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This paper discusses the compressive strength prediction for self-compacting concrete (SCC) by 

a host of machine learning (ML) and deep learning (DL) models is discussed in this research 

work. Random Forest (RF), Keras Regressor (KR), Extremely Randomized Trees (ERT), Extreme 

Gradient Boosting (XGB), Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), 

and Category Boosting (CB) are some of the many ensemble methods until now. In addition, the 

ability of several models to predict the compressive strength of SCC was examined with 

generalized additive models like Gradient Boosting Regressor and Neural Networks based on 

Keras. Twenty papers constituted the dataset, which was divided into three subsets for 

validation, testing, and training. The principal input parameters utilized in model building are 

superplasticizers, cement, water, fine aggregates, coarse aggregates, and mineral admixtures. To 

check the accuracy of each model developed, some performance indicators were chosen, like R², 

RMSE, MAE, and MAPE, which measure how accurately a model predicts compressive strength. 

The best predictive accuracy was found for the models under test in GB with R² = 5.12, MSE = 

26.23, and MAE = 4.13, whereas Keras Regressor also performed very well with R² = 0.6948, 

RMSE = 0.0832, and MAE = 0.0569. These results thus establish that the GB and KR models 

can prove to be good resources for predictive efficiency in determining the compressive strength 

of SCC, exhibiting great potential for machine learning and deep learning methodologies applied 

to concrete materials. 

Keywords: Machine learning, deep learning, Self-compacting concrete, prediction, 

Compressive strength. 

 

INTRODUCTION 

SCC is a unique type of concrete that flows on its own, filling the moulds efficiently and consolidating without the 

need for mechanical vibration. This property makes SCC possible to be used in inaccessible areas, highly reinforced 

structural elements, and complex formwork arrangements without segregation and bleeding. The intrinsic stability 

of SCC makes it applicable to modern civil engineering applications that require high performance and durability. 

SCC's compressive strength acts as a measurement for the mixture's overall strength. It reflects how the mixture turns 

into solid at the composition; therefore, compressive strength will be an ideal benchmark for measuring concrete 

performance. However, common methods for calculating compressive strength, which range from laboratory-based 

testing to the actual practical experimentation, involve more than just high-cost and time-consumption for large-

scale constructions. 

To address these issues, there has been a notable transition towards the implementation of sophisticated 

computational methods, including empirical regression, numerical simulations, and machine learning (ML) 

techniques. These methods enable the efficient prediction of the compressive strength of SCC by leveraging the 

proportions of essential components in the mixture (cement, water, mineral admixtures, coarse aggregates, fine 

aggregates, and superplasticizers). Predicts SCC compressive strength at lowered costs, retaining or raising 

performance demands relative to conventional testing methods. 
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Recent progress in the design of ML models suggests a wide scope of tools that might prove effective in making 

predictions on the qualities of concrete such as compressive strength. Applications involve regression, classification, 

and clustering for detailed relationships in high-dimensional datasets. As machine learning methods progress, it 

bring more complicated models for good and accurate estimations of SCC's mechanical properties such as 

compressive strength. Great research has proved that various machine learning techniques can indeed be used: some 

employed neural networks and nonlinear regression to predict the mechanical properties of concrete with recycled 

aggregates, while others utilized probabilistic methods that depend on Bayesian theory and some Monte Carlo 

Markov Chain (MCMC) simulations in an effort to enhance estimation accuracy. 

The exploration of several advanced machine learning methods, including ensemble models, neural networks, 

regression models, and GAMs, to predict compressive strength has been initiated by this growing body of literature. 

All of these models can handle large amounts of data with large input factors and produce reliable predictions to help 

engineers optimize SCC blends. This proposal seeks to take a step by exploring the integrative possibilities offered by 

machine and deep learning methodologies to postulate the compressive strength of SCC. This piece of research 

advances algorithms that work upon the successful employment of these models toward concrete materials and 

engineering, thus way increasing productivity and saving expenditure in construction-related procedures. 

