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Bug report dependency analysis entails identifying and examining the interrelations among 

software bug reports. Dependencies may indicate that bugs are interconnected, with one bug 

obstructing the resolution of another. Consequently, one software defect must be rectified prior 

to resolving another. To our knowledge, a baseline has been developed for textual similarity-

based grouping and keyword matching. Regrettably, this usually fails to comprehensively 

represent the complicated associations among bug reports, resulting in ineffective debugging 

and heightened maintenance expenses. As a results, this study presents an alternate way to 

enhance bug dependency analysis via extensive multilabel classification methods. The dataset, 

obtained from Bugzilla, comprises 4,781 bug reports pertaining to Mozilla Firefox, with each 

report linked to one to four dependency labels. A thorough comparison of Binary Relevance, 

Classifier Chains, and Label Powerset was performed with classifiers like Multinomial Naïve 

Bayes (MNB), K-Nearest Neighbor (KNN), Random Forest (RF), and Support Vector Machine 

(SVM). Furthermore, deep learning architectures including LSTM and TextCNN, as well as 

transformer-based models like BERT and RoBERTa, were assessed. Although multilabel 

classifiers developed by machine learning exhibit strong performance, they encounter issues 

with class imbalance, which adversely impacts F1-scores despite elevated overall accuracy. The 

experiment's findings indicate that BERT surpasses all other models and the baseline, attaining 

the greatest F1-score (0.647) and Micro-averaged Accuracy (0.9967), underscoring its efficacy in 

identifying semantic relationships within bug reports. The results demonstrate that transformer-

based models return the most efficient approach for identifying bug report dependencies, hence 

enhancing problem triaging and automating software maintenance. 

Keywords: Bug report, bug dependency, multilabel classification technique, machine learning, 

deep learning, transformer learning 

INTRODUCTION 

Bug dependency occurs when flaws or defects in one part of the software affect the functionality of other 

interconnected components. A critical defect can disrupt the operation of related functions, leading to system-wide 

errors and inefficiencies. In large-scale software projects, defects are typically reported through "bug reports." 

However, the sheer volume of bug reports complicates the process of analyzing dependencies among them. 

Eventually, the performance of bug fixing can be optimized by understanding the dependencies between bug reports, 

which can offer meaningful insights into the dependencies of software bugs [1], [2], [3]. Hence, the domain of bug 

report dependency analysis has observed growth in attention in both research and practice. To the best of our 

knowledge, existing techniques for identifying bug dependencies can be text-based similarity analysis, clustering, and 

keyword matching. Unfortunately, it is difficult in successfully identifying bug dependency because of complicated 

dependencies between bug reports. Therefore, it is not surprised that this difficulty can lead to challenges in 

ineffective debugging or bug fixing task, bug dependency identification, and handling of high costs for software 

maintenance. As a result, the performance of bug report dependency analysis needs to be should be improved through 

the application of more reliable and stable methods [4], [5], [6]. 

Despite progress in software debugging, numerous current methodologies encounter difficulties in precisely 

recognizing and categorizing multilabel relationships due to their intricacy. Traditional classification approaches, 
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such as TF-IDF analysis and fundamental clustering algorithms, are inadequate for modeling the complex 

relationships among bug reports [7], [8], [9]. These mentioned methods often consider dependencies as isolated 

cases rather than related situations, inadequately representing the fundamental point of software failures. In 

addition, It is also well-known that datasets from a bug tracking system are imbalanced because particular 

dependency labels occur more frequently than others. This can inhibit the capability of machine learning models to 

perform successfully. [10], [11]. To overcome these problems, credible classification algorithms are required to 

improve performance of identification of bug dependencies in broad software systems [12], [13], [14]. 

The objective of this study is to examine multilabel classification methods for analyzing dependencies in bug reports 

through a comparison of machine learning, deep learning, and transformer learning algorithms. Machine learning 

algorithms such as MNB, KNN, RF, and SVM are utilized alongside multilabel methods such as Binary Relevance 

[15], Classifier Chains [16], and Label Powerset [17]. Furthermore, this study also compares those traditional models 

to deep learning algorithms, i.e., LSTM [18] and TextCNN [19], and transformer learning algorithms, i.e., BERT [20] 

and RoBERTa [21], in their individual ways in order to obtain the most appropriate multilabel classification model. 

