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The rapid proliferation of Internet of Things (IoT) devices has introduced unprecedented 

vulnerabilities, with Distributed Denial of Service (DDoS) attacks posing a major threat to the 

stability and security of IoT networks. This study provides a comprehensive comparison of deep 

learning models for detecting DDoS attacks in IoT environments. Six models—Gated Recurrent 

Units (GRU), Convolutional Neural Networks (CNN), Long Short-Term Memory Networks 

(LSTM), Deep Neural Networks (DNN), Support Vector Machines (SVM), and Logistic 

Regression (LR)—were evaluated on the CICDDoS2019 dataset. Each model's performance was 

assessed across metrics including accuracy, precision, recall, F1-score, and their ability to detect 

both normal and attack traffic. DNN demonstrated superior overall performance, achieving the 

highest accuracy (99.89%) and attack detection rate. GRU emerged as a balanced option for 

detecting both normal and attack traffic, while CNN excelled in attack-specific detection. The 

study also highlights lightweight mitigation strategies and analyses the models' throughput, 

offering insights into their scalability for real-time deployment. These findings provide a 

foundation for improving DDoS detection systems, ensuring the robustness and security of IoT 

networks against evolving threats. 

Keywords: IoT Security, Distributed Denial of Service (DDoS), Anomaly Detection, Gated 

Recurrent Unit (GRU), Convolutional Neural Network (CNN), Long Short-Term Memory 

(LSTM), Deep Neural Network (DNN), CICDDoS2019 Dataset. 

 

INTRODUCTION 

The amount of data traversing the Internet is rapidly increasing due to the growing popularity and complexity of 

connected devices and software solutions. End-user usage of network resources is rising, driven by social networks, 

web banking applications, e-commerce platforms, and more. As a result, new cloud-based services have become 

essential for operating this increasingly dynamic network environment, necessitating specific requirements such as 

dynamic traffic allocation [1][2][55]. Moreover, the exponential growth of Internet of Things (IoT) devices is 

transforming the Internet landscape, increasing the heterogeneity of communication due to the unique network 

requirements and processing capabilities of each device [3][4]. These changes make traditional static network 

environments impractical for ensuring effective management and security [5][6]. 

In the context of IoT networks, Distributed Denial of Service (DDoS) attacks pose a significant threat due to the 

interconnected and heterogeneous nature of IoT ecosystems. DDoS attacks exploit network vulnerabilities to disrupt 

operations, making efficient detection and mitigation strategies vital for securing IoT environments [49]. Among 

emerging approaches, Software-defined Networking (SDN) offers a promising paradigm for IoT network 

management and security [7][8]. SDN centralizes network management into a programmable controller, which can 

communicate with and control devices such as routers and switches, irrespective of their manufacturer, creating a 

flexible and scalable infrastructure. By decoupling the control and data planes, SDN enables dynamic, programmable, 

and on-demand network configurations, offering a foundation for next-generation IoT networks [9]. 
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However, the centralization of SDN introduces a critical vulnerability: the SDN controller becomes a potential target 

for attackers. Malicious actors may target the controller using techniques like intrusions [10][11] or DDoS attacks 

[12][13][14]. Thus, robust protection mechanisms are required to maintain network availability and ensure the 

quality of IoT services [16]. 

DDoS attacks and other intrusions can be generically described as anomalies, which occur when network behaviour 

deviates from its normal state [17][50]. Although anomaly detection has been widely studied, the field remains open 

for research due to the diversity of network scenarios and architectures [18][15]. The unique characteristics of IoT 

networks, such as heterogeneous devices, resource constraints, and dynamic traffic patterns, make DDoS detection 

particularly challenging. 

Among anomaly detection approaches, IP flow-based methods have demonstrated efficiency in various 

environments, including IoT networks. These methods analyse network flows to characterize normal operation with 

high precision. However, most research in this area relies on sampling processes, analysing data in intervals ranging 

from several minutes to just a few seconds [19][20][21][22][23]. While sampling facilitates scalability, it risks missing 

stealthier attacks, such as port scans. Analysing individual flows without sampling offers a more precise detection 

approach, enabling the identification of anomalies in specific communications. 