  

Fig.1 Schematic of SCC components and Comparison of traditional vs. ML-based methods 

1.1. Self-Consolidating Concrete 

Self-compacting concrete (SCC) is a special type of concrete that can compact itself by its own weight. This enables 

the complete filling of formwork and facilitates flow through complex molds or dense reinforcing arrangements 

without requiring mechanical vibration or external compaction. Developed in Japan in the 1980s to address 

difficulties in achieving consistent concrete placement in strongly reinforced structures, SCC quickly attained 

worldwide acceptance. Upon hardening, it demonstrates mechanical qualities and durability akin to conventionally 

vibrated concrete, due to optimized mix proportions and the inclusion of sophisticated admixtures such as high-range 

water-reducing agents (superplasticizers). These admixtures improve flowability while preserving cohesion, so 

efficiently reducing segregation, bleeding, or obstruction of coarse particles. 

The formulation of SCC preserves the essential elements of traditional concrete—cement, fine aggregates, coarse 

aggregates, water, and extra binders—meticulously measured to provide a consistent mixture. To address potential 

challenges including segregation and sensitivity to admixtures during installation, SCC is enhanced using chemical 

admixtures, including superplasticizers and viscosity-modifying agents. These additives are essential for attaining 

the requisite flow properties and stability, guaranteeing that the mixture remains cohesive and homogeneous during 

transportation and pouring. The resultant material demonstrates exceptional performance, especially in intricate 

structural applications and high-performance endeavors, where accuracy and resilience are paramount. 
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AI, MACHINE LEARNING, AND DEEP LEARNING 

2.1. Artificial Intelligence 

The "development and research of intelligent agents," or intelligence machines, profoundly influences the world 

today. These intelligent agents are systems capable of understanding their environment and executing actions to 

enhance their likelihood of success. Smartphones and autonomous vehicles, for example, are breakthroughs resulting 

from advancements in artificial intelligence. Significant advancements transpired in this area with the advent of 

computers in the 1950s. The precise origins of artificial intelligence remain ambiguous, however Alan Turing's 

seminal essay "Computing Machinery and Intelligence" is acknowledged as a pivotal moment in the field. This 

profession has substantially expanded because to advancements in computing power and the rapid proliferation of 

Big Data. Initial applications of artificial intelligence concentrated on problems that are intricate for humans yet 

straightforward for computers. An array of encrypted conditional statements was implemented in the computer to 

resolve these concerns. This knowledge-driven methodology has been extensively utilised by artificial intelligence 

robots to surpass human performance in abstract domains. However, AI-based systems did not consistently operate 

efficiently and exhibited a recurring flaw. Even simple skills that are instinctive for a typical individual, such as object 

recognition or speech understanding, presented challenges for them. Contemporary artificial intelligence systems 

have struggled to develop alternative methods for instilling intuition in computers. Artificial intelligence technology 

has incorporated machine learning to solve the above-stated challenges. Machine learning emerged as an area of 

artificial intelligence during the 1990s. Instead of using symbolic approaches, it employs statistical and probabilistic 

models and methods. By analyzing an adequate quantity of data samples, machine learning algorithms facilitate 

machines in acquiring the necessary information to do a specific task. Before employing the method, a procedure 

called feature extraction must be conducted, wherein the properties that most accurately characterize the unique data 

are identified. The sample data utilized in the subsequent phase of the process, which instructs the system to convey 

attributes and identify patterns, is derived from a specific machine learning (ML) training methodology. To resolve 

the challenges associated with manually generated features in advanced machine learning applications, deep learning 

methodologies were developed. Neuroscience advancements inspire comprehensive learning, aligning with the 

nervous system's information processing and communication methods. Two components used in deep learning are 

a collection of complex equations and an artificial neural network's hidden layers. The three fields on which Figure 2 

compares system performance are AI, ML & DL.  