Finally, these models used for bug report dependency analysis are evaluated by F1-score, Micro-averaged Accuracy, 

and AUC. 

This research is significant for debugging and software maintenance through bug dependency analysis using 

multilabel classification techniques. Additionally, it may facilitate bug triaging, prioritize repairs, and minimize 

program downtime. Beyond software debugging, multilabel classification algorithms have the potential to be applied 

to project management and task scheduling, offering valuable insights into dependency analysis across various 

domains. Enhancing the efficiency, scalability, and precision of bug report dependency management can ultimately 

improve software engineering practices and support intelligent software maintenance solutions [22], [23], [24]. 

The organization of this paper can be described as follows. Section 2 presents the dataset used in this study, and 

research methods can be explained in Section 3. Section 4 mentions to the experimental results and discussion. 

Finally, summary of this study and future work can be presented as Section 5. 

DATASET 

This analysis uses Mozilla Firefox bug reports from Bugzilla from September 1–November 30, 2019. Bug reports total 

4,781, including 200 meta-bugs. Meta-bugs link all other bug reports, establishing a network. Each bug report has 

one to four class labels indicating dependence types. Bug reports may depend on meta-bug reports, according to this 

dataset. Meta-bug reports can establish a tree-like hierarchy. The experiment used all bug report types except 

UNCONFIRMED to assure data accuracy. Because bug triagers, software developers, and software testers verified 

the reported issues were real. Figure 1 shows a Bugzilla-style bug report. This shows dataset dependencies' 

arrangement and preservation. Figure 2 shows an XML bug report, revealing data representation in different formats. 

METHODS 

This study employs a systematic research methodology that methodically advances through bug report preparation, 

model selection, and evaluation. The procedure commences with preprocessing, during which raw bug reports are 

sanitized and standardized to guarantee uniformity in the dataset. Subsequently, model selection entails the 

identification and use of appropriate classification methodologies, encompassing classical, deep learning, and 

transformer-based strategies. Ultimately, an evaluation is performed to assess the efficacy of the chosen models in 

effectively finding and forecasting bug dependencies. The research framework can be illustrated in Figure 3. 

1. Bug Report Pre-processing 

To prepare bug reports for analysis, different pre-processing techniques are applied based on the model type. For 

machine learning models, the text undergoes lowercasing, text correction, tokenization, stop-word removal, special 

character removal, and stemming, ensuring consistency and reducing noise. 
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Figure 1: An example of bug reports representing with the Bugzilla format 

 

Figure 2: An example of bug report representing with XML format 

 

Figure 3. The research framework 

In deep learning models, tokenization, lowercasing, stop-word elimination, and lemmatization are employed to 

efficiently structure the data, followed by the application of a word embedding technique such as Word2Vec to 

transform text data into numerical representations. This facilitates deep learning models to determine word semantic 

associations. 

For transformer learning application, slight text modifications are necessary for maintaining contextual meaning in 

transformer learning. Key processing steps text cleaning, processing CamelCase and SnakeCase words, tokenizing 

with BERT’s WordPiece, padding, truncation, converting to input IDs, and generating attention masks are peformed 

respectively. These processes enable conversion of the input into a suitable structure for classification. This enhances 

the accuracy of the model in analyzing bug report dependencies through the application of a suitable framework. 
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2. Multilabel Classification Models 

This study examines a number of multilabel classification methods to evaluate how well they identify the dependency 

of bug reports. Traditional methods, such as Binary Relevance, Classifier Chains, and Label Powerset, are utilized as 

multilabel text classifiers through various machine learning algorithms, including Support Vector Machine (SVM), 

Random Forest (RF), Multinomial Naïve Bayes (MNB), and K-Nearest Neighbor (KNN). This study further assesses 

deep learning methodologies, specifically Long Short-Term Memory (LSTM) and TextCNN, to determine their 

effectiveness in identifying complicated structures within text data. Additionally, the contextual learning abilities of 

transformer learning—more especially, BERT base and RoBERTa—are evaluated. Each of these approaches presents 

distinct benefits in dependency classification, providing valuable insights into the most effective methods for 

enhancing bug triaging and software debugging. 

In multilabel classification, different approaches are employed to handle bug report dependencies, each offering 

unique strengths and limitations. Binary Relevance (BR) treats each dependency label as an independent binary 

classification problem. While this method is simple and computationally efficient, it does not account for 

relationships between labels, potentially leading to misclassification when dependencies are interconnected. 

