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Acoustic emission is one of the various types of non-destructive testing (NDT) techniques that 

are used for structural damage identification. The purpose of this research is to investigate 

acoustic emission signals produced during crack propagation by Finite Element Analysis (FEA) 

codes. Specific types of signals are observed mainly Lamb waves. Therefore, signal features are 

established from the generated signals that are used in clustering analysis by the K-means 

algorithm using MATLAB program. In this study, a novel discovery on the distance between 

cluster’s centroids expands the current understanding of the K-Means algorithm. This 

achievement offers a unique perspective on the correlation of clusters available to damage 

attributes. K-means is used for the calculation of distance between centroids of clusters that are 

available for different combined parameters such as root mean square and standard deviation of 

signal amplitudes. The output forms a new damage parameter for crack signal wave analysis. 

This parameter manipulates the relationship between the two distinct modes of signals hence 

several clusters are plotted, and their centroids' distances are compared. 
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INTRODUCTION 

Metallic pipes often encounter defects of many types and sizes either during manufacturing or service. Defects 

generated during service are mainly fatigue cracks or corrosion cracks. As the development of non-visual inspection 

systems that adopt physical principles has been established significantly, many non-destructive testing techniques 

are introduced and can provide information on the quality of a material or component without causing damage to 

the components being tested [1]. According to [2], non-destructive testing is one suitable and preferred technique to 

be used to detect defects such as cracks within a product without affecting its performance and abandoning safety. 

Various non-destructive test methods are available for use, depending on the application. Some of the commonly 

used techniques are liquid penetrant, eddy currents, ultrasonic testing and acoustic emission (AE) techniques. 

Acoustic emission is an effective method for damage identification [3]. Wang et al. [4] stated that acoustic emission 

(AE) method is considered unique in a view that the signals or stress waves are radiated by the sample tested instead 

of external sources as compared to other NDT methods, strain or displacement data are commonly recorded rather 

than as geometrical damages, it screens dynamic processes in a material by tracking development of certain defects 

that benefits fatigue tests. Acoustic emission signals could be observed through two types of signal analysis methods 

which comprise continuous and transient. These methods enable signal processing to be carried out in the time 

domain, frequency domain, or time-frequency domain [5]. The use of transient signal analysis that occurs during 

damage events enables feature extraction such as peak level, RMS values, and signal amplitudes, which could be 

interpreted for defect indicators. The signal features must be selected appropriately depending on the quality of 

signals and can be potentially combined with various statistical tools of machine learning, for instance, 

dimensionality reduction such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) in 

damage classification. 
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Unsupervised machine learning techniques may be employed to evaluate several acoustic emission features 

synchronously wherein the model finds patterns and relationships in the input itself instead of using training data 

[6]. The clustering technique is an example of an unsupervised machine learning method. The K-means algorithm is 

considered one of the most popular approaches for differentiating clustering solutions for a specific number of 

clusters [7]. The principle working of K-means clustering algorithm is to separate n data points into k clusters such 

that similar data points can be clustered together, and then iteratively allocates each point to the cluster with the 

closest centroid, after which the centroid of these groups is determined by taking their average. The iteration process 

is then stopping once no significant difference is detected in the movement of the centroids [8]. Utilizing cluster 

selection methods like the elbow method helps in deciding the number of clusters for classification from the input 

data. The use of machine learning in signal processing has been used significantly given the uncertainty that arises 

in decision-making processes.   

SETUP AND METHODOLOGY 

Numerical Simulation 

A 2-D plane strain finite element (FE) model of 1 meter and 6 millimeters thick steel plate was created in Abaqus FEA 

as illustrated in Figure 1. The plate was discretized using a quadrilateral element with a linear shape function to model 

the propagating waves. The element size selected is sufficient to resolve the wavelength of crack signals. Typical wave 

frequencies of crack damage are between 125kHz and 400kHz [9]. The time resolution of 1 nanosecond was used to 

avoid numerical errors. A notch of size 0.75 millimeters was created in the model at the symmetry boundary. The 

simulations were done such that the FE model was initialized with pre-stressed conditions in implicit analysis. The 

nodes at the crack face were released in Abaqus Explicit accompanied by energy release in the form of waves. 

 

Figure 1. FEA model of the crack propagation. a) Pre-stressed conditions b) Nodes are released to model crack 

propagation 

Feature Extraction 

The relationship between different signal features is investigated by observing the pattern shown by the distance 

between the centroid of clusters for each combined parameter of the respective damage groups. The damage groups 

are of different depths of cracks.  Distance between clusters’ centroids for a different set of combined parameters 

allows comparison and measurement of the consistency of the pattern in the centroids’ distances. The signal features 

used in this study are the common statistical features mainly mean, root mean square (RMS) and standard deviation.  

The interaction of waves with structural boundaries results in changes in signal amplitudes, causing imprecise 

measurement when analyzing the waveform. RMS of amplitudes was used to get an average of different peak 

amplitudes by measuring the square root of the mean of peak amplitude. 

