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Introduction: The rapid adoption of cloud has led to a rise in cyber-attacks, increasing from 

32 million in 2018 to 112 million in 2022, with a further 41% surge in early 2023. Traditional 

Intrusion Detection Systems (IDS) struggle with the complexity of cloud network threats due to 

the vast amount of network traffic and evolving attack types. Feature extraction is crucial for 

improving IDS accuracy, and Autoencoder (AE)-based deep learning methods offer a promising 

solution. This study explores the impact of AE feature learning on IDS performance, utilizing 

various autoencoder models like Variational, Sparse, Relational, and Denoising AEs. The system 

employs the NSL-KDD dataset and evaluates classifiers such as SVM, Random Forest, KNN, 

Gradient Boosting, and Logistic Regression to determine the most accurate model for detecting 

IoT threats. 

 Several studies highlight the importance of autonomous feature extraction in IDS to handle 

increasing cyber threats. Kunang Y N et al. achieved 86.96% accuracy using an Autoencoder and 

SVM on NSL-KDD, while Kushwaha P et al. improved attack detection through feature selection 

on KDD-CUP 99. Meng Q et al. introduced Relation Autoencoder for robust high-dimensional 

feature extraction, and Chae H S et al. optimized feature selection, reaching 99.794% accuracy 

with a decision tree. Yousefi-Azar M et al. proposed an AE-based dimensionality reduction 

method for efficient security. This paper advances previous work by comparing six machine-

learning models on the latest NSL-KDD dataset. 

 The proposed model uses an autoencoder for feature extraction, improving network attack 

detection. The NSL-KDD dataset is split 80:20 for training and testing, with MinMaxScaler and 

one-hot encoding for preprocessing. A sparse autoencoder with dropout and regularization 

extracts key features while reducing data size. Six classifiers—K-NN, RF, GB, LR, DT, and SVM—

analyze these features, each optimized to enhance accuracy and minimize overfitting. 

Performance metrics determine the best cyberattack detection method. 

 The proposed model uses an autoencoder-based deep learning approach for feature extraction, 

trained on the NSL_KDD dataset with normal traffic to address class imbalance. Data 

preprocessing includes MinMaxScaler and one-hot encoding, followed by feature extraction 

using a sparse autoencoder with dropout and regularization. Six classifiers (K-NN, RF, GB, SVM, 

DT, and LR) are evaluated, with K-NN achieving the highest accuracy of 99.28%. Performance 

metrics confirm the model's effectiveness in detecting network attacks. 

The proposed system demonstrated that automatic feature extraction using an autoencoder 

significantly improves intrusion detection. By eliminating hand-crafted feature extraction and 

utilizing six ML classifiers, the system effectively classified cyberattacks from the NSL-KDD 

dataset. K-NN achieved the highest accuracy (99.28%), with RF also performing well. 

Performance metrics confirmed the model’s effectiveness in enhancing network security. 

However, limitations include the use of an older dataset and limited experimentation. Future 

work will focus on larger datasets, improved speed, and AI-driven intrusion detection for cloud 

security. 

Keywords: Cyber-attacks, Cloud Security, Intrusion Detection Systems (IDS), network data, 

traffic patterns, computational costs, auto encoder, Deep Learning Model, feature extraction, 
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INTRODUCTION 

The Cloud storage, which provides comprehensive connectivity and convenience, has become widely adopted. The 

risk of cyber-attacks has increased as a result, though, rising from 32 million in 2018 to 112 million in 2022 and then 

by 41% in the first two months of 2023. This equates to 60 attacks on 54% of firms every week on average. Malicious 

actors exploit Internet of Things devices by leveraging the weaknesses in how such devices become embedded in 

everyday life. Cyber-attack issues in the cloud networks scenario are analyzed in this introduction, which also 

brings into sharp focus the burgeoning complexity of threats and the imperative requirement for secure security 

controls to protect networked devices. 