Classifier Chains (CC) address this limitation by predicting labels sequentially, allowing dependencies to be captured. 

However, because each label prediction influences subsequent ones, errors can propagate through the chain, affecting 

overall accuracy. Another alternative, Label Powerset (LP), converts multilabel classification into a multiclass 

problem, effectively capturing label correlations. However, this approach requires a significantly larger dataset for 

training, as the number of possible label combinations increases. 

Beyond traditional methods, deep learning techniques, such as Long Short-Term Memory (LSTM) and TextCNN, 

offer advanced solutions for dependency classification. LSTM, a type of recurrent neural network, is well-suited for 

sequential text processing, enabling the model to capture long-term dependencies in bug reports. This makes it 

effective for recognizing patterns across lengthy descriptions of software issues. Meanwhile, TextCNN applies 

convolutional layers to extract key textual features, making it particularly efficient in identifying dependencies 

through local context patterns. Both deep learning models improve classification performance compared to 

traditional approaches, as they learn from contextual and sequential information within the text. 

Further enhancing classification accuracy, BERT-based models leverage transformer-based contextual embeddings 

to understand semantic relationships in bug reports. Unlike LSTM and TextCNN, which rely on sequential processing 

and local feature extraction, BERT captures bidirectional context, enabling a deeper understanding of dependencies 

within the text. By considering the broader context, transformer-based models significantly outperform conventional 

approaches, providing superior accuracy in bug dependency classification and improving software debugging 

efficiency. 

3. Model Evaluation 

F1-score, Micro-averaged Accuracy, and Area Under the Curve are used as evaluation metrics to measure the 

performance of the proposed multilabel classification models in identifying of bug report dependencies.  

A comparison was conducted between machine learning, deep learning, and transformer learning approaches against 

a baseline utilizing the BM25-based clustering approach to determine their advantages [25]. The proposed multilabel 

classification methods more effectively identify bug report dependencies, as demonstrated in this comparison. 

EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental results are presented in this section, followed by a discussion of the efficacy comparison of 

multilabel classification techniques and a comparison of their efficacy with the baseline. For bug report dependency 

analysis, Table 1 shows the results of every multilabel classification model, including the baseline's results [25]. When 

compared to the baseline with clustering approach (BM25), those results can provide significant insights into how 

well a number of multilabel classification models analyze the dependencies in bug reports. Although BM25 has a high 

Micro-averaged Accuracy (0.9881) and AUC (0.821), its F1-score (0.226) is markedly inferior to those of other 

supervised models. This inconsistency underscores the shortcomings of unsupervised clustering, which, although 

identifying general document similarities, fails to provide the accuracy required for accurate dependency 

classification. 
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In contrast, supervised machine learning models consistently outperform BM25 across all evaluation metrics, 

demonstrating the advantage of training with labeled data. Among traditional Binary Relevance models, KNN (F1 = 

0.552, AUC = 0.865) and Random Forest (F1 = 0.532, AUC = 0.943) achieve higher F1-scores than SVM (F1 = 0.509, 

AUC = 0.957) and Multinomial Naïve Bayes (F1 = 0.355, AUC = 0.933). The relatively weak performance of Naïve 

Bayes suggests that its independence assumption is unsuitable for modeling interdependent bug report labels. 

Table 1: Performance Evaluation of the Baseline Model and Supervised Learning Approaches 

Mothods F1-Score Micro-averaged 

Accuracy 

AUC 

Baseline: Clustering with BM25 0.226 0.9881 0.821 

Binary relevance using SVM 0.509 0.9963 0.957 

Binary relevance using Multinomial Naive Bayes 0.355 0.9950 0.933 

Binary relevance using KNN 0.552 0.9962 0.865 

Binary relevance using Random Forest 0.532 0.9957 0.943 

Classifier chains using SVM 0.556 0.9961 0.955 

Classifier chains using Multinomial Naive Bayes 0.365 0.9954 0.934 

Classifier chains using KNN 0.509 0.9947 0.901 

Classifier chains using Random Forest 0.527 0.9960 0.951 

Label Powerset using SVM 0.387 0.9936 0.914 

Label Powerset using Multinomial Naive Bayes 0.571 0.9955 0.974 

Label Powerset using KNN 0.586 0.9957 0.918 

Label Powerset using Random Forest 0.599 0.9958 0.963 

LSTM 0.339 0.9941 0.895 

TextCNN 0.489 0.9960 0.881 

BERT 0.647 0.9967 0.951 

RoBERTa 0.600 0.9961 0.953 

 