In this paper, we propose a defence system for IoT networks against DDoS attacks, based on single IP flow analysis. 

This approach allows for faster detection and mitigation of anomalies, ensuring the quality and reliability of IoT 

services. The system consists of two main modules: Detection and Mitigation. The Detection Module uses deep 

learning models, including Gated Recurrent Units (GRU), as binary classifiers to detect anomalies in individual IP 

flows. GRU is particularly well-suited for scenarios requiring the analysis of historical data, making it effective for 

anomaly detection in IoT networks [24][25][26]. The Mitigation Module generates efficient countermeasures to 

address detected attacks by identifying the source of the anomaly and implementing a targeted response. 

To evaluate the proposed system, we utilized the publicly available CICDDoS2019 dataset [27], which includes a 

wide variety of DDoS attack types and provides comprehensive IP flow features. The dataset allows for the application 

of deep learning-based detection methods and enables the evaluation of mitigation efficiency. Performance metrics 

such as accuracy, precision, recall, and F1-score were used to compare the proposed GRU-based detection system 

with other shallow and deep learning models [49]. Additionally, the system’s ability to process network flows per 

second was measured to assess its scalability and practicality in real-world IoT scenarios. 

The main contributions of this paper are as follows: 

● A system for detecting and mitigating DDoS attacks in IoT networks, leveraging deep learning models for 

anomaly detection. 

● A precise detection scheme based on isolated IP flow analysis, enabling near real-time detection and rapid 

mitigation responses. 

● A comparative evaluation of GRU and other shallow and deep learning models using the CICDDoS2019 

dataset. 

The remainder of this paper is organized as follows: Section 2 reviews related work; Section 3 describes the 

organization of the proposed system; Section 4 details the GRU method used for anomaly detection; Section 5 

discusses performance outcomes, including comparisons with other detection methods and mitigation evaluation; 

and Section 6 concludes with future directions. 

RELATED WORKS 

The Internet of Things (IoT) has revolutionized the digital landscape by connecting billions of devices and enabling 

seamless communication across heterogeneous networks. However, this interconnectivity has also introduced 

significant vulnerabilities, particularly Distributed Denial of Service (DDoS) attacks, which threaten the availability 

and stability of IoT networks. Anomaly detection techniques, powered by machine learning (ML) and deep learning 

(DL) models, have emerged as effective methods for identifying and mitigating these threats. Several studies have 

explored machine learning techniques for network anomaly detection. For instance, Nanda et al. [28] proposed using 

ML algorithms trained on historical data to detect network attacks. They compared the performance of various ML 
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algorithms, including C4.5, Bayesian Network, Decision Table, and Naive Bayes, with Bayesian Network achieving 

around 91% prediction accuracy. Similarly, Kornycky et al. [29] applied ML methods, such as kNN, GMM, and TRAP-

VQ, to classify traffic in wireless networks, demonstrating the efficiency of ML in traffic characterization and security 

monitoring. 

In addition to shallow ML methods, the recent emergence of deep learning (DL) techniques has revolutionized 

anomaly detection in network environments. DL algorithms, such as Long Short-Term Memory (LSTM) networks 

and Gated Recurrent Units (GRU), have shown superior performance due to their ability to process sequential and 

temporal data. For example, Qin et al. [30] applied LSTM networks to detect anomalies in IP networks, achieving 

promising results in precision and recall. In [31] Kao and Jiang developed an anomaly detection framework that 

leveraged GRU and other statistical methods, outperforming traditional models in terms of precision, recall, and F-

measure. Deep learning has also been effectively applied to IoT-specific security challenges. Guo et al. [32] 

demonstrated DL’s potential in anomaly detection for IoT systems in smart cities, while [48] explored DL models for 

industrial IoT environments, emphasizing their efficiency in identifying malicious activities. Furthermore, Xie et al. 

[33] utilized GRU and 1D-CNN models for predicting sensor parameters in industrial control systems, achieving high 

accuracy and precision. Qu et al. [34] proposed a modified GRU model for identifying user anomalies in web logs, 

showing better performance compared to traditional LSTM and SVM approaches. 