RMS = √
∑ xi2

n
i=1

N
        (1) 

The average size or magnitude of the amplitudes of a wave or signal for a specific period is referred to as mean 

amplitude. A wave's amplitude is defined as its greatest deviation from its equilibrium position. It only symbolizes 

the height, power, and intensity of a wave or signal. 

x̅ =  (A1 + A2 + A3 + ⋯ + An) / n     (2) 

where;  

A1, A2, A3, … , Anrepresents the individual amplitudes of the waveform n is the total number of amplitudes. 
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The standard deviation is a statistical measure that quantifies the amount of dispersion or spread in a set of values. 

It offers a means of evaluating the variance of the individual data points to the mean or average value. While a smaller 

standard deviation means that the data points are more closely clustered around the mean, a bigger standard 

deviation indicates greater variability or dispersion in the data. 

σ =  √
∑(xi − x̅)2

n − 1
        (3) 

where;  

𝑥𝑖 represents each value  

𝑥̅ denotes the mean or average of the sample 

∑ is the sum of the values 

𝑛 is the number of values in the sample 

The number of predefined clusters was determined before the K-means algorithm implementation. The elbow plot 

approach was used whereby a growing number of clusters were evaluated and the overall intra-cluster variation was 

computed by calculating the within-cluster sum of squares value (WCSS).  

WCSS =  ∑ (∑ distance (di , Ck)2dm
di in Ci

)
Cn
Ck

     (4) 

where;  

𝐶 represents cluster centroids  

𝑑 denotes the data point in each cluster 

∑ is the sum of the values 

The output from this research emphasizes a novel discovery on the distance between clusters’ centroids that extends 

the use of a single parameter by combining two parameters in the K-means clustering analysis, offering a unique 

perspective on the correlation of clusters available to a specific damage mechanism. A parameter was calculated based 

on the distance between centroids of clusters that are available for respective combined parameters in dimensionless 

form, enhancing signal analysis with new damage parameters as formulated in eqn. 5.  

𝐷 =  
𝑑𝑖 

∑ 𝑑𝑖 
𝑛
𝑖=1

×  100       (5) 

where;  

𝑛 represents each damage crack depth 

𝑑𝑖 denotes the distance between the centroids in each combined parameter 

∑ is the sum of the values 

RESULTS AND DISCUSSION 

During the incipient of the cracks, two forms of signals were identified i.e. asymmetric, 𝐴0 and symmetric, 𝑆0 wave 

modes which are typically found in wave propagation in thin structures as illustrated in Fig. 2. 
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Figure 2. Symmetrical (S0) and Asymmetrical (A0) waveform of signals for various crack depths 

Prior to clustering the signals, the optimum number of clusters was determined using WCSS analysis. The elbow plot 

of each parameter for the respective damage groups reveals that the ideal number of clusters to be used for clustering 

is two as shown by the results obtained in the figures below.  

 

Figure 3. Elbow plot for RMS 

 

Figure 4. Elbow plot for Mean 
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Figure 5. Elbow plot for Standard Deviation 

The signals were synthesized into several chunks before extracting the features. The K-means algorithm was 

computed in MATLAB for various combined parameters. The results obtained are given in Table 1. 

Table 1. Distance between centroids of clusters for various depths of crack 

Combined Parameters 
Depth of Crack 

(mm) 

Distance between Centroids 

of Clusters 

RMS & Standard Deviation 

(RMSSTD) 

0.75 6.603 

1.5 18.7323 

2.25 35.5045 

3 39.1602 

Mean & RMS (MEANRMS) 

0.75 7.343 

1.5 18.7287 

2.25 33.7587 

3 40.1696 

Mean & Standard Deviation 

(MEANSTD) 

0.75 7.5 

1.5 15.5808 

2.25 35.0366 

3 41.8826 

Plots of cluster assignments and the centroids for each cluster of different groups of damage were analyzed and the 

results obtained are shown in the figures below. It was observed that for combined parameter groups of RMS and 

standard deviation, the distance between clusters’ centroids increases gradually from 6.6% to 39.2% as the crack 

depth grows from 0.75 mm up to 3 mm. A similar trend was also observed for the mean and RMS; the distance 

between clusters’ centroids shows an increasing pattern, in which the distance rapidly increases from 7.3% to 40.2% 

as the crack depth increases. The trend also reflects the combined parameter of mean and standard deviation wherein 

the distance between clusters’ centroid eventually rises from 7.5% to 41.9% as the crack depth increases. 
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Figure 6. MATLAB plot on cluster assignments and centroids for each cluster for one sample of combined 

parameters (RMS & Standard Deviation) for 0.75mm crack 

 

Figure 7. MATLAB plot on cluster assignments and centroids for each cluster for one sample of combined 

parameters (RMS & Standard Deviation) for 1.5mm crack 

 

Figure 8. MATLAB plot on cluster assignments and centroids for each cluster for one sample of combined 

parameters (RMS & Standard Deviation) for 2.25mm crack 
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Figure 9. MATLAB plot on cluster assignments and centroids for each cluster for one sample of combined 

parameters (RMS & Standard Deviation) for 3mm crack 

CONCLUSION 

The analysis of acoustic emission signals with machine learning in damage detection of crack propagation has proven 

effective in the present research. The signal features of mean, standard deviation and amplitude are extracted for a 

group of data which are then clustered by K-means allowing the distance between the cluster’s centroid to be 

examined. The results reveal an increasing trend of distance between centroids of the combined features concerning 

crack depths. This method is considered novel and could be potentially used in structural health monitoring for large 

data sets. 
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