When modeling label dependencies more explicitly, Classifier Chains and Label Powerset approaches improve 

classification performance in different ways. Classifier Chains with SVM (F1 = 0.556, AUC = 0.955) performs slightly 

better than its Binary Relevance counterpart, indicating that sequential label prediction helps capture 

interdependencies. However, the risk of error propagation in Classifier Chains means that models relying on this 

approach can suffer from compounding classification mistakes. Label Powerset with Random Forest (F1 = 0.599, 

AUC = 0.963) achieves the highest F1-score among traditional machine learning methods, suggesting that treating 

multilabel classification as a single multiclass problem provides a meaningful advantage in capturing label 

relationships. 

Deep learning models show varied performance, with LSTM (F1 = 0.339, AUC = 0.895) performing worse than most 

machine learning models. Its sequential nature likely limits its effectiveness in handling complex dependencies 

within bug reports, as long-range relationships may not be fully captured. TextCNN (F1 = 0.489, AUC = 0.881) 

improves over LSTM, benefiting from convolutional layers that extract key textual features efficiently. However, both 

models still lag behind top-performing traditional classifiers, suggesting that further tuning or additional training 

data may be required to maximize their potential. 

The best overall performance is achieved by transformer-based models, with BERT (F1 = 0.647, AUC = 0.951) 

surpassing all other methods, followed closely by RoBERTa (F1 = 0.600, AUC = 0.953). These models leverage 

contextual embeddings, allowing them to capture semantic relationships within bug reports more effectively than 

previous methods. Their superior ability to process long-range dependencies and learn from large-scale textual data 

makes them well-suited for bug dependency classification. 

Despite significant variations in F1-score, Micro-averaged Accuracy remains consistently high (≥ 0.99) across all 

supervised models. This is because some dependency labels show up a lot more often than others, causing an 

unbalance in label distribution. The general accuracy is high because models tend to focus on common labels. 

However, they have trouble correctly classifying rarer labels, which lowers the F1-score. This effect is stronger in 

datasets that aren't fair, where even small mistakes in classifying fewer common classes have a big effect on the F1-
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score. However, AUC stays high (≥0.85) across all models. This means that even when the F1-score is low, the models 

are still good at telling the difference between relationships that are important and those that are not. 

In summary, traditional machine learning models are good at setting strong foundations, but transformer-based 

models are the best at accurately classifying things. The fact that Micro-averaged Accuracy and AUC are always high 

across all models shows that classification correctness is stable at a high level. However, class imbalance is still a big 

problem that affects F1-score. In the future, researchers might look into ways to improve performance even more and 

deal with problems like imbalanced classification, such as adding more data, using class-weighted loss functions, or 

oversampling of minority groups. 

CONCLUSION AND FUTURE WORK 

This work offers a comparative examination of multilabel classification algorithms for bug report dependency 

analysis, assessing classic machine learning methods, deep learning approaches, and transformer-based models. The 

results reveal considerable disparities in performance among various strategies, illustrating the advantages and 

drawbacks of each method in precisely recognizing and forecasting relationships among problem reports.  

The experimental findings indicate that supervised classification models substantially surpass the baseline BM25 

clustering approach, which, although attaining a high Micro-averaged Accuracy, is hindered by a poor F1-score due 

to its ineffectiveness in modeling intricate dependency interactions. Among conventional machine learning methods, 

Label Powerset with Random Forest achieves the greatest F1-score, leveraging its superior capacity to extract label 

correlations compared to Binary Relevance and Classifier Chains. Nevertheless, these conventional methods continue 

to encounter difficulties in addressing class imbalance and in capturing contextual linkages within textual 

descriptions. 

Deep learning models like LSTM and TextCNN exhibit enhancements compared to conventional methods, however 

they remain inferior to transformer-based models. LSTM, although proficient in handling sequential data, 

encounters difficulties in capturing long-range dependencies, whereas TextCNN excels in extracting significant local 

text features. Nonetheless, both models necessitate additional optimization to rival the most effective categorization 

methods. 