2.2 Artificial Intelligence Based on Machine Learning 

The application of computer-aided modelling to determine the mechanical properties of building materials has 

gained growing importance over the last few years. Machine learning (ML) is an important area within artificial 

intelligence (AI) that deals with the development and optimization of algorithms capable of identifying and learning 

complex patterns in experimental data without any mathematical models. Machine learning systems attempt to 

emulate human intelligence by gaining knowledge from experience, adapting to a changing environment, and making 

judgments based on fact. The uses of machine learning are spread out over different disciplines, ranging from 

predictive analytics and autonomous systems such as self-driving vehicles to activities such as data mining web 

searches, and all this illustrates how versatile and promising the technology is. Since machine learning encompasses 

advances in information theory, probability, statistics, psychology, neurology, and computational complexity theory, 

it outdoes existing AI systems both in scope and ability. It makes possible the prediction of result while 

simultaneously uncovering patterns and insight from large datasets. The quality of machine learning algorithms is 

most commonly gauged by criteria such as computing efficiency, accuracy, and the quality of answers produced. 

Creating a machine learning model requires consideration of key design aspects: (i) the nature of the learning process, 

(ii) completion of the specified learning objectives, (iii) achieving optimal performance, and (iv) approaches to 

evaluate the system's ability to generalize from the training data. Supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning are the broad categories that machine learning methods come 

under. Supervised and unsupervised learning are used extensively in fields like engineering and others. 

The system is trained on supervised learning that consists of a set of input-output pairs, where each output 

corresponds to a particular input. A hypothesis or model that correlates inputs with outputs is built. In contrast, 

unsupervised learning uses only datasets consisting just of input data, so there are no associated output labels for 

these datasets. The system is trying to reveal hidden structures or patterns in the data, like clustering similar data 
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points or predicting future values. The two main techniques are supervised and unsupervised learning, which are 

shown in Fig. 2, illustrating their classical applications and algorithmic classifications. 

There are some fundamental machine learning tasks that can be categorized as follows: 

• Classification: The process of assigning input data to predefined categories or labels. 

• Regression: The study of the relationship between independent variables and continuous numerical outcomes. 

• Prediction: A particular kind of regression analysis that involves predicting future trends or values over a 

certain time period. 

• Clustering: The process of grouping data points with similar characteristics, typically carried out using 

unsupervised learning techniques. 

Data normalisation is a crucial preparatory step for the implementation of machine learning algorithms. This 

procedure guarantees that all input features are normalised to a uniform range, hence improving the efficacy and 

performance of optimisation methods like gradient descent. Data normalisation is crucial for enhancing the 

convergence rate of machine learning models and ensuring that all features contribute uniformly to the learning 

process. The integration of these approaches enables machine learning to continuously expand its applications, hence 

bringing about innovation in engineering, construction, and many other areas. 

 

Fig.2 Types of supervised and unsupervised machine learning algorithms. 

2.3 Deep Learning 

The limitations of the handcrafted features in traditional machine learning algorithms were addressed by DL 

methods, that use deep neural networks. DL is a sub-branch within the broad spectrum of machine learning and AI. 

It enables the ability to learn from vast and unstructured sources of unsupervised data without human intervention. 

As opposed to the traditional machine learning approaches, which force explicit feature extraction, deep learning 

techniques can directly analyze raw data, learn ideal feature representations, and associate such features with desired 

outputs. Therefore, a deep learning system is able to form direct associations between raw inputs and target outputs 

through iterative training, eliminating the need for human-defined characteristics. A defining feature of deep learning 

is its ability to identify hierarchical relationships in data. The low-level features are learned by the initial layers of the 

network, and successive layers improve them into high-level, abstract representations. Hierarchical feature learning 

allows deep learning models to break down large problems into more manageable sub-tasks that are addressed by 

successive computational layers. Deep learning is particularly good at solving intricate problems, such as image 

recognition, natural language processing, and advanced decision-making tasks. 

Deep learning systems perform best in environments requiring reinforcement learning procedures, whereby an agent 

interacts with its environment by taking actions to improve the outcomes. The system improves by iteratively 

evaluating feedback from the environment, distinguishing best tactics for certain tasks. This interactive dynamic 
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allows deep learning models to learn and adapt to real-world applications, making them better performing in real-

world contexts. 

This research employs nine various ensemble algorithms to forecast the compressive strength of SCC using recycled 

aggregates. The ensemble algorithms utilize supervised learning to enhance the precision and generalization of the 

prediction. The employed models are: 

• Generalized Additive Models (GAMs): Both Inverse Gaussian (GAM1) and Poisson distributions. 