Good classification in the informatics engineering field, especially in information and network security, depends 

greatly on the extraction of meaningful properties. Among the greatest challenges is the enormous volume of 

network traffic data generated by cloud-based services and the expansion of the Internet of Things. Data complexity 

and the occurrence of new attack types affect intrusion detection systems' (IDS) performance. IDS employs 

techniques such as Decision trees [1], Back Propagation Neural Networks [2], K-means [3], and SVM [4],  but  one 

of the  limitations is  that there  is  still no automatic feature extraction.In many areas, feature extraction is 

necessary to significantly enhance detection and segmentation Digital images [5], text 

document categorization [6], speech recognition [8], audio and language identification [7], and biological signal 

processing [9][10] are all affected. Laplacian Eigenmaps, ISOMAP, Multidimensional Scaling, and Locally Linear 

Embedding all fail to handle large datasets. To make an IDS algorithm more accurate, unstructured input needs 

to be converted into applicable features. As part of learning for effective attack detection, 

this process includes feature extraction. 

This work investigates the impact of Autoencoder-based feature learning on an IDS and how varying Autoencoder 

hyperparameters can increase the attack detection accuracy. SVM is the major evaluation metric utilized [11].In 

order to address these issues, a deep learning method uses Auto encoder (AE) to solve the feature extraction 

problem. By stacking layers and decreasing the reconstruction layer, AE employs a hidden layer to decrease 

dimensionality. AE's capacity to extract significant features is demonstrated by a variety of auto encoder variants, 

including Variational Autoencoder [12], Sparse Autoencoder, Relational Autoencoder [13], and Denoising 

Autoencoder [14]. Autoencoders are perfect for managing high-dimensional information because they can 

effectively learn hierarchical data representations without human assistance. In contrast to possible scalability 

challenges with feature extraction done manually, they are strong enough to handle enormous and complicated 

datasets. AEs are extremely efficient at identifying complicated correlatio ns and structures, like nonlinearities, 

which are difficult for human approaches. They automatically learn how to adjust to the data structure. 

The novelty of the system lies in an implementation of feature extraction of an AE deep neural network model 

and the use of various machine\learning classifiers for detecting IoT network threats. With the usage of multiple 

machine-learning algorithms, the optimal model is suggested within accuracy constraints. This suggested system 

uses the NSL_KDD dataset, which is well-known for assessing intrusion detection techniques, to create a sparse 

autoencoder with dropout.When trained solely on "Normal" samples, the model minimizes mean squared error, 

guaranteeing efficient learning of typical behaviors. A denoising autoencoder is created using regularization and 

dropout technique to avoid over-fitting.The model is the trained by the system across ten epochs. Classifiers like 

Random Forest (RF), K-Nearest Neighbor (KNN), Gradient Boosting (GB), Logistic Regression (LG), Decision Tree 

(DT), and Support Vector Machine (SVM) are employed for the AE features. Classifier performance is evaluated 

using performance measures. 

OBJECTIVES 

Kunang Y N et al. conducted a research on the application of autonomous feature extraction in IDS. Due to the 

problem of increased network traffic and new forms of attacks, the research highlights the need for autonomous 

feature extraction.Employing a Support Vector Machine and Autoencoder, the paper model is tested on NSL_KDD 

and provides 86.96% accuracy.The study authors experimented thoroughly, empl oying GPU-accelerated 

machine learning classifiers, K-Nearest Neighbor (K-NN), Random Forest, Gradient Boosting, 

Logistic Regression, Decision Tree, Support Vector Machine (SVM), detection accuracy, and 

NSL_KDD dataset. 
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TensorFlow, and hyperparameter- tuned to enhance the result's stability.  The study demonstrates the effectiveness 

of autonomous feature extraction in converting and classifying incursion data and demonstrates its superiority against 

traditional methods [1]. Kushwaha P et al. addressed important network security issues by concentrating on problems 

like phishing, probing, Denial of Service (DoS), and website defacements. To improve IDS effectiveness, the authors 

provide an algorithm that separates abnormal f r o m  t y p i c a l  c o n n e c t i o n s . The study found that feature 

selection significantly improves model performance through testing on the KDD-CUP 99 dataset. The study uses 

statistical methods to classify attacks more quickly and with higher accuracy rates. Also, it identifies the 

challenges brought about by noise in intrusion detection and highlights how important robust feature selection is to 

reducing false alarms [2]. Meng Q et al. proposed a novel feature extraction method for high- dimensional data features 

known as Relation Autoencoder. The new method takes into consideration data dimensions as well as data relations. 

Feature extraction using data relations produces robust feat ures superior to any other autoencoder model. Data 

relationships have been stated to be of extremely great signi ficance to carry out correct dimensionality reduction as 

explained in work [3]. 