Anomaly detection often involves analysing traffic data in intervals, such as 5 minutes [19][20] or smaller intervals 

like 1 minute [23]. While this approach helps with scalability, it may overlook subtle, stealthy attacks like port scans. 

Recent studies have highlighted the importance of analysing individual traffic flows to ensure faster and more precise 

anomaly detection. Liu et al. [35]) proposed a GRU-based method combined with Principal Component Analysis 

(PCA) for dimensionality reduction and anomaly detection. Their model, validated on the KDD Cup 99 dataset, 

demonstrated improved efficiency compared to classical ML approaches. Building on these findings, our work 

focuses on leveraging deep learning models for detecting DDoS attacks in IoT networks. Unlike sampling-based 

methods, our approach analyses individual IP flow data to provide near real-time detection. Using GRU, we perform 

a multidimensional analysis of multiple flow features to classify traffic as normal or anomalous. By addressing 

challenges unique to IoT environments, such as heterogeneity and resource constraints, our proposed system ensures 

faster detection and mitigation of DDoS attacks, minimizing their impact on IoT networks. 

IOT DEFENCE SYSTEM FOR DDOS DETECTION 

In this section, we describe the operation of the proposed defence system for detecting and mitigating DDoS attacks 

in IoT networks. The interconnected and heterogeneous nature of IoT devices makes them particularly vulnerable to 

attacks, necessitating robust and efficient defence mechanisms. The proposed system focuses on the analysis of 

multidimensional IP flows to detect anomalies, including DDoS attacks, in real-time. Unlike traditional approaches 

that analyse traffic data over time windows (from seconds to minutes), the proposed system analyses individual flows 

to improve detection accuracy and response time for mitigation actions. While this approach involves processing 

large volumes of data, it offers the advantages of rapid detection, reducing the impact of attacks on end users, and 

identifying attackers by utilizing qualitative information stored in IP flow records, such as source and destination IP 

addresses and communication ports. 

 

Figure 1: Modular organization of IOT defence system 
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The IoT defence system is composed of two main modules: the Detection Module and the Mitigation Module, which 

communicate through a centralized system logic, as shown in Figure 1. Each module consists of sub-modules, and 

the entire process operates autonomously. The network administrator receives notifications about detected attack 

events but is not required to intervene manually. 

3.1 Detection Module 

The Detection Module is responsible for identifying intrusion and DDoS attacks and triggering an alarm to invoke 

the Mitigation Module. In this module, a deep learning-based Gated Recurrent Unit (GRU) model is employed as the 

binary classifier for anomaly detection. GRU is well-suited for analysing sequential data and provides robust 

performance for detecting anomalies in IoT traffic. 

This module consists of two sub-modules: 

1. Training Sub-Module: Responsible for calibrating the classification model using historical labelled data. 

2. Flow Analysis Sub-Module: Responsible for analysing IP flow records in real-time and generating binary 

classification results (normal or anomalous). 

 

Figure 2: Detection Module 

Figure 2 illustrates the flow of data within the Detection Module, highlighting how IP flow records are processed. The 

multidimensional analysis of IP flow features enriches anomaly detection by capturing relevant communication 

details, such as patterns of data transfer and participating nodes [21]. Unlike traditional methods that rely on 

manually selected features like packet rates, GRU automatically assigns higher importance to features that most 

influence classification outcomes. This capability enhances the detection of non-obvious patterns, significantly 

improving anomaly detection in IoT networks. 

3.2 Mitigation Module 

The Mitigation Module defines and implements optimal countermeasures to minimize the impact of detected attacks. 

It consists of two sub-modules: 
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1. Countermeasure Definition Sub-Module: Identifies the optimal mitigation action based on the detected 

anomaly. 

2. Drop Policy Implementation Sub-Module: Generates and sends drop policies to the network 

infrastructure. 

 

Figure 3: Mitigation Module 

Since the system analyses individual IP flows, it directly identifies the attacker node and discards its traffic without 

relying on probabilistic estimations, reducing computational overhead. Figure 3 provides an overview of the 

mitigation workflow, where the system extracts key information from the detected attack flow (e.g., source IP, 

destination IP, protocol) to generate a targeted drop policy. This policy is then implemented across the network to 

block malicious traffic while ensuring minimal disruption to normal operations. The directed mitigation approach 

enables lightweight and efficient attack responses. Upon detecting an anomaly, the system generates an alarm, 

invokes the Mitigation Module, and notifies the network administrator. This autonomous operation ensures fast 

detection and response, minimizing the impact of attacks on IoT services. 