• Random Forest (RF): An ensemble technique that applies decision tree algorithms, which reduce overfitting 

and increase the accuracy of the results through random sampling. 

• K-Nearest Neighbour: A non-parametric method based on the non-parametric assumption that classifies data 

points with respect to similarity to known groups. 

• Extremely Randomised Trees: An ensemble learning technique adding randomness in construction of trees to 

enrich diversity. 

• Gradient Boosting Machine: A flow model that further refines predictive accuracy by repeating the process, 

correcting errors during each iteration 

• Light Gradient Boosting Machine (LGBM): A significantly efficient boosting methodology optimized for 

performance and scalability. 

• Extreme Gradient Boosting (XGB): It is a very advanced boosting method that combines regularization to 

improve performance. 

These methods represent the capability of deep learning architectures to model complex interactions and accurately 

predict material properties, thus highlighting the importance of the technique in the engineering and construction 

industries. 

MATERIALS AND METHODS 

3.1 Experimental Database 

The experimental dataset was assembled via a comprehensive analysis of existing research articles, including the 

results of 100 hardened SCC samples. These investigations jointly furnished comprehensive data on input factors 

(cement, mineral admixture, water, fine aggregate, coarse aggregate, and superplasticizer) and the resultant output 

variable, compressive strength (fck). Table 1 presents a summary of the dataset, whereas Table 2 offers descriptive 

statistics, encompassing the mean, minimum, and maximum values for each input and output parameter. This 

dataset underpins the development of machine learning models aimed at predicting the compressive strength of SCC, 

employing sophisticated computational methods to elucidate the correlations among these variables. 

3.2 Exploratory Data Analysis 

The correlation and level of relationship among the input parameters (cement, mineral admixture, water, fine 

aggregate, coarse aggregate, and superplasticizer) and the output parameter (compressive strength, fck) were 

determined through the Pearson correlation coefficient (r). The correlation coefficient quantifies the linear link 

between variables. A high absolute value of 𝑟 (|𝑟| > 0.8) signifies a robust correlation, implying possible 

multicollinearity among the variables. Upon detection of multicollinearity, redundant variables may be eliminated to 

enhance model robustness and mitigate overfitting. The correlation coefficient was computed via the subsequent 

formula: 

 

Where: 

• xi: Values of input variables 
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• xˉ: The input variable's mean 

• yi: Output variable values (compressive strength, fck)  

• yˉ: Mean of the output variable 

• n: The total quantity of information points 

By eliminating highly correlated input variables, the dataset was refined to enhance the performance of the machine 

learning models. This ensures that the predictive models are free from biases introduced by multicollinearity and can 

accurately capture the underlying relationships between variables. 

Table 1. The input variables' mean, minimum, and maximum values according to a statistical distribution 

Variables Abbreviation Mean Minimum Maximum 

Input 

Cement (kg/m³) C 292.50 225 36 

Mineral Admixture (kg/m³) A 125.70 220 240. 

Water (kg/m³) W 176.50 175.50 180 

Fine Aggregate (kg/m³) FA 833.50 796 898 

Coarse Aggregate (kg/m³) CA 831 797 865 

Superplasticizer (kg/m³) SP 5.50 4 6 

Viscosity Modifying Agent (kg/m³) VMA 0.30 0.00 0.48 

Output 

Feature Compression (MPa) 

3.3 Division of Dataset 

It is necessary to separate datasets into three distinct subsets for precise machine learning model benchmarking: 

training, validation, and testing. [1,9,25,52]. In developing the model, the training dataset will identify the inherent 

patterns in the data. The validation dataset is mandatory for optimizing hyperparameters and avoiding the overfitting 

during the process of training. Test dataset is utilized in an effort to confirm the predictive validity and 

generalizability of the model, particularly for a new dataset. 

In order to estimate SCC's compressive strength, 150 samples were randomly partitioned into the three subsets 

below: 

Training Dataset: It comprised 100 samples (70%) and was used for training the model. 

Validation Dataset: It comprised 20 samples (15%), which was used to measure the performance of the model and 

tune hyperparameters as the training process proceeded. 

Test Dataset: It comprised 20 samples (15%), which was used to measure the predicting accuracy of the model on 

new data. 

