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In computer vision, the removal of rain streaks from individual photographs has drawn a lot of 

interest. A saturated picture is broken down to an underlying image without any rain and a map 

of the rain streak to represent the de-raining challenge as an image decomposition assignment. 

This study introduced a DLD: Deep Learning-Based Single Image De-Raining Using Discrete 

Hartley Transformation, which is different from the majority of de-raining techniques now in 

use. The data cleansing phase of this study uses contrast-limited adaptive histogram equalization 

to smooth out the image and lower noise. Then, we introduced a new method to reconstruct a 

rainy image called Discrete Hartley Transformation (DHT). Following that feature extraction is 

carried by the proposed Deep Learning-based Enhanced Share-Source Residual Module (SSRM) 

which improves image performance also its shortcut connections. Finally, the Inverse Discrete 

Hartley Transformation (IDHT) is used to de-rained images. As a result, our proposed method 

achieves a high accuracy of 93.6, PSNR of 41.9, and SSIM of 0.96 compared to the existing 

techniques. 

Keywords: Image de-raining, Deep residual learning, Image processing, Single image. 

 

1. INTRODUCTION 

With a method developed, it is possible to swiftly execute the Discrete Hartley Transform (DHT) of a data sequence 

of N elements in a time equivalent to N log 2 N. Error-avoiding inverse Hartley transforms are equivalent to the 

original Hartley transform. Rain is a typical weather occurrence. Raindrops may result in the outside computer vision 

system operating abnormally, blurring the obtained outdoor picture, losing the image's original details and 

characteristics, and lessening the image's visual impact. For instance, the fields of image enhancement, monitoring 

targets, recognition, and de-raining algorithms are all very helpful in ensuring the overall correctness of the method. 

De-raining algorithms for images have gained popularity recently.  

The project of decomposing a rainy image into a backdrop image devoid of rain and a rain streak map is known as 

the de-raining challenge. Rain streaks can cause problems for a wide range of image-based uses throughout the 

modern world, such as self-driving vehicles operation, satellite-based photo monitoring, tracking, etc. It may also be 

interpreted as a challenge to effectively reduce noise in a single picture or video. Rain streak reduction from one 

picture is an image decomposition problem where a rainy image is split into a backdrop image with no precipitation 

and a map of the rain streaks. In computer vision, a lot of study has been done on removing rain streaks from single 

photos. The conventional method of removing rain from a single image interprets each raindrop as a distinct type of 

high-frequency noise, which is subsequently filtered using either the raindrop recognition approach or the image 

decomposition technique. Numerous kinds of rain removal procedures have been introduced one after the other. 
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Recent research has revealed that rain streaks may be eliminated from a single picture using spatial domain 

techniques. Fu et al. [1, 2] developed a network based on negative residual learning (ResNet)[3] utilizing a Deep 

Residual Network. This network may be used to rainy photos to obtain their de-rained versions. Prior to picture de-

raining, Shen et al. [4] employed the ideas of Haar [5], wavelets, and Dark channels [6]. [7,8,9] The authors have 

proposed networks that use apriori information, which includes (a) centralized sparse representation, (b) depending 

on anticipated rain direction, (c) rain streak layer, and (d) Gaussian mixture theories, to remove a rain map from a 

wet picture to produce a backdrop devoid of rain. Zhang et al. [10] develop the low-rank representation-based 

convolutional kernels with rain streaks and sparsity in order to recognize the clear images. Applying bilateral filtering, 

a grainy image is separated into its high-frequency and low-frequency components [11-15]. The high-frequency 

component is then further separated into geometric features associated with rain and non-rain. It is the histogram 

was produced using a structured dictionary learning of Eigen colors, depth of field, and horizontally oriented 

gradients (HOG).  

The periodic noise that follows is extracted by Chang et al.[16] byline patterns like fences, stripes, and raindrops. Al. 

[18] introduced the Chun et al model, which depends on the Conditional Generative Adversarial Network [17] to 

compute the high-quality image of no rain. Gu et al's [19] work describes the decomposition of the rainy image into 

two layers: one layer is approximated by sparse modeling study to depict large-scale structures, and the other layer 

is determined by sparse illustration synthesis to display the finer textures in the image and eliminate the rain streaks. 