The most significant enhancement arises from transformer-based models, with BERT attaining the highest overall 

performance, closely succeeded by RoBERTa. Their capacity to utilize contextual embeddings and bidirectional 

attention processes allows for the capturing of intricate relationships inside bug reports, rendering them the most 

efficacious ways for dependency categorization. These models markedly enhance classification accuracy, especially 

in forecasting infrequent dependence labels.  

Considering the robust performance of supervised models, class imbalance persists as a significant difficulty, 

adversely impacting F1-scores despite constantly elevated Micro-averaged Accuracy and AUC. Subsequent study 

ought to investigate methodologies such data augmentation, class-weighted loss functions, or oversampling of 

minority classes to further improve classification efficacy. This study conclusively shows that transformer-based 

methodologies, especially BERT, offer the most effective option for multilabel bug report dependency classification, 

enhancing software debugging and maintenance efficiency. 

Future study should examine methodologies to mitigate class imbalance, including data augmentation, class-

weighted loss functions, and oversampling techniques. Moreover, integrating hybrid models that amalgamate 

classical, deep learning, and transformer-based methodologies could further augment performance. Augmenting the 

dataset and assessing multilingual bug reports may enhance model generalization and applicability. 

ACKNOWLEDGEMENT 

This work was financially supported by Mahasarakham University. 

REFERENCES 

[1] G. Barreto, P. D. Battaglin, and S. Varga, “Ensuring Efficient IT Service Management to Increase Information 

Systems Availability,” Journal of Information Systems Engineering & Management, vol. 4, no. 4, Dec. 2019, 

doi: 10.29333/jisem/6352. 



500  
 

J INFORM SYSTEMS ENG, 10(26s) 

[2] I. Pashchenko, D.-L. Vu, and F. Massacci, “A Qualitative Study of Dependency Management and Its Security 

Implications,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications 

Security, New York, NY, USA: ACM, Oct. 2020, pp. 1513–1531. doi: 10.1145/3372297.3417232. 

[3] B. Luaphol, J. Polpinij, M. Kaenampornpan, “Automatic dependent bug reports assembly for bug tracking 

systems by threshold-based similarity,” Indonesian Journal of Electrical Engi-neering and Computer 

Science, vol. 23, no. 3, p. 1620-1633, Sep. 2021, doi: 10.11591/ijeecs.v23.i3.pp1620-1633. 

[4] M. M. Morovati, A. Nikanjam, F. Tambon, F. Khomh, and Z. M. Jiang, “Bug characterization in machine 

learning-based systems,” Empir Softw Eng, vol. 29, no. 1, p. 14, Jan. 2024, doi: 10.1007/s10664-023-10400-

0. 

[5] I. Saidani, A. Ouni, M. Ahasanuzzaman, S. Hassan, M. W. Mkaouer, and A. E. Hassan, “Tracking bad updates 

in mobile apps: a search-based approach,” Empir Softw Eng, vol. 27, no. 4, p. 81, Jul. 2022, doi: 

10.1007/s10664-022-10125-6. 

[6] N. Sharma and P. Yalla, “Keyphrase Extraction And Source Code Similarity Detection-A Survey,” IOP Conf 

Ser Mater Sci Eng, vol. 1074, no. 1, p. 012027, Feb. 2021, doi: 10.1088/1757-899X/1074/1/012027. 

[7] A. L. Alem, K. K. Gebretsadik, S. A. Mengistie, and M. F. Admas, “Multi-label software requirement smells 

classification using deep learning,” Sci Rep, vol. 15, no. 1, p. 5761, Feb. 2025, doi: 10.1038/s41598-025-86673-

w. 

[8] W. N. I. Al-Obaydy, H. A. Hashim, Y. A. Najm, and A. A. Jalal, “Document classification using term frequency-

inverse document frequency and K-means clustering,” Indonesian Journal of Electrical Engineering and 

Computer Science, vol. 27, no. 3, p. 1517, Sep. 2022, doi: 10.11591/ijeecs.v27.i3.pp1517-1524. 

[9] X. Wang, J. Huang, C. Ye, and H. Zhou, “GlobalTagNet: A Graph-Based Framework for Multi-Label 

Classification in GitHub Issues,” in 2024 IEEE 32nd International Requirements Engineering Conference 

(RE), IEEE, Jun. 2024, pp. 67–78. doi: 10.1109/RE59067.2024.00017. 