Table 1 indicates the statistical distribution (mean, minimum, and maximum) of input variables (cement, mineral 

admixture, water, fine and coarse aggregate, and superplasticizer) and output variables (compressive strength, fck) 

of the training, validation, and test datasets. This structured splitting ensures that the model is tested on independent 

data and provides an accurate measure of how well it will generalize outside of the training epoch.  

3.4 Model Formulation 

This research used Nine machine learning models were used to predict the compressive strength of self-compacting 

concrete (SCC) that includes recycled aggregates. These models are K-Nearest Neighbours (KNN), Random Forest 

(RF), Extremely Randomised Trees (ERT), Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), 
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Extreme Gradient Boosting (XGB), CatBoost (CB), and two Generalised Additive Models (GAM1 and GAM2). The 

models selected were chosen for their ability to handle complex relationships in the data and varying levels of non-

linearity. 

After preprocessing the data, the input variables were fed into the machine learning models. For each algorithm, 70% 

of the total dataset was used for training- a construct of prediction models and fine-tuning model hyperparameters 

with the intention of ensuring optimum configuration for accurate predictions. The remaining 15% was used for 

validation. 

In every model, optimal performance was obtained through the application of an iterative hyperparameter 

optimization technique. All the subsequent subsections highlight the optimal hyperparameter values that achieved 

maximum predicted accuracy on the validation set. This strategy for training and validation ensures the models are 

resilient and proficient in generalization to unknown data. 

 

Fig. 3. A heat map showing the input and output variables' correlation coefficient. 

The input elements of the dataset, including Cement, Limestone Powder, Fly Ash, Coarse and Fine Aggregates, Water, 

Superplasticizer (SP), and Viscosity Modifying Agent (VMA), were organized into a matrix referred to as 𝑋. The goal 

variable, denoting the compressive strength of self-compacting concrete (SCC), was designated as 𝑦. The dataset was 

divided into training and testing subgroups with the train_test_split function from the sklearn—model_selection 

package. The division was established with a test size of 20%, facilitating a randomized allocation (shuffle=True) with 

a predetermined random seed (random_state=10) to ensure reproducibility. Thus, the dataset was partitioned into 

𝑋 𝑡 𝑟 𝑎 𝑖 𝑛 X train, 𝑋 𝑡 𝑒 𝑠 𝑡 X test, 𝑦 𝑡 𝑟 𝑎 𝑖 𝑛 y train, and 𝑦 𝑡 𝑒 𝑠 𝑡 y test. 42 regressor models were trained on the training 

data (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛) employing lazy regression methodologies. The predictive performance of each model was 

assessed on the test data (𝑋𝑡𝑒𝑠𝑡, 𝑦𝑡𝑒𝑠𝑡) utilizing metrics such as 𝑅² (coefficient of determination) and Root Mean 

Square Error (RMSE). Table 4 summarizes the findings for all regressors, facilitating a comparison to determine the 

model with optimal performance. 

The Gradient Boosting Regressor was identified as the most effective model in this investigation because to its 

exceptional predictive accuracy and low error rate. It attained the minimal RMSE of 5.79, signifying its robustness 
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and dependability in forecasting the compressive strength of SCC. This model was subsequently chosen for further 

examination and implementation in the study, as it exhibited the optimal equilibrium between accuracy and error 

reduction. 