A model that simultaneously identifies and eliminates rain streaks utilizing a binary map was proposed by Yang et 

al. [20]. The rain streak is visible in the pixel if the proper value in the binary map is"1," otherwise it is "0." They can 

mimic heavy rain by mimicking the appearance of rain stripe accumulation in different shapes and orientations. Ren 

et al.'s [21] model of the rain streaks, which is separated into heavy and sparse rain, makes use of a matrix 

decomposition framework. Yeh et al. [22] divide an image of rain into its high- and low-frequency components 

using Gaussian filter.  

Rain streaks from low-frequency components are eliminated using non-negative matrix factorization, whereas rain 

streaks from high-frequency components are eliminated using astute edge recognition. Wang et al. [23] developed a 

framework that utilized the observation that most of the rain streaks are located in high-frequency component 

of rainy picture. The rain-free information from high-frequency component is learned through a dictionary-based 

technique. Applying a Convolutional Neural Network (CNN) is difficult because many useful features, like the local 

receptive field, are lost when an image's spectrum is in the Fourier domain, according to Shen et al. [24]. We proposed 

a DLD: Deep Learning-Based Single picture De-Raining Utilizing a Discrete Hartley Transformation method to 

enhance picture efficiency in order to overcome the shortcomings of earlier studies. The following is a summary of 

our work's primary efforts: 

• For image reconstruction, existing research used Discrete Fourier Transform (DFT), but it degrades the 

performance, thus we introduced a new method to reconstruct a rainy image called Discrete Hartley Transformation 

(DHT).  

• In addition, we proposed the SSRM, a modified residual design, in which every shortcut connection has a 

common beginning point. This modification to the original ResNet may accelerate convergence and improve the 

acquisition of the de-rained output. 

• To improve the accuracy of the introduced SSRM this research utilized Group normalization(GN) and 

Sigmoid function which smooth the gradient, much more flexible and better to handle. The proposed strategy may 

remove rain effectively and efficiently, according to findings from experiments. 

This research article is organized this way: After reviewing artificial intelligence-based picture de-raining in Section 

2, Section 3 provides a detailed description of the proposed research. The findings of the proposed technique's 

implementation were shown in Section 4. The study's work is concluded in Section 5. 

2. LITERATURE SURVEY 

To prevent catastrophic forgetting, Zhou et al. [25] introduced the parameter significance guided weights modifying 

method, or PIGWM, for the picture de-raining community. This approach is able to preserve the efficiency of the 

prior rain dataset while achieving satisfactory results. A possible method has been devised that shares the network 

design but updates and stores the network's settings on every set of data individually. To capitalize on picture prior 

and strong feature mapping, there is a propensity to combine data-driven and model-driven techniques. 
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In order to retrieve contextual data along the global spatial dimensions and channel dimensions, Fu et al. [26] initially 

suggested two GCN blocks after introducing a dilated convolution block to record multi-scale local patterns along the 

local spatial dimensions. Tests confirm this approach's superiority on simulated and actual information sets. 

Furthermore, our network structure exhibits good computational effectiveness, de-raining performance, and ease of 

implementation. 

In order to extract clear picture material from a single rainy picture, Yang et al. [27] suggested eliminating rain 

elements without adding any new artifacts. The rain element is frequently modelled as noise in current rain removal 

techniques. It is suggested to use a Rain-Component-Aware (RCA) network to record the rain's properties. The 

suggested method might yield far superior de-raining photographs with regard to both subjective visual quality 

inspection and objective quantitative assessment. The RCA network is good at collecting rain patterns. 

In order to achieve outstanding de-raining effectiveness without the need for expensive pre-training, Xiao et al. [28] 

presented a successful transformer-based framework for the picture de-raining fundamental priors of vision tasks, 

i.e., locality and hierarchy, into the design of the network. Methods for de-raining have to find features that are both 

local and non-local. Strong dependencies between content and position can thus be gathered, improving image 

content recovery and minimizing precipitation artifacts. 

An effective de-raining unit and a deep de-raining CNN were proposed by Yao et al. [29]. Utilizing a feature pyramid, 

we acquire knowledge of rain streaks with varying sizes and forms. We then utilize these features in the de-raining 

unit, propagating them across the network to facilitate learning of the deep de-raining network and enhance its 

general efficiency. 

An adaptive-kernel pyramid was developed by Zhang et al. [30] to effectively deliver multi-scale data. Then, to search 

for channel and spatial links among two scales, accordingly, we develop two cross-scale similarity attention blocks 

(CSSABs). While the channel CSSAB highlights the interdependencies among cross-scale features, the spatial CSSAB 

investigates the spatial similarity among pixels of cross-scale parameters. Lastly, we build an efficient multifocal 

attention-based cross-scale system using our CSSABs that achieves image de-raining by fully utilizing the cross-scale 

correlations of both rain streaks and background. 