[10] R. H. Pereira, M. J. Gonçalves, and M. A. G. Magalhães, “Reputation Systems: A framework for attacks and 

frauds classification,” Journal of Information Systems Engineering and Management, vol. 8, no. 1, p. 19218, 

Jan. 2023, doi: 10.55267/iadt.07.12830. 

[11] H. Tu, Z. Yu, and T. Menzies, “Better Data Labelling With EMBLEM (and how that Impacts Defect 

Prediction),” IEEE Transactions on Software Engineering, vol. 48, no. 1, pp. 278–294, Jan. 2022, doi: 

10.1109/TSE.2020.2986415. 

[12] J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, and A. Abraham, “A systematic literature review on 

software defect prediction using artificial intelligence: Datasets, Data Validation Methods, Approaches, and 

Tools,” Eng Appl Artif Intell, vol. 111, p. 104773, May 2022, doi: 10.1016/j.engappai.2022.104773. 

[13] M. Pasha, G. Qaiser, and U. Pasha, “A Critical Analysis of Software Risk Management Techniques in Large 

Scale Systems,” IEEE Access, vol. 6, pp. 12412–12424, 2018, doi: 10.1109/ACCESS.2018.2805862. 

[14] Z. Shen and S. Chen, “A Survey of Automatic Software Vulnerability Detection, Program Repair, and Defect 

Prediction Techniques,” Security and Communication Networks, vol. 2020, pp. 1–16, Sep. 2020, doi: 

10.1155/2020/8858010. 

[15] M. L. Zhang, Y. K. Li, X. Y. Liu, and X. Geng. “Binary relevance for multi-label learning: an overview,” 

Frontiers of Computer Science, vol. 12, no. 2, pp. 191-202, March 2018,  doi: 10.1007/s11704-017-7031-7. 

[16] J. Read, B. Pfahringer, G. Holmes, and E. Frank, (2021). “Classifier chains: a review and perspectives,” Journal 

of Artificial Intelligence Research, vol. 70, pp. 683-718, Feb. 2021. 

[17]  S. Al-Maadeed, (2013, November). “Kernel collaborative label power set system for multi-label classification,” 

In Qatar Foundation Annual Research Forum, vol. 2013, no. 1, pp. ICTP-028, Nov. 2012, doi: 

10.5339/qfarf.2013.ICTP-028. 

[18] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A search space odyssey,” 

IEEE transactions on neural networks and learning systems, vol. 28, no. 10, pp. 2222-2232, Oct. 2017, doi: 

10.1109/TNNLS.2016.2582924. 

[19] T. Zhang, F. You, “Research on short text classification based on textcnn,” In Journal of Physics: Conference 

Series, vol. 1757, no. 1, pp. 012092, 2021, doi: 10.1088/1742-6596/1757/1/012092. 

[20] V. Tong, C. Dao, H.-A. Tran, T. X. Tran, and S. Souihi, “Enhancing BERT-Based Language Model for Multi-

label Vulnerability Detection of Smart Contract in Blockchain,” Journal of Network and Systems 

Management, vol. 32, no. 3, p. 63, Jul. 2024, doi: 10.1007/s10922-024-09832-w. 



501  
 

J INFORM SYSTEMS ENG, 10(26s) 

[21] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, V. Stoyanov, “Roberta: A robustly optimized bert pretraining 

approach,” arXiv preprint arXiv:1907.11692. 

[22] D. Groen et al., “FabSim3: An automation toolkit for verified simulations using high performance computing,” 

Comput Phys Commun, vol. 283, p. 108596, Feb. 2023, doi: 10.1016/j.cpc.2022.108596.  

[23] T. Mårtensson, A. Martini, D. Ståhl, and J. Bosch, “Excellence in Exploratory Testing: Success Factors in 

Large-Scale Industry Projects,” 2019, pp. 299–314. doi: 10.1007/978-3-030-35333-9_21. 

[24] H. Zhang and M. O. Shafiq, “Survey of transformers and towards ensemble learning using transformers for 

natural language processing,” J Big Data, vol. 11, no. 1, p. 25, Feb. 2024, doi: 10.1186/s40537-023-00842-0 

[25] B. Luaphol, J. Polpinij, M. Kaenampornpan, “Text mining approaches for dependent bug report assembly and 

severity prediction”. Int. Arab J. Inf. Technol., vol. 19, no. 6, pp. 915-924. 

  