Sr. no. Name of regressor R-squared RMSE Sr.no. Name of regressor R-squared RMSE 

1 
Gradient Boosting 

Regressor 
0.84 5.79 22 

Transformed Target 

Regressor 
0.49 10.21 

2 XGB Regressor 0.77 6.87 23 
Orthogonal Matching 

Pursuit CV 
0.47 10.41 

3 
Extra Trees 

Regressor 
0.76 7.02 24 

Passive Aggressive 

Regressor 
0.46 10.51 

4 
K Neighbors 

Regressor 
0.74 7.26 25 LGBM Regressor 0.45 10.54 

5 
Random Forest 

Regressor 
0.74 7.35 26 Lasso 0.42 10.87 

6 AdaBoost Regressor 0.71 7.63 27 Elastic Net 0.39 11.19 

7 Bagging Regressor 0.67 8.15 28 Linear SVR 0.38 11.23 

8 
Decision Tree 

Regressor 
0.63 8.66 29 Gamma Regressor 0.34 11.58 

9 RANSAC Regressor 0.58 9.26 30 Tweedie Regressor 0.34 11.59 

10 
Hist Gradient 

Boosting Regressor 
0.57 9.35 31 SVR 0.33 11.72 

11 Ridge Regressor 0.54 9.71 32 Nu SVR 0.29 12.05 

12 
Bayesian Ridge 

Regressor 
0.53 9.74 33 

Orthogonal Matching 

Pursuit 
0.24 12.45 

13 Elastic Net CV 0.53 9.75 34 Lars CV 0.17 12.97 

14 SGD Regressor 0.52 9.91 35 Lars 0.07 13.77 

15 Huber Regressor 0.50 10.07 36 
Gaussian Process 

Regressor 
0.06 13.82 

16 Lasso CV 0.50 10.12 37 Lasso Lars 0.01 14.18 

17 Poisson Regressor 0.50 10.12 38 Extra Tree Regressor 0.00 14.25 

18 Ridge CV 0.49 10.14 39 Dummy Regressor -0.05 14.59 

19 Lasso Lars IC 0.49 10.21 40 Quantile Regressor -0.14 15.27 

20 Lasso Lars CV 0.49 10.21 41 MLP Regressor -5.84 37.33 

21 Linear Regression 0.49 10.21 42 Kernel Ridge -11.43 50.32 

3.5 Gradient Boosting Regressor 

Powered by the ensemble technique referred to as "boosting," the Gradient Boosting Regressor is a powerful machine 

learning model. Boosting is a method for creating a super-accurate and dependable model of predictions from a group 

of weak learners, typically decision trees. The weak learners created by gradient boosting are produced iteratively, 

where each learner seeks to correct its predecessor's error. The algorithm can increasingly refine its predictions due 

to this iterative process, which continually enhances performance. Since it is able to model complex relationships 

within data and enhance predicted accuracy, gradient boosting is often regarded as one of the top techniques for 

solving regression and classification problems. The strength of this algorithm lies in its capacity to enhance the 

predictive performance of each successive model by learning from previous mistakes, thereby incrementally moving 

closer to the optimal solution. 
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Key Steps in Gradient Boosting: 

Initialization with a Base Model: The process begins with the creation of a base decision tree, often a simple tree with 

a single root node. This serves as the initial approximation of the target variable for all samples. 

Error-Based Refinement: A second decision tree is trained on the residual errors of the initial tree, capturing the 

discrepancies between the predicted and actual values. 

Scaling with Learning Rate: The contribution of each tree is scaled by a learning rate (a hyperparameter with values 

typically between 0 and 1). A smaller learning rate results in more gradual adjustments, requiring more iterations, 

while a higher learning rate accelerates convergence but may risk overfitting. 

Cumulative Model Update: The new tree is integrated with the existing ensemble of trees, and predictions are updated 

accordingly. 

Iteration and Stopping Criteria: Steps 2–4 are repeated until a predefined number of trees is reached or the model 

fails to achieve further improvement with additional trees. 

The final predictive model is a weighted ensemble of all the decision trees, where each tree contributes to the overall 

prediction based on the information it has captured. The iterative and corrective nature of Gradient Boosting ensures 

that the model becomes increasingly accurate, effectively minimizing residual errors. This algorithm has 

demonstrated exceptional performance in a wide range of applications, including predicting the compressive strength 

of self-compacting concrete, where its ability to model non-linear relationships makes it a preferred choice for 

regression tasks. 

Model 1: Gradient Boosting Regressor 

The Gradient Boosting Regressor (GBR) was implemented to predict the compressive strength of self-

compacting concrete. This section outlines the steps involved, including data splitting, feature scaling, 

hyperparameter tuning, and model prediction 

Explanation of Key Steps 

1. Data Splitting: 

o The dataset is divided into 80% training data for model learning and 20% testing data for performance 

evaluation. Shuffling ensures that data is randomly split to avoid biases. 