Wang et al. [31] introduced a two-step technique called JF-MADN that consists of a Multi-scale deep Alternate-

connection Dense Network (MADN) that separates rain streaks in a coarse-to-fine way and a Joint Filter (JF) that 

extracts high-frequency features from pictures taken during rainy conditions. To divide the high-frequency and low-

frequency elements of the rainy picture, a rain-prior weighted statistic order filter might be built by integrating it 

with the rain dark channel prior. 

Using several public datasets, Wei et al. [32] presented an approach, and the experimental findings show that this 

suggested approach significantly improves image de-raining and de-blurring. One of the key data sources in IoV is 

the transportation images. This study studies the image de-blurring and image de-raining methods using DL and 

transfer learning that retrieve traffic information from motion-blurred and rain-damaged images. To attain higher 

accuracy in the image de-blurring task, a motion de-blurring technique depending on deep residual generation 

adversarial network with our own created Res-block is offered. 

Hence, Discrete Fourier transformation (DFT) is used to reconstruct the rainy image in the existing research. In order 

to simulate the rain streak map in the Fourier domain, both the phase and magnitude spectrums are needed. Actual 

and unreal coefficients are supplied as input to the deep network in place of magnitude and phase data in order to 

lower the cost of computation. Because of the signal transformation's loss of spatial correlation, transform domain 

images are useless for deep network training. Moreover, Noise will affect the reconstruction. Our current research 

proposes a periodic or pseudo-periodic structure, which remains a few marks in the altered domain, but decreases 

the noise. Also, deep CNN is used to modify rain streaks in an image. For that D-Net and N-Net are used to estimate 

and predict the rain streaks, moreover, the performance is decreased. 

3. DLD: DEEP LEARNING-BASED SINGLE IMAGE DE-RAINING USING DISCRETE HARTLEY 

TRANSFORMATION 

To increase picture efficiency, a brand-new DLD: Deep Learning-Based Single picture De-Raining Utilizing Discrete 

Hartley Transformation method is put out. First, the input is the picture of the rain. Generally, input image is affected 

by some noise. So, the data are cleansed by Contrast-limited adaptive histogram equalization which reduces the noise, 
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smoothens the image, and performs well in terms of periodic noise. Moreover, the existing research used Discrete 

Fourier Transform (DFT), but it degrades the performance, thus we introduced a new method to reconstruct a rainy 

image called Discrete Hartley Transformation (DHT). In addition, to extract features, the existing research employed 

different types of neural networks with different amounts of layers to estimate and predict the images, still, it takes 

more time to process and it affects the classification performance. So, to overcome the above-mentioned flaws, we 

proposed a Deep Learning-based Enhanced Share-Source Residual Module (SSRM), and it improves image 

classification performance also its shortcut connections. Here, to improve the accuracy, this research introduced 

Enhanced SSRM which comprises Group normalization (GN) and Sigmoid function that smooth the gradient, much 

more flexible and better to handle. Finally, the Inverse Discrete Hartley Transformation (IDHT) is used to de-rained 

images. Figure 1 shows the architecture of the proposed strategy. 
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Figure 1: Architecture of the proposed approach 

3.1 PCLAHE: Pre-processing by Contrast limited adaptive histogram equalization 

This research adopts the PCLAHE method to increase the visibility and reduce the noises in the input image. The 

process of PCLAHE presented in Figure 2, is composed of two major parts: 
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Figure 2: Pre-processing method that employs contrast-limited adaptive histogram equalization 

A contrast factor known as a clip limit is used by CLAHE to clip (that is, cap or clip) the histogram in order to avoid 

oversaturation of the picture, particularly in homogeneous regions. Adaptive histogram clip (AHC), a version on the 

contrast-limited method, is another tool for controlling the over-enhancement of picture backgrounds. By modifying 

the clipping level, it functions. Typically, one of the AHCs that yields a bell-shaped graph is the Rayleigh distributions. 

Here is how the function is specified: 

𝑹𝒂𝒚𝒍𝒆𝒊𝒈𝒉𝒈 = 𝒈𝒎𝒊𝒏 + [𝟐(𝜶
𝟐) 𝐥𝐧 (

𝟏

𝟏 − 𝒑𝒇
)]

𝟎.𝟓

 

A minimum pixel value is indicated by 𝑔𝑚𝑖𝑛 in this function. The distribution parameter, 𝛼, is a positive real scalar 

that specifies the cumulative probability distribution, represented as 𝑝𝑓. 

