary of BioMedQ&A 

Metric Value 

Accuracy 99.8% 

F1-Score 98.6% 

Mean Reciprocal Rank 
(MRR) 

0.92 

Execution Time 0.98s 

Precision 98.5% 

Recall (Sensitivity) 98.7% 

Specificity 99.2% 

MCC 0.96 

Jaccard Index 0.93 

AUC-ROC 0.98 

Cross-Entropy Loss 0.02 
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Fig 2: Evaluation Summary of BioMEDQ&A 

4.3Comparative Analysis of Biomedical QA Models: 

The performance evaluation of BioMedQ&A was conducted against two well-established biomedical question-
answering models, BioBERT and MedQA. The comparison was based on four key metrics: accuracy, F1-score, Mean 
Reciprocal Rank (MRR), and execution time. The results demonstrate that BioMedQ&A significantly outperforms its 
counterparts across all evaluation parameters, highlighting its superior efficiency in biomedical knowledge retrieval. 

Accuracy is a critical measure of the model’s ability to provide correct answers to biomedical queries. BioMedQ&A 
achieved the highest accuracy of 99.8%, outperforming MedQA (95.7%) and BioBERT (92.5%). This improvement is 
attributed to the integration of Concept2Vec embeddings and a multi-layer semantic ranking mechanism, which 
enhance the model's contextual understanding and answer precision. 

The F1-score, which balances precision and recall, further validates the robustness of BioMedQ&A. It achieved an F1-
score of 98.6%, significantly higher than MedQA (93.1%) and BioBERT (90.2%). This demonstrates BioMedQ&A’s 
superior ability to retrieve relevant and accurate biomedical answers while minimizing false positives. 

In terms of Mean Reciprocal Rank (MRR), an essential metric for ranking-based retrieval systems, BioMedQ&A 
attained a score of 0.92, surpassing MedQA (0.88) and BioBERT (0.85). This indicates that the proposed model ranks 
relevant answers higher in the retrieval process, ensuring quicker access to the most precise responses for biomedical 
queries. 

Furthermore, execution time is a key factor in real-time biomedical applications. BioMedQ&A delivers results in just 
0.98 seconds, significantly faster than MedQA (1.20s) and BioBERT (1.42s). The reduced execution time 
demonstrates the computational efficiency of BioMedQ&A, making it suitable for real-time medical decision support 
systems. 

Model Accuracy F1- Score MRR Execution Time 

BioBERT 92.5% 90.2% 0.85 1.42s 

MedQA 95.7% 93.1% 0.88 1.20s 

BioMedQ&A 99.8% 98.6% 0.92 0.98s 

 

Fig3: Bar Chart for Performance Metrics 
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The above visualizations represent the Comparative Analysis of Biomedical QA Models, focusing on Accuracy, 
F1-Score, MRR: 

BioMedQ&A significantly outperforms BioBERT and MedQA in terms of Accuracy (99.8%), F1-Score (98.6%), and 
MRR (0.92). 

These performance gains highlight the effectiveness of transformer-based learning in biomedical question 
answering. 

 

Fig 4: Line Plot for Execution Time 

BioMedQ&A achieves the fastest execution time (0.98s), compared to BioBERT (1.42s) and MedQA (1.20s). 

The decreasing trend in execution time confirms BioMedQ&A’s efficiency in real-time biomedical query retrieval. 

CONCLUSION 

This research introduces BioMedQ&A, a BioGPT-powered Concept Vector and Transformer- Based Question-
Answering Model, designed for efficient biomedical knowledge retrieval from the MedQuAD database. The 
integration of Concept2Vec embeddings enables hierarchical semantic understanding, improving contextual 
interpretation and answer relevance. The multi-layer semantic ranking approach enhances precision in biomedical 
QA, significantly outperforming traditional models. 

Experimental validation demonstrates BioMedQ&A’s superior accuracy (99.8%), F1-score (98.6%), and Mean 
Reciprocal Rank (MRR: 0.92), making it a reliable tool for healthcare professionals, biomedical researchers, and 
clinicians. The system efficiently retrieves high- fidelity answers with an execution time of 0.98 seconds, supporting 
real-time medical decision-making. 

Despite its high performance, BioMedQ&A faces challenges related to computational efficiency, multi-hop reasoning, 
and domain adaptability. Addressing these limitations will further refine its capabilities in biomedical knowledge 
extraction. 

FUTURE DIRECTIONS 

Moving forward, several enhancements can be made to further refine BioMedQ&A and expand its applicability in 
biomedical knowledge retrieval. One key direction is the integration of neural-symbolic reasoning, which combines 
deep learning with symbolic logic to enhance interpretability and complex inference capabilities in biomedical QA. 
Additionally, domain-adaptive reinforcement learning can be employed to improve the model’s adaptability across 
various biomedical subdomains, ensuring accurate responses to specialized queries. Another promising avenue is 
federated biomedical knowledge augmentation, where federated learning techniques can be utilized to incorporate 
distributed biomedical knowledge while maintaining data privacy and security. 

Further improvements can be achieved by leveraging multi-hop and graph-based reasoning through Graph Neural 
Networks (GNNs) to enhance contextual understanding and facilitate complex question-answering scenarios 
involving interconnected medical concepts. Additionally, integrating BioMedQ&A into a real-time Clinical Decision 
Support System (CDSS) can make it a powerful tool for healthcare professionals, aiding in diagnosis, treatment 
planning, and evidence-based medical decision-making. Expanding the model’s capabilities beyond text-based QA, 
cross-lingual and multimodal enhancements will allow it to process biomedical queries across multiple languages 
and incorporate diverse medical data sources such as electronic health records, medical imaging, and genomic data. 

By implementing these advancements, BioMedQ&A can evolve into a more robust, scalable, and intelligent 
biomedical question-answering system, driving innovation in clinical practice, biomedical research, and medical 
education while significantly improving the accessibility and accuracy of biomedical knowledge retrieval. 
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