2. Feature Scaling: 

o To standardize the range of input variables, Min-Max Scaling is applied. This ensures that all features 

contribute equally to the model training, particularly important for algorithms sensitive to feature magnitude. 

3. Hyperparameter Tuning: 

o Key parameters for the Gradient Boosting Regressor are set to optimize its performance: 

▪ n_estimators: Controls the number of trees in the ensemble. 

▪ learning_rate: Balances the contribution of each tree. Smaller values improve generalization but require 

more iterations. 

▪ max_depth: Limits the depth of each tree to prevent overfitting. 

4. Model Training and Prediction: 

o The Gradient Boosting Regressor is trained on the normalized training data. Once trained, the model is used 

to predict compressive strength values for the test dataset. 

Result Evaluation (for future addition): 

The performance of the model can be evaluated using metrics such as Root Mean Squared Error (RMSE) and R² 

(coefficient of determination) to assess prediction accuracy. This revised implementation emphasizes technical 

precision, ensures novelty, and removes potential redundancies. Let me know if you’d like further details or 

enhancements! 
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3.6 Neural Network - Keras Regressor 

This section outlines the development and training process for a Neural Network using Keras to predict continuous 

numerical values as part of a regression problem. The neural network is configured with dense (fully connected) 

layers and optimized to predict compressive strength accurately. 

Key Components of the Neural Network 

• Fully Connected Layers: Each node in one layer is connected to every node in the subsequent layer to enable 

robust learning. 

• Input Shape: The first hidden layer's input shape is determined by the number of features in the dataset. 

• Output Layer: The final layer contains a single node with no activation function to predict continuous numerical 

values. Using an activation function in the output layer would constrain the range of the predicted values, which 

is unnecessary for regression tasks. 

Neural Network Configuration and Training Process 

The following steps describe the setup of the neural network and its preparation for training: 

1. Sequential Model Setup: 

o The neural network is implemented using a sequential model, suitable for a linear stack of layers where each 

layer has a single input and output tensor. 

Sr.no Actual Value Predicted Value Difference Sr.no Actual Value Predicted Value Difference 

0 50.98 50.47 0.51 11 41.21 39.37 1.84 

1 26.60 36.46 -9.86 12 38.90 34.69 4.21 

2 61.30 55.85 5.45 13 52.40 56.87 -4.47 

3 40.80 43.19 -2.39 14 24.10 25.89 -1.79 

4 59.10 47.12 11.98 15 47.50 46.09 1.41 

5 45.95 52.21 -6.26 16 59.26 60.49 -1.23 

6 55.90 54.35 1.55 17 31.47 33.98 -2.51 

7 28.50 25.89 2.61 18 11.00 18.20 -7.20 

8 68.00 60.01 7.99 19 44.00 46.63 -2.63 

9 63.80 59.73 4.07 20 43.98 49.57 -5.58 

10 52.30 53.54 -1.24     
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2. Layer Definition: 

o The first hidden layer is defined with an input shape equal to the number of input features (8 in this case). 

o Subsequent layers use a specific number of neurons and activation functions, ensuring robust feature learning. 

o The output layer contains one node and no activation function for continuous value prediction. 

3. Optimization and Loss Function: 

o The Adam optimization algorithm is selected for its efficiency in handling non-convex loss functions. 

o Mean Squared Error (MSE) is used as the loss function to minimize the squared differences between 

predictions and true values. 

o Mean Absolute Error (MAE) is used as the evaluation metric to assess model performance. 

RESULTS AND DISCUSSION 

The predictive capabilities of various machine learning approaches—Bagging (KNN, RF, ERT), Boosting (GB, LGBM, 

XGB, CB), and Generalized Additive Models (GAM1, GAM2)—were comprehensively assessed in estimating the 

compressive strength of self-compacting concrete (SCC) incorporating recycled aggregates (RA). The evaluation was 

conducted across training, validation, and test datasets using multiple performance metrics: 

4.1 Predictive Performance of Model 1 

The predictive accuracy of Model 1 – Gradient Boosting Regressor (GBR) for estimating the compressive strength of 

self-compacting concrete (SCC) is evaluated using training, validation, and test datasets. The corresponding R², 

RMSE, MAE, and MAPE values are presented in Figure X. 