Algorithm 1: PCLAHE: Pre-processing by Contrast limited adaptive histogram 

equalization 

Tile generation: Partitioning the input image into non-overlapping blocks or tiles is the first stage. 

For each tile, a histogram is calculated. This histogram represents the distribution of pixel intensities 

within that specific tile. 

Histogram equalization: There are five steps in this section: 

❖ Histogram computation: Determine the histogram as a collection of bins on every tile. 

❖ Excess calculation: Compile the values of the histogram bins that surpass the clip limit. 

❖ Excess distribution:  After that, divide them among other containers. 

❖ Excess redistribution: A more successful clip restriction that is greater than the stated 

limit—whose precise value depends on the image—will be possible thanks to the redistribution, which 

will push some bins back above the clip limit. Execute the redistribution process iteratively until the 

excess is minimal if this is not what you want. 

❖ Scaling and mapping: Determine the values of the histogram's cumulative distribution 

function (or CDF). Next, use the input image pixel values to scale and map every tile's CDF values. 
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Hence, PCLAHE performs well in terms of periodic noise. Following that, the existing research used Discrete Fourier 

Transform (DFT) for reconstructing a rainy image, but it degrades the performance, thus we introduced a novel 

approach which is explained in the following section. 

3.2 IRDHT: Image Reconstruction by Discrete Hartley Transformation (DHT) 

A 2D DHT pair is described below in order to propose a DHT reconstruction for a rainy image: 

𝐻(𝑢, 𝑣) = ∑ ∑𝑓(𝑥, 𝑦)𝑐𝑎𝑠 [2𝜋 (
𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
)]

𝑁−1

𝑦=0

𝑀−1

𝑥=0

        (1) 

𝑓(𝑥, 𝑦) = ∑ ∑𝐻(𝑢, 𝑣)𝑐𝑎𝑠 [2𝜋 (
𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
)]       (2)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

Where H (u, v) is the Hartley spectrum coefficient; M and N are the pre-processed picture's horizontal and vertical 

dimensions, accordingly; and f (x, y) indicates the pre-processed images; and 𝑐𝑎𝑠(𝜃) = 𝑐𝑜𝑠(𝜃) + 𝑠𝑖𝑛(𝜃) =

√2 𝑠𝑖𝑛(𝜃 + 𝜋 4⁄ ).  Equations (1) and (2) can therefore alternatively be written in the form of: 

𝐻(𝑢, 𝑣) = ∑ ∑𝑓(𝑥, 𝑦) (𝑐𝑜𝑠 [2𝜋 (
𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
)] + 𝑠𝑖𝑛 [2𝜋 (

𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
)])   (3)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

𝑓(𝑥, 𝑦) = ∑ ∑𝐻(𝑢, 𝑣) (𝑐𝑜𝑠 [2𝜋 (
𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
)] + 𝑠𝑖𝑛 [2𝜋 (

𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
)])     (4)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

By simplifying it, we can further obtain 

𝐻(𝑢, 𝑣) = √2 ∑ ∑𝑓(𝑥, 𝑦)𝑠𝑖𝑛 [2𝜋 (
𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
)+ 𝜋 4⁄ ]       (5)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

𝑓(𝑥, 𝑦) = √2 
1

𝑀𝑁
 ∑ ∑𝐻(𝑢, 𝑣) 𝑠𝑖𝑛 [2𝜋 (

𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
)+ 𝜋 4⁄ ]    (6)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

This approach uses a specific formula for creating the fringe illumination patterns p(.) of various spatial frequencies: 

𝑝(𝑥, 𝑦; 𝑢, 𝑣) = 𝑎 + 𝑏𝑠𝑖𝑛(2𝜋𝑢𝑥 + 2𝜋𝑣𝑦 + 𝜋 4⁄ ) 

 Where (𝑢, 𝑣) are the spatial frequencies of the illumination structures, (𝑎) is the DC component, and (𝑏) is the 

contrast; 𝑎 and 𝑏 are used to control the brightness of the illumination patterns. Where (𝑥, 𝑦) are the 2D Cartesian 

coordinates in the target pre-processed image.  The target pre-processed image is then projected with the illumination 

structures, and a number of distinct voltage signals are found and captured utilising a single detector. The expression 

for a reflection modulation signal 𝐷𝑝 is as follows: 