Chae H S et al. thought about intrusion detection and feature selection in the optimal sense in relation to the 

problem of traffic congestion in the network. Information Gain, Gain Ratio, and CFS were used for feature selection 

in the research and a new approach with attribute average of all as well as each individual classes of data 

being taken into account was developed. On NSL_KDD dataset, the existing method was superior to 

other methods with an accuracy rate of 99.794% based on a decision tree classifier on only 22 features. With up to 

22 features in the research, accuracy and attribute ranking were found to be inversely related [4]. 

A novel feature learning approach was presented by Yousefi-Azar Metal. An AE is used by the model to learn latent 

representations. The AE reduces dimensionality and provides discriminative features by capturing semantic similarity 

among input features. The main contributions include dimensionality reduction for realistic implementation in small 

devices, low feature utilization, the efficacy of a single model for a variety of security tasks, and an unsupervised 

feature learning approach employing AE. Accuracy, multi-class logarithmic loss, and confusion matrices are 

examples of evaluation metrics [5]. There were fewer algorithms or an old dataset (KDD_CUP_99) used in  the 

existing work. Conversely, the current paper compares six machine- learning techniques with the most recent dataset 

(NSL_KDD). 

METHODS 

A. Proposed Method 

The proposed model applies an autoencoder deep learning model for the purpose of feature extraction with a 

focus on improved network attack detection. The use of this approach surpasses other more traditional approaches 

to feature extraction. TRAIN_KDD and TEST_KDD were obtained by partitioning the NSL_KDD dataset in the 

proportion 80:20 in an effort to train and test the proposed model. 43 columns make up the dataset, but user-defined 

column names are assigned because there are no established column names. 37 attack types are included in the 

outcome column and are divided into four groups. Normal, DOS, Probe, Privilege, and Access assaults are among the 

user-defined list of attacks that is generated. The dataset's outcome column is swapped out for a new 'Class' column in 

the suggested model. This column specifies the relevant attack from the user-defined list and indicates the attack 

category. 

The suggested system uses two methods to prepare features. The first method, called "MinMaxScaler," helps 

algorithms that need a bounded input space by transforming data into a predetermined range. Onehot encoding is 

the second, which transforms discrete data like "protocol_type," "service," and "flag" into numerical values. 

Following preprocessing, the AE deep learning model extracts features from the TRAIN_KDD and TEST_KDD 

datasets. For cyberattack prediction, the system compares classifiers such as K-NN, Gradient Boosting, Logistic 

Regression, Random Forest, SVM, and Decision Tree. Performance metrics scores are utilized to compare 

the performance of every classifier. The system architecture of the proposed framework is depicted by the way the 

proposed system extensively compare and picks the best technologies to identify the best cyberattack detection 

methods.  
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            Fig.1 System design of the proposed work 

B. Autoencoder 

The system in question utilizes an AE deep learning model to extract features. An AE is a form of neural network 

that makes unsupervised learning and dimensionality reduct ion easier. This is achieved through its encoder- 

decoder structure. The decoder rebuilds the data that was originally inputted after the encoder compresses the input 

data. Reducing the size of the input data with no loss to its key features is the core aim of AE. Anomaly detection 

and feature extraction are augmented by the decoder reconstructing the input data and the encoder compressing 

the input data. The method can be applied in a range of different applications, such as signal and image processing. 

AEs can be applied to data denoising and generation tasks because they are capable of learning meaningful 

representations without requiring labeled data. They are universal and applicable in a broad variety of 

applications due to their straightforward architecture, which enables efficient data compression. The AE deep 

learning model architecture diagram and process flow are shown in Fig. 2. [15]. The architecture diagram and process 

flow are as follows: 

A sparse autoencoder with input dropout is implemented in the suggested system. Eight neurons make up the hidden 

layer of the model, whereas 122 neurons make up the input layer. Because of the resulting compression ratio of 122/8, 

the AE is compelled to identify trends and connections among the characteristics. There are 122 ReLU activation 

units in the output layer. "Normal" samples are utilized to train the AE to learn the identity function and minimize 

mean squared err or. Input dropout makes it a denoising autoencoder, and regularization is applied to prevent 

overfitting.  Ten epochs of size 100 are utilized for training, and 10% of normal samples are utilized for validation. 