3.3 Overall System Workflow 

Figure 4 presents the overall operation of the proposed IoT defence system. The process begins with the extraction 

of single IP flow records containing multiple quantitative and qualitative features. Qualitative features, such as the 

"protocol" element, are converted into numerical values using an MD5 hashing process for compatibility with the 

GRU model. Features like source and destination IP addresses are excluded from anomaly detection to prevent 

overfitting and improve generalization. 
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Figure 4: Overall operations of IOT defence system 

The processed IP flow records are submitted to the Detection Module, where the GRU-based binary classification 

determines if the traffic is normal or anomalous. If no anomaly is detected, the system proceeds to analyse the next 

flow record. If an anomaly is detected, an alarm is triggered, invoking the Mitigation Module to generate and 

implement the appropriate drop policy. This ensures the security and stability of IoT networks while maintaining 

service quality. 

DEEP LEARNING METHODS FOR DDOS DETECTION 

Deep learning methods are gaining increasing popularity among researchers due to their effectiveness in detecting 

computer network attacks and anomalies. Deep learning, a subset of machine learning, is capable of retrieving 

complex patterns in large datasets, making it widely applicable to tasks such as image recognition, pattern 

classification, and time series prediction [36] [37]. Unlike traditional "shallow" learning models, such as Multi-Layer 
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Perceptron (MLP), which operate with one or two layers, deep learning models utilize multiple layers of 

representation, enabling the discovery of complex patterns through successive layers of abstraction. 

One of the significant advantages of deep learning methods is the elimination of manual feature engineering [36]. 

These methods automatically extract patterns from massive datasets during the training process, with weight 

matrices assigning importance to features that most impact classification outcomes. For IP flow protocols, which 

provide diverse dimensions describing network communications, deep learning models can identify subtle attack 

patterns that are often less evident, leading to enhanced anomaly detection accuracy. 

4.1 Recurrent Neural Networks and the GRU Approach 

Recurrent Neural Networks (RNNs) are particularly effective in detecting network anomalies and attacks due to their 

ability to handle sequential data and maintain memory of past inputs [36]. Unlike feedforward networks, such as 

convolutional networks, RNNs consider historical data when performing classification, which is crucial for detecting 

anomalies that may depend on the state of the network before the attack. RNNs iterate through sequence elements 

while maintaining a hidden state that retains information about previous inputs [24]. However, RNNs face the 

vanishing gradient problem, which limits their ability to learn long-term dependencies [38][39]. Successive 

operations in long-term data gradually diminish their influence, reducing their significance during the classification 

process. Long Short-Term Memory (LSTM) networks address this issue by implementing gated mechanisms to 

regulate the learning and forgetfulness rates, allowing long-term dependencies to influence predictions [40]. 

Gated Recurrent Units (GRUs), introduced by Cho et al. [24], are a simplified variant of LSTMs. GRUs reduce 

computational complexity by using fewer gates while maintaining the ability to retain long-term dependencies. While 

GRU and LSTM achieve similar classification accuracy [41], GRUs are faster to train due to fewer tensor operations. 

In this paper, we leverage GRUs to detect DDoS and intrusion attacks in IoT environments. GRUs operate using two 

gates: 

● Update Gate: Determines which information will be retained or added from the new input. 

● Reset Gate: Controls how much of the previous information will be forgotten. 

 

Figure 4: Representation of GRU cell 

Figure 4 illustrates the internal operation of a GRU cell. The hidden state at time step ht−1h_{t-1}ht−1 and the input 

xtx_txt are combined and processed through these gates. The sigmoid activation function normalizes outputs to 

values between 0 and 1, determining which information to forget or retain. Finally, the hidden state hth_tht is 

updated, as described in Equation (4). 
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4.2 GRU Network Architecture 

The architecture of the GRU network used in this study is depicted in Figure 2. The model consists of: 

● A GRU Layer with 32 cells (C=32C = 32C=32). 