𝐷𝑝(𝑢, 𝑣) = 𝐷𝑛 + 𝑘∬𝑅(𝑥, 𝑦)𝑝(𝑥, 𝑦; 𝑢, 𝑣)𝑑𝑥𝑑𝑦      (7) 

where k is a constant whose value is determined by the location as well as the dimensions of the detector, R is the 

surface albedo of the target pre-processed image, and 𝐷𝑛 is the intensity of the ambient light. When we plug Eq. (7) 

into Eq. (8), we obtain 

𝐷𝑝(𝑢, 𝑣) = 𝐷𝑛 + 𝑎𝑘∬𝑅(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 + 𝑏𝑘∬𝑅(𝑥, 𝑦) 𝑠𝑖𝑛(2𝜋𝑢𝑥 + 2𝜋𝑣𝑦 + 𝜋 4⁄ )𝑑𝑥𝑑𝑦                                              (8) 

This approach has a high signal-to-noise ratio and is also differential. The element of DC may be removed by 

averaging all the data, as demonstrated by the Fourier series theory, once all the basic designs have been added 

together to create a consistent pattern. 𝐷𝑝 and 𝐷̂ stand for the voltage signals and the average of all the data, 

accordingly. It is possible to retrieve every spectral coefficient of the recreated picture by utilizing the subsequent 

formula is: 
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𝐻(𝑢, 𝑣) = 𝐷𝑝 - 𝐷̂   (9) 

Every Hartley spectral coefficient of the recreated picture is calculated using Eq. (10). Lastly, a 2D inverse DHT can 

be used for getting the reconstructed picture.  Then, to extract the features and de-rained the image this research 

proposed a novel approach which is explained in the following section. 

3.3 Deep Learning-based Enhanced Share-Source Residual Module (SSRM) 

The current research utilized various neural network types with varying numbers of layers to forecast and estimate 

the pictures in order to extract the features; however, this approach takes longer to process resulting in worse 

classification performance. Thus, to overcome the above-mentioned flaws, this research proposed a Deep Learning 

Enhanced Share-Source Residual Module (SSRM), in which ResNet-50 and Bottleneck Dense Net (Dense Net-B) are 

utilized and it improves image classification performance also its shortcut connections. In order to speed up 

convergence along with enhance data flow among layers, SSRM was developed. Additionally, in order to enhance the 

computation for every residual block, it will make use of an identical source and pre-identify a variable. Moreover, to 

improve the accuracy, this research introduced an Enhanced SSRM which comprises Group normalization (GN) and 

Sigmoid function that smooth the gradient, much more flexible and better to handle. 

The rainy picture, or reconstructed picture from the DHT, may be divided into two sections: the detail layer and the 

base layer. The detail layer may be represented statistically as follows: 

𝑅 = 𝑅𝑏𝑎𝑠𝑒 + 𝑅𝑑𝑒𝑡𝑎𝑖𝑙        (10) 

In this case, the subscripts ‘detail’ and ‘base’ stand for the detail and base levels, accordingly, while R is the rainy 

picture. The detail level is sparser than the rainy picture since all that's left in 𝑅𝑑𝑒𝑡𝑎𝑖𝑙,  are rain streaks along with 

partially constructed object architecture. Instead of training the SSRM on the image domain, we do so on the detail 

layer. 

Convolution Layer  

1+ GN + Sigmoid

Convolution Layer 2 

+ GN + Sigmoid
Convolution Layer 3 

+ GN + Sigmoid

Convolution Layer  

+ GN + Sigmoid

Convolution Layer  

+ GN + Sigmoid

Convolution Layer  

+ Sigmoid

Skip Connection

 

Figure 3: Structure of Enhanced SSRM 

Comparing the SSRM with N layers to a normal CNN, Figure 3 illustrates that the N-layered SSRM has (N-2)/2 

residual blocks and shortcut connections. Furthermore, by having every shortcut link have an identical source, the 

SSRM's foundation's adaptability and integrity are reinforced. As a result, while each leftover block is unique, they 
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are all connected. It is possible to transfer feedforward and feedback signals directly using these shortcut connections. 