 

 

Fig. 2. Autoencoder Architectural Diagram 

C. Classifiers  

K-NN, RF, GB, LG, DT, and SVM are some of the six machine learning classifiers utilized by this system.They are 

applied to forecast and study cyberattacks within the NSL_KDD dataset. An autoencoder deep learning model 

is utilized to extract the features employed in course of these forecasts. To generate predictions, every machine 

learning algorithm uses a particular set of parameters. High accuracy is the goal of the RF classifier while avoiding 

overfitting. It employs one hundred trees with a maximum depth of ten. Using five neighbors, K-NN increases 

sensitivity and detects outliers. LR iterates a thousand times in order to maximize the outcomes. To guarantee class 

separation, SVM employs a Radial Basis Function kernel. To identify patterns and avoid overfitting, GB combines 

100 learners with a learning rate of 0.1 and a maximum depth of 3. DT is employed with a maximum depth of 5. The 
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testing procedure places a strong emphasis on choosing parameters carefully in order to detect cyberattacks as 

effectively as possible. Following testing, the suggested method assesses the performance of each ML classifier's 

metrics. 

RESULTS 

The suggested approach uses a deep learning model with an autoencoder to focus on feature extraction. GPU-enabled 

TensorFlow is used in the evaluation process, which takes place on a Windows 11 PC running Google Colab and 

equipped with a RYZEN 5-5500U processor, 16GB RAM, AMD-RADEON Graphics, and 512 GB SSD. 

[1] Datasets 

Data is gathered, preprocessed, and features are extracted using the NSL_KDD dataset [16]. It is a data source for 

offline network analysis based on the KDD'99 dataset and is an upgraded version of the KDD'99 dataset. This dataset, 

which has 43 attributes and one class attribute, is subjected to the suggested system. The NSL_KDD dataset is 

significantly smaller than the KDD'99 dataset and includes duplicate records. The procedure comprises loading and 

retrieving datasets with information on network traffic. 

The 22 various kinds of attacks in the TRAIN_KDD dataset are utilized to train the model. The test phase is 

executed with the TEST_KDD dataset of 38 various kinds of attacks.As indicated in Table I, attacks are classified 

into four classes during training and testing. 

Table I. Attacks are categorized for the test and train datasets. 

      TRAIN_DATASET TEST_DATASET 

Attack_Type Occurrences Attack_Type Occurrences 

NORMAL 67352 NORMAL 9855 

DOS 45927 DOS 7459 

PROBE 11656 PROBE 2421 

PRIVILEGE 43 PRIVILEGE 65 

ACCESS 995 ACCESS 2743 

TOTAL 125973 TOTAL            22543 

 

The frequency of attacks for each Attack_Type for the NSL_KDD dataset is shown in Table II. There are 22,543 

occurrences in the testing set and 125,973 instances in the training set. 

Table II. Count of incidents for each type of attack 

The KDD_99 and NSL_KDD datasets have problems with class imbalance and unrealistic data, which the 

suggested solution seeks to remedy. To alleviate these problems, the system was trained on normal traffic alone, 

without the use of attack data. This avoids the class imbalance of the dataset from impacting the model. Second, the 

system is more convenient to utilize. In real- world use and better suited to apply in real networks because it utilizes 

only normal traffic data in training. 

[2] Performance Measures 

 

 

 

 

 

 

A classification technique produces its output in the form of a confusion matrix.The matrix helps in calculating the 
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accuracy of the model by predicting the correct or incorrect labels.Precision, recall accuracy, and F1-score can be derived 

to measure the reliability and efficacy of the model. 

 

Fig. 3.Matrix of K-Nearest Neighbor-AE Confusion 

A confusion matrix among the performances of different machine learning classifiers is presented in the material. 