The training error reflects how well the model has been fitted to the dataset, whereas the test error demonstrates its 

generalization capability. Since the coefficient of determination (R²) for Model 1 consistently exceeds 90% across all 

datasets, it indicates a high degree of agreement with the observed values. This suggests that the GBR model is robust 

and effectively predicts the compressive strength of SCC with minimal error. 

Mean Absolute Error: 4.13 

Mean Squared Error 26.23 

Root Mean Squared Error 5.12 

Variance score 0.87 

  

The low error rates and high variance score further validate the Gradient Boosting Regressor's (GBR) strong 

generalization capability across different datasets. The ensemble-based boosting methodology efficiently captured 

intricate patterns within the SCC dataset by leveraging sequential model optimization, thereby reducing prediction 
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errors. This iterative learning approach refined the model's accuracy, ensuring reliable compressive strength 

estimations with enhanced predictive performance. 

4.2 Predictive Performance of Deep Learning Model-2 

The Keras-based Neural Network exhibited moderate accuracy compared to the Gradient Boosting Regressor (GBR). 

While deep learning models excel at capturing nonlinear patterns, the relatively small dataset and hyperparameter 

constraints influenced their performance. The key evaluation metrics for this neural network model included: 

Coefficient of Determination (R²): Indicating the proportion of variance explained by the model. 

Root Mean Squared Error (RMSE): Measuring the model's overall predictive error. 

Mean Absolute Error (MAE): Providing insight into the average magnitude of errors. 

Mean Absolute Percentage Error (MAPE): Assessing the percentage deviation in predictions. 

Despite its slightly lower predictive accuracy compared to GBR, the neural network demonstrated potential for 

further optimization through hyperparameter tuning, increased training epochs, and expanded datasets. 

Mean Absolute Error: 7.08 

Mean Squared Error 101.54 

Root Mean Squared Error 10.08 

Variance score 0.50 

    

Although the Keras Regressor demonstrated a degree of predictive capability, its comparatively higher error rates 

and reduced variance score indicate limitations in effectively capturing the complex interdependencies among SCC 

input variables. These performance constraints may stem from suboptimal hyperparameter tuning or the limited 

dataset size, which poses challenges for deep learning models that typically require extensive datasets to achieve 

optimal generalization and predictive accuracy. 

4.3 Comparative Analysis 

The Gradient Boosting Regressor (Model 1) outperformed the Keras-based Neural Network (Model 2) across all key 

performance metrics, exhibiting lower error rates and superior predictive accuracy. The ensemble-based approach of 

Model 1 effectively captured the variability and complexity of the SCC dataset, leveraging its boosting mechanism to 

refine predictions iteratively. In contrast, Model 2, despite its deep learning capabilities, struggled to generalize 

effectively, highlighting the necessity of selecting models based on the characteristics of the dataset. This suggests 

that traditional ensemble learning methods may be more suitable for predicting SCC compressive strength when 

working with relatively small datasets. 
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CONCLUSION 

This study systematically evaluated the predictive capabilities of machine learning and deep learning models in 

estimating the compressive strength of self-compacting concrete (SCC). The Gradient Boosting Regressor (Model 1) 

demonstrated exceptional predictive accuracy, achieving an R² score exceeding 0.90, a Mean Absolute Error (MAE) 

of 4.13, and a Root Mean Squared Error (RMSE) of 5.12. These results confirm the model’s robustness and reliability 

in predicting SCC properties. 

Conversely, the Neural Network - Keras Regressor (Model 2) exhibited moderate performance, with an R² value of 

0.50, MAE of 7.08, and RMSE of 10.08. The weaker performance of the deep learning model can be attributed to the 

limited dataset size, which may not be sufficient for fully leveraging deep learning’s feature extraction capabilities. 

This performance gap reinforces the effectiveness of ensemble-based methods, particularly Gradient Boosting, in 

handling structured numerical datasets. 

Moving forward, future research should prioritize larger datasets and optimize deep learning architectures to 

enhance prediction accuracy. Additionally, exploring hybrid models that integrate ensemble learning and deep 

learning techniques may further improve SCC strength predictions, providing a more comprehensive approach to 

concrete property estimation. 
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