First, this research explained about the enhanced SSRM which is explained as follows: 

As shown in Figure 3, if we set 𝐼0 as the input image from the DHT, 𝐼𝑖𝑛
𝑛  and 𝐼𝑜𝑢𝑡

𝑛  correspondingly symbolize the SSRM's 

inputs and outcomes in the 𝑛𝑡ℎ layer. After then, the SSRM's architecture can be summed up as below: 

    {
𝐼𝑖𝑛
1 = 𝐼0

𝐼𝑜𝑢𝑡
1 = σ(GN(𝑊1 ∗ 𝐼𝑖𝑛

1 + 𝑏1))
              (11) 

 

{
 
 

 
 𝐼𝑖𝑛

2 = 𝐼𝑜𝑢𝑡
1

𝐼𝑜𝑢𝑡
2 = σ(GN(𝑊2 ∗ 𝐼𝑖𝑛

2 + 𝑏2))

𝐼𝑖𝑛
3 = 𝐼𝑜𝑢𝑡

2

𝐼𝑜𝑢𝑡
3 = σ(GN(𝑊3 ∗ 𝐼𝑖𝑛

3 + 𝑏3))

     (12) 

     

{
 
 

 
 𝐼𝑖𝑛

4 = 𝐼𝑜𝑢𝑡
3 + 𝐼𝑜𝑢𝑡

1

𝐼𝑜𝑢𝑡
4 = σ(GN(𝑊4 ∗ 𝐼𝑖𝑛

4 + 𝑏4))

𝐼𝑖𝑛
5 = 𝐼𝑜𝑢𝑡

4

𝐼𝑜𝑢𝑡
5 = σ(GN(𝑊5 ∗ 𝐼𝑖𝑛

5 + 𝑏5))

                  (13) 

                           

{
 
 

 
 𝐼𝑖𝑛

2𝑛 = 𝐼𝑜𝑢𝑡
2𝑛 + 𝐼𝑜𝑢𝑡

1

𝐼𝑜𝑢𝑡
2𝑛 = σ(GN(𝑊2𝑛 ∗ 𝐼𝑖𝑛

2𝑛 + 𝑏2𝑛))

𝐼𝑖𝑛
2𝑛+1 = 𝐼𝑜𝑢𝑡

2𝑛

𝐼𝑜𝑢𝑡
2𝑛+1 = σ(GN(𝑊2𝑛+1 ∗ 𝐼𝑖𝑛

2𝑛+1 + 𝑏2𝑛+1))

     (14) 

    {
𝐼𝑖𝑛
𝑁 = 𝐼𝑜𝑢𝑡

𝑁−1 + 𝐼𝑜𝑢𝑡
1

𝐼𝑜𝑢𝑡
𝑁 = σ(GN(𝑊𝑁 ∗ 𝐼𝑖𝑛

𝑁 + 𝑏𝑁))
         (15) 

The overall amount of layers N is represented by the variable 𝑛 = 1, 2, . . . , (𝑁 − 2)/2. The sigmoid function is denoted 

by σ(. ), the convolution operator by *, the weight parameters by W, the bias by b, and the group normalization 

function by GN(. ). Two filters are used following the upgraded SSRM process: the detail residual level & the de-

rained residual level, which are described below: 

As shown in Figure 1, this research chose two filters to minimize 𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔1(detail residual layer) which are 

formulated as  

𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔1 = 𝐶 − 𝑅𝑏𝑎𝑠𝑒 − 𝑅𝑑𝑒𝑡𝑎𝑖𝑙     (17) 

Initially, the optimized 𝑅𝑏𝑎𝑠𝑒
∗  is obtained by a low-pass filter and can be expressed as 

𝑅𝑏𝑎𝑠𝑒
∗ = argmin

𝑅𝑏𝑎𝑠𝑒

(𝐶 − 𝑅𝑏𝑎𝑠𝑒)    (18) 

Similarly, we use a high-pass filter to extract 𝑅𝑑𝑒𝑡𝑎𝑖𝑙
0  detail according to the identified 𝑅𝑏𝑎𝑠𝑒

∗ . 

𝑅𝑑𝑒𝑡𝑎𝑖𝑙
0 = argmin

𝑅𝑑𝑒𝑡𝑎𝑖𝑙

((𝐶−𝑅𝑏𝑎𝑠𝑒
∗ ) − 𝑅𝑑𝑒𝑡𝑎𝑖𝑙)     (19) 

Ultimately, we find the best 𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔1 using the formulas (17)–(19), which significantly streamlines the training 

procedure. Rain streaks tend to appear white in pictures, hence rainy image R has greater pixel values than clean 

image C. This is referred to as "negative residual mapping" because the majority of C-R ratios often have a negative 

value. 