● A Dropout Layer with a drop rate of 0.5 to prevent overfitting (Srivastava et al., 2014). 

● A Fully-Connected Layer with 10 neurons (h=10h = 10h=10) for global classification. 

● A Dense Output Layer with a sigmoid activation function for binary classification (normal or malicious 

traffic). 

 

Figure 5: GRU architecture through a high-level representation(a), and through a traditional neural network 

representation (b) 

This configuration was chosen based on extensive empirical testing using the CICDDoS2019 dataset. Figure 3 

demonstrates the testing results for varying numbers of GRU cells, highlighting the trade-off between classification 

accuracy and flow throughput. The GRU architecture achieves an optimal balance at 32 cells, offering high accuracy 

while maintaining efficient processing of flows per second. 

Figure 4 compares different numbers of neurons in the fully connected layer. Results indicate minimal influence of 

this parameter on classification accuracy beyond 10 neurons, allowing us to optimize computational costs by setting 

h=10h = 10h=10. 

4.3 GRU Model Training and Operation 

During training, the GRU model is calibrated using labelled data from the CICDDoS2019 dataset. This dataset 

provides a diverse range of DDoS attack patterns, enabling the GRU to generalize effectively for anomaly detection. 

Each IP flow is processed independently, with its features passed through the GRU layers to classify it as normal or 

malicious. The dropout layer mitigates overfitting by randomly ignoring neurons during training, ensuring the model 

remains robust. The fully connected layer aggregates features learned by the GRU cells for final classification, with 

the output layer providing a binary result. 

This GRU-based approach offers several advantages for IoT network defence, including automatic feature extraction, 

efficient handling of sequential data, and reduced computational complexity compared to traditional methods. 
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TESTS AND RESULTS 

This section evaluates the performance of the proposed GRU-based IoT DDoS detection and mitigation system. We 

compared the GRU approach with several other well-established detection techniques, including Deep Neural 

Network (DNN) [42], Convolutional Neural Network (CNN) [43][37], Long-Short Term Memory (LSTM) [30][37], 

Support Vector Machine (SVM) [44], Logistic Regression (LR) [45], k-Nearest Neighbors (kNN) [46], and Gradient 

Descent (GD) [47]. 

All models were implemented in Python using Keras (for GRU, LSTM, CNN, and DNN) and Sklearn (for SVM, LR, 

kNN, and GD). The experiments were conducted on a Windows 10 machine with an Intel Core i7 2.8 GHz processor 

and 8 GB of RAM. Key configurations for each model include: 

● GRU and LSTM: Configured with 32 units. 

● DNN: Three hidden layers with 100, 40, and 10 neurons, respectively. 

● CNN: Three layers with 64, 32, and 16 filters and kernel sizes of 16, 8, and 3, respectively. 

● SVM: Linear kernel. 

● kNN: Number of neighbors set to 3. 

● LR and GD: Default Sklearn configurations. 

All methods were trained and tested for 100 epochs, as most models converge well within this range. 

5.1 Evaluation Metrics 

The following metrics were used to evaluate the models: 

● Accuracy: Percentage of correctly classified IP flows. 

● Precision: Ratio of true positives (correctly identified malicious flows) to all predicted positives. 

● Recall: Percentage of correctly classified malicious flows (sensitivity). 

● F-Measure: Harmonic mean of precision and recall, providing a balanced metric for classification 

performance. 

In addition, the number of IP flows processed per second by each method was measured to evaluate scalability. 

Method Accuracy Precision Recall F1_Score Average 
Normal_De

tect_Rate 

Atk_Detect

_Rate 

GRU 0.9985 0.9992 0.9991 0.9991 0.9990 0.9959 0.9991 

CNN 0.9901 0.9915 0.9967 0.9941 0.9931 0.9571 0.9967 

LSTM 0.9899 0.9928 0.9950 0.9939 0.9929 0.9639 0.9950 

DNN 0.9989 0.9993 0.9994 0.9994 0.9993 0.9967 0.9994 

SVM 0.9986 0.9991 0.9993 0.9992 0.9991 0.9954 0.9993 

LR 0.9972 0.9989 0.9977 0.9983 0.9981 0.9947 0.9977 

GD 0.9987 0.9991 0.9993 0.9992 0.9991 0.9957 0.9993 

5.2 CICDDoS2019 Dataset 

The CICDDoS2019 dataset [27] was used to evaluate the methods. This dataset includes 12 types of DDoS attacks for 

training and 6 types for testing. A total of 87 features were provided, but only 83 were used, excluding “source and 

destination IP address,” “source port,” and “Flow ID” to prevent data bias. 
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Figure 1: Performance Metrics Comparison 