The most accurate of all the classifiers is the K-Nearest Neighbor classifier, as the matrix clearly shows. In a confusion 

matrix, the columns represent the expected classes, and the rows represent the actual classes. The K-NN confusion 

matrix is depicted in Fig. 3. It can be seen that the K-NN classifier is not good at identifying Privilege and Probe 

attacks, but it is extremely good at identifying DoS and Access attacks. To effectively detect network attacks on 

larger data sets, features are typically extracted by an autoencoder deep learning model and then used with different 

machine learning methods. For machine learning classifiers, the most accurate one is K-NN. Below is a list of the 

formulas for performance metrics: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
(TP+TN)

( TP+TN+FP+FN) 
              (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(TP)

( TP+FP)
                        (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(TP)

(TP+FN)
                              (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 x Precision x Recall 

Precision+Recall
       (4) 

 

[3] Experimental Results 

The NSL_KDD dataset was collected, and the training and testing datasets column names were standardized. Both 

datasets should have the outcome column deleted in order to get the data ready for analysis. The class of assault in 

each row must then be specified by updating the "Class" column based on the attack types. One-hot encoding must 

then be used on the discrete features after scaling the values using MinMaxScaler. The suggested system employed 

a sparse autoencoder model with a 122/8 compression ratio following preprocessing. It included input and dropout 

layers, an 8- neuron hidden layer, and a 122-unit ReLU-activated output layer. It uses input dropout for denoising, 

regularization to avoid overfitting, and mean squared error minimization after being trained on "Normal" data. 

Robust learning and pattern extraction in the AE are ensured by 10% validation on normal samples after the model is 

trained for 10 epochs using an Adam optimizer with a batch size set to 100. K-NN, RF, GB, LG, DT, and SVM were 

among the several ML classifiers used to assess the feature extraction outcomes. Each classifier's parameters were 

chosen appropriately so that predictions could be made. 

 Model Accuracy Recall Precision F1 Score  

 Random Forest-AE 0.990634 0.990634 0.990534 0.990448  

 K-Nearest 

Neighbor- AE 

0.992856 0.992856 0.992784 0.992778  

 Logistic 

Regression- AE 

0.943678 0.943678 0.937825 0.940414  
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 Support Vector 

Machine- 

AE 

0.976465 0.976465 0.975934 0.975548  

 Gradient 

Boosting- AE 

0.966582 0.966582 0.978075 0.972088  

 Decision Tree-AE 0.949594 0.949594 0.943521 0.946191  

 

Fig. 4. Measures of performance for different machine learning classifiers.  

K-NN had the best accuracy in the evaluation of various ML classifiers, attaining an astounding 99.28%. With a 99% 

accuracy rate, RF performed admirably in close pursuit. Additionally, SVM and GB produced noteworthy accuracy 

rates of 97.58% and 98.31%, respectively. The impressive accuracy of 94.35% was attained via DT. However, with an 

accuracy of 92.81%, LR had the lowest performance among the machine learning classifiers. This comparison study 

highlights the differences in performance between several machine-learning techniques while highlighting the 

efficacy of K-NN and RF.The performance metrics for each classifier are shown in the table plot in Figure 4. 

DISCUSSION 

In conclusion, the system in question proved that automatic feature extraction could be utilized to improve 

intrusion detection systems. Precisely, the system utilized an Autoencoder d e e p  learning algorithm that 

e f f e c t i v e l y  and unbiasedly determined attack types from a wide variety of different types utilizing t h e NSL 

KDD dataset and excluding hand-crafted feature extraction techniques. The system subsequently proceeded to 

utilize six Machine Learning (ML) classifiers, such as K-Nearest Neighbor (K- NN), Random Forest (RF), Gradient 

Boosting, Logistic Regression, Decision Tree, and Support Vector Machine, to classify cyberattacks on the basis of 

features produced by the Autoencoder model. With balanced precision and recall scores, the K-NN and RF models 

demonstrated remarkable accuracy. F1-score, accuracy, recall, and precision were among the performance indicators 

assessed. While the Logistic Regression model produced dependable performance despite a slightly lower accuracy 

rate, the K-NN method earned the maximum accuracy at 99.28%. The confusion matrices offered insightful 

information about each machine learning algorithm's capacity for prediction. All things considered, this suggested 

solution demonstrated how automated feature extraction improved network security procedures and aided in the 

continuous advancement of intrusion detection systems.This study has some limitations as it was done based on an 

old dataset and less experimentation. Future studies are likely to utilize newer and larger data for feature extraction. 

Speed will be explored in future studies, but this was not the main subject of this study. Creating a robust intrusion 

detection system for the Internet of Things driven by artificial intelligence and on state-of-the-art machine learning 

algorithms is also the aim. 
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