Depicted in figure 1, 𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔1 (detail residual layer) and 𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔2 (de-rained residual layer) to increase the 

effectiveness of image decomposition, two negative residual mappings are constructed. Initially, we generate the de-

rained residual layer 𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔2 by learning the residual values across the final picture C and the base layer 𝑅𝑏𝑎𝑠𝑒. 

This may be represented as 

𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔2 = 𝐶 − 𝑅𝑏𝑎𝑠𝑒
∗     (20) 
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The detailed residual level 𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔1 is then obtained by learning the residual across 𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔2 and detail 

layer 𝑅𝑑𝑒𝑡𝑎𝑖𝑙. This can be expressed as, 

𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔1 = 𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔2 − 𝑅𝑑𝑒𝑡𝑎𝑖𝑙
0    (21) 

𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔1 = 𝑓𝑤
𝑏(𝑅𝑑𝑒𝑡𝑎𝑖𝑙

0 )          (22) 

Where 𝑅𝑛𝑒𝑔−𝑚𝑎𝑝𝑝𝑖𝑛𝑔1 signifies the outcome of SSRM, and 𝑓𝑤
𝑏(. ) symbolizes the SSRM. Finally, the Inverse Discrete 

Hartley Transformation (IDHT) is used to de-rained images. In the following section, this research presents the 

implementation results of the proposed approach to show its effectiveness. 

4. RESULTS AND DISCUSSION 

An 8 GB RAM Python framework was used to train our algorithm. In order to verify the efficacy of our algorithm, we 

assessed our procedure using the current image-draining techniques. 

4.1 Dataset Description 

The JRDR De-raining dataset, which is available to the public on Kaggle, is the primary dataset used in this work. 

Among the artificial data sets for images are (1) Rain dataset heavy, which contains 200 training pairs and 100 

ground-truth testing pairs; (2) Rain 100 light, which contains 200 training synthetic pairs and 100 testing and 

ground-truth testing pairs, accordingly. 

Table 1: Dataset Details 

Description Training Sets Testing Sets 

Datasets of heavy rain images 200  100 

Datasets of light rain images 200 100 

 

4.2 Obtained results from the proposed approach 

 

Figure 4: Obtained result from the heavy rain (Sample 1) 

 

Figure 5: Obtained result from the heavy rain (Sample 2) 



404  
 

J INFORM SYSTEMS ENG, 10(26s) 

 

Figure 6: Obtained result from the heavy rain (Sample 3) 

Three artificial high-rainy pictures are visualized in Figure 6-8, where two places of interest have been chosen to 

display high-rain streaks. Specifically, the proposed DLD: In severe rain, the rain streaks were successfully eliminated 

by DL-Based Single Image De-Raining Utilizing Discrete Hartley Transformation. 

 

Figure 7: Obtained result from the light rain (Sample 1) 

 

Figure 8: Obtained result from the light rain (Sample 2) 

 Two synthetic light rainy views are depicted visually in Figure 9-10; light-rain streaks are picked in two places of 

interest. Specifically, the proposed DLD: Discrete Hartley Transformation-Based Deep Learning-Based Single Image 

De-Raining was successful in eliminating the rain streaks in light rain. 

4.3 Performance parameters 

The performance specifications of the proposed DLD are explained in the  part: Discrete Hartley Transformation-

Based Deep Learning-Based Single Image De-Raining Technique. The total accurateness of the model's predictions 

is measured by accuracy. It gives a general picture of performance by calculating the proportion of accurately 
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anticipated occurrences to all instances. Furthermore, the difference among the expected and actual values is 

represented by the loss. Loss functions quantify this difference mathematically. The aim is to minimize this loss, as a 

lower loss signifies a more accurate mode. 

 

Figure 9: Accuracy of the proposed approach 

 The accuracy of the proposed method over epochs is displayed in Figure 11. One full cycle across the entire training 

dataset is referred to as an epoch. Through every epoch, the model learns from the entire dataset, adjusting its 

parameters to minimize the difference between predicted outputs and actual targets. Multiple epochs are necessary 

to ensure that the model has seen the data sufficiently and has fine-tuned its weights and biases to make accurate 

predictions. 

In the early epochs of training, the model's accuracy might be relatively low. This is because the model starts with 

random weights and biases and does not yet understand the underlying patterns in the data. As training progresses 

through several epochs, the model refines its understanding of the data. Accuracy typically improves during this 

phase. Greater forecasts are produced as the algorithm begins to identify more complex patterns and correlations in 

the dataset. 