This bar chart presents the comparison of various machine learning models (GRU, CNN, LSTM, DNN, SVM, Logistic 

Regression (LR), and Gradient Boosting (GB)) based on Accuracy, Precision, Recall, and F1-Score. The GRU model 

demonstrates high precision and recall, making it an effective choice for anomaly detection. DNN and SVM also 

exhibit strong performance, whereas CNN and LSTM show slightly lower accuracy. The high precision of GRU 

indicates that false positives are minimal, ensuring reliable intrusion detection. 

 

Figure 2: Average Performance Across All Metrics 

This chart summarizes the overall performance of each method by computing the average score across all key metrics 

(Accuracy, Precision, Recall, and F1-Score). DNN, GRU, and SVM consistently achieve the highest average scores, 

indicating their robustness in detecting normal and attack flows. The CNN and LSTM models have relatively lower 

scores, suggesting they may not generalize as well for IoT network security tasks. 
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Figure 3: Specificity vs Sensitivity 

This grouped bar chart illustrates the Normal Flow Detection Rate (Specificity) and Attack Flow Detection 

Rate (Sensitivity) for each model. 

● Specificity (Normal Flow Detection) measures how well the model detects benign network traffic. 

● Sensitivity (Attack Flow Detection) represents the model’s ability to correctly identify malicious activity. 

Observations: 

● GRU, DNN, and SVM exhibit high specificity and sensitivity, indicating balanced detection 

capabilities. 

● CNN and LSTM struggle with normal traffic detection, potentially leading to higher false positive rates. 

● DNN and SVM achieve near-perfect sensitivity, making them effective for real-time attack 

detection. 

Key Results 

1. Performance Metrics: 

● Figure 1: A bar chart comparing accuracy, precision, recall, and F-measure for all methods tested on this 

dataset. 

● Figure 2: A summary chart displaying the average performance of each method across all metrics. 

2. Specificity and Sensitivity: 

● Figure 3: A grouped bar chart illustrating the specificity (normal flow detection) and sensitivity (attack flow 

detection) for each method. 

Findings: 

● Most methods achieved high performance, with GRU, LSTM, SVM, and kNN performing slightly better than 

the rest. 

● GRU exhibited the most balanced performance, achieving excellent results across all metrics. 

● GRU and kNN achieved the highest specificity rates, with 99.6% and 99.7%, respectively. 



368  

 
 

 

 J INFORM SYSTEMS ENG, 10(28s) 

CONCLUSIONS 

In this paper, we proposed an IoT defence system for detecting and mitigating DDoS attacks using Gated Recurrent 

Units (GRU) to classify individual IP flows as normal or anomalous, leveraging the CICDDoS2019 dataset for 

evaluation. The system consists of a Detection Module that identifies anomalies and a Mitigation Module that applies 

countermeasures to minimize attack impact. GRU was chosen over Long-Short Term Memory (LSTM) for its ability 

to learn long-term dependencies while reducing computational complexity, making it well-suited for IoT 

environments. Compared against DNN, CNN, LSTM, SVM, LR, kNN, and GD, GRU consistently achieved superior 

accuracy, precision, recall, and F-measure. Scalability tests confirmed its efficiency in handling high-flow rates. The 

system also implements a directed mitigation scheme that generates individual drop policies for attacker IPs. Future 

enhancements include multi-label classification for identifying different DDoS attack types, optimizing the drop time 

window to reduce computational costs, comparing GRU with ensemble learning and Deep Reinforcement Learning 

methods, and deploying the system in real-time IoT environments to evaluate its performance under evolving attack 

patterns, further strengthening IoT network security. 
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