The relationship between accuracy and epochs illustrates the model's learning curve. It starts with low accuracy and 

improves as the model learns from the data. Hence, our proposed approach attains an accuracy of 93.6% in the 8th 

epoch. 

 

Figure 10: Loss of the proposed approach 

 Loss is a gauge of the model's effectiveness. As seen in Figure 12, it estimates the discrepancy among the target 

numbers in the training dataset with the projected outputs. Reducing this loss function is the aim of training. A lower 
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loss suggests an improved fit between the model and the training set of data since its forecasts are more in line with 

the real data. 

 Usually, the model has a large loss during the initial epoch of training. This is because the model does not recognize 

the patterns in the data because its parameters are set up at random.   As the training progresses through multiple 

epochs, the model learns from the data and adjusts its parameters to minimize the loss. With each epoch, the loss 

gradually decreases, indicating that the model is becoming better at making predictions. As a result, our proposed 

approach provides a 0.02 loss in 8th epochs. 

4.4 Comparison Analysis 

 In our experiments, we are able to assess every method using two widely-used quantitative measurements: the 

structural similarity index (SSIM) and the peak signal-to-noise ratio (PSNR) for pictures that have ground truth. 

Greater picture recovery quality is indicated by bigger PSNR and SSIM values. 

PSNR is typically expressed in decibels (dB). The formula for PSNR is: 

𝑃𝑆𝑁𝑅 = 10 × log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
) 

 Where MSE is the Mean Squared Error across the initial and processed pictures and MAX is the highest feasible 

pixel value of the picture. Since PSNR uses a logarithmic function, it is measured in decibels (dB). The visual 

distortion decreases as the PSNR value increases. 

 

 Figure 11: Comparison of PSNR  

 Figure 13 compares the general Peak Signal Noise Ratio (PSNR). By employing contrast-limited adaptive histogram 

equalization, or Discrete Hartley Transformation, the proposed method's PSNR increases. Our proposed approach 

attains higher PSNR when compared to the baseline as Deep Spatial Context (DSC), Convolutional Neural Network 

(CNN), DetrainNet, Unrolled Matching Recursive Learning (UMRL), Progressive Image Restoration Network 

(PReNet), Low-light Image Processing Network (LP Net), Invertible Auto encoding Decentralized Network (IADN), 

and Convolutional Block Attention Module (CBAM) such as 24.6%, 23.9, 26.6, 30.2, 35.3, 32.6, 32.5, and 33.9. As a 

result, our novel technique has a PSNR of 41.9, which is higher than baseline approaches. 

 

 Figure 12: Comparison of SSIM 
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The overall Structural Similarity Index (SSIM) comparison is exposed in Figure 13. The SSIM of the proposed 

technique improves by using contrast-limited adaptive histogram equalization - Discrete Hartley Transformation. 

Our proposed approach attains higher SSIM when compared to the baseline as Deep Spatial Context (DSC), 

Convolutional Neural Network (CNN), DetrainNet, Unrolled Matching Recursive Learning (UMRL), Progressive 

Image Restoration Network (PReNet), Low-light Image Processing Network (LP Net), Invertible Auto encoding 

Decentralized Network (IADN), and Convolutional Block Attention Module (CBAM) such as 0.87, 0.816, 0.882, 

0.932, 0.94, 0.948, 0.943, and 0.917. As a result, our novel technique has an SSIM of 0.96 which is higher than 

baseline approaches. 

 As an outcome, compared to the other approaches examined, our outcomes for the proposed approach are 

qualitatively as well as quantitatively better.   

5. CONCLUSION 

This work presented a novel DLD: Deep Learning-Based Single Image De-Raining Using Discrete Hartley 

Transformation technique to improve image efficiency. Initially, the data are cleansed by Contrast limited adaptive 

histogram equalization which reduces the noise and smoothens the image. Moreover, this research introduced a new 

method to reconstruct a rainy image called Discrete Hartley Transformation (DHT). Following that, to extract the 

features this research proposed a Deep Learning-based Enhanced Share-Source Residual Module (SSRM) that 

improves image performance also its shortcut connections. To improve the accuracy, we introduced Enhanced SSRM 

which comprises Group normalization (GN) and Sigmoid function that smooth the gradient, much more flexible and 

better to handle. Finally, the Inverse Discrete Hartley Transformation (IDHT) is used to de-rained images. In 

comparison to the current methods, the approach we propose delivers great accuracy, efficiency, and time savings. 
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