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The Monty Hall Problem is a well-known probabilistic brainteaser that gave rise to a huge 

amount of academic debate. This paper presents methodologies to discuss two lesser-known 

versions of the problem, displaying unexpected results. In the first variant, knowledge of the 

participants, and knowledge about knowledge of other participants impacts on the assessment 

of probability. In the second variant, different players receive the same information and reach 

different results, in another scenario they receive different information reaching the same result. 

In those variants it is unclear what factors probability depends on and what are its determinants. 

If probability’s determinants are unclear, ontic ex-post probability itself can be deemed scarcely 

reliable. The findings of this paper follow the footprint of Bruno de Finetti (1906-1985) who, 

quite provocatively, stated that “probability does not exist”. This anomaly is likely to invest other 

fields of human knowledge, especially those that more heavily rely on probability calculus. The 

dismaying conclusion of this paper is that probability, in its ex-post version, may not be an 

adequate tool for interpreting the world we live in and for understanding the complexity of reality 

and the provisional nature of our knowledge. 

Keywords: Epistemic probability, ontic ex-post probability, decision-making, information, 

knowledge. 

 

INTRODUCTION 

The Monty Hall Problem (hereinafter MHP or ‘the Problem’) finds its origins in the popular TV show Let’s Make A 

Deal! broadcasted in the US since the 1960’s for nearly 30 years, although with some interruptions. Even though the 

format of the TV game could be changed at some extent by the host (Monty Hall) to the purpose of increasing 

suspense and the interest of spectators, the standard version is well-known. A player is shown three doors; one of 

them conceals a valuable prize, the other two doors hide no prize, kind of. The player chooses one of the doors and 

wins whatever is hidden behind it. However, after the player’s initial choice, the host, who knows where the prize is, 

opens another door, which is empty, and offers the player a chance to stick to her initial choice or switch. Such a 

simple problem attracted attention of the scientific community. A lot of researchers published about the MHP on 

academic journals specializing in fields as varied as statistics, mathematics, physics, economics, psychology, 

education science and philosophy. A Google Scholar search of ‘Monty Hall Problem’ carried out in 2024 retrieved 

more than 35,000 academic papers, scientific articles and books, some of them cited hundreds of times. The fierce 

debate that revolves around the MHP demonstrates the importance and depth of topics it gives rise to. Indeed, the 

MHP is so rich in nuances and details that research, which started in 1975 with two letters to The American 

Statistician, is not over and there is still room for new and original reasoning about it. 

The MHP displays features different from, say, tossing a coin in as much as the former deals with assessing probability 

of an event that has already occurred (hiding the prize behind a door) whereas the latter is about something which 

still has to occur. As shown in the section about Random Epistemic Sequence, this makes all the difference. 
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Probability has an impact on almost all sciences (Hájek, 2023), the most affected being quantum mechanics, 

economics, and financial trading, without forgetting that all sciences where hypothesis testing applies, are also 

heavily influenced by probability. 

In the following, section 2 presents a review of the existing literature, section 3 describes some of the Problem 

displaying interesting features that will be analyzed in details in section 4. Section 5 discusses the results and section 

6 concludes. 

LITERATURE REVIEW 

Academic interest in the Problem took off in 1975, when Steve Selvin sent a couple of letters to The American 

Statistician (Selvin, 1975a; Selvin, 1975b), presenting a solution to the statistical puzzle known as the Monty Hall 

Problem. Since then, the academic world started a debate around the MHP and its many variants, which has not 

terminated yet. Although the solution of the standard problem is pretty well-known, still it raises doubts and fifteen 

years after publication of Selvin’s letters, when Marilyn vos Savant stated the correct answer in her column on the 

Parade Magazine (vos Savant, 2013), she received thousands of irate responses, some sexist comments about 

women’s understanding of stats and even insults. A justification of those mistaken responses (of course, not of the 

sexist and insulting ones, that deserve no justification) is that the Problem is deeply counter-intuitive and based on 

numerous tacit assumptions. In a newspaper interview, Stanford University’s statistician Diaconis said “Our brains 

are just not wired to do probability problems very well, so I'm not surprised there were mistakes” (Tierney, 1991). 

This is indirectly confirmed by the many papers published on psychology, economics, education and philosophy 

journals (Granberg and Dorr, 1998; Bradley and Fitelson, 2003; Slembeck and Tyran, 2004; Baumann, 2005; Saenen 

et al., 2015; Dupont and Durham, 2018; to mention just a few). When, in the final stage of the game, there are just 

two closed doors left and the prize is behind one of them, the most natural response seems to be that each door carries 

equal probabilities to conceal the prize. However, the untold assumption is ‘lacking further information’, a statement 

that completely overturns the problem. Despite a later attempt to unify epistemic and ontic probability (Nakajima, 

2019), the two concepts are regarded as irreconcilable to each other by most authors. At that point, epistemic 

probability comes to the foreground and takes the dominant position in the face of statistical (or ontic) probability, 

valid until then. Indeed, the standard formulation of MHP has been criticized mainly because either some details are 

missing (VerBruggen, 2015) or for other reasons. One alternative criticism assumes Host is lazy or tired (Rosenthal, 

2008) and tries to minimize his walking effort by choosing, whenever he got the freedom to do so, to open the lowest-

numbered door. This assumption changes epistemic probability but is not usually specified in the description of the 

Problem. Indeed, some versions state that Host ‘randomly opens an empty door’ whereas in others he simply ‘opens 

an empty door’. Verbalizing the question may make all the difference. As Morgan et al. (1991, p.284) point out, “this 

apparently innocuous little problem can be erroneously ‘solved’ in a variety of ways” and “the nature of these errors 

can be quite subtle”. That is the power of not spelled-out assumptions that can influence the outcome. Among the 

many studies on the Problem, a prominent position must be assigned to Rosenhouse (2009), an entire book dedicated 

to the MHP that analyzes in depth 10 of its variations, producing a treatise on statistics suitable for undergrad and 

postgrad courses alike. The author digs into several interesting considerations related to the variants he presents. 

Conditional probability and Bayes’ theorem are used to explain the Random Monty scenario whereas Fernandez and 

Piron (1999) make reference to the Nash equilibrium to suggest optimal strategies (Bierman and Fernandez, 1999). 

Ensslin and Westerkamp (2019) assume Host is trying to minimize Player’s chances of success and propose a counter-

strategy she can use to defend herself against what they call ‘evil showmaster’. Baumann (2005) took off from the 

MHP to discuss, from a philosophical viewpoint, whether the single-case probability can equally sit within the 

statistical debate where results are subject to the Law of Large Numbers and are dubious outside it. A great deal of 

arguments has been generated by the interpretation of probability, with an apparently irreconcilable confrontation 

on whether qualification of probability is objective or subjective. This argument, which goes much beyond the Monty 

Hall Problem, gave rise to intense disagreements, reaching the most original conclusions, like ‘subjective probability 

does not exist’ (Zaman, 2019), ‘ontic probability does not exist’ (Slattery, 2015), ‘imprecise probability does not exist’ 

(Vicig and Seidenfeld 2012) to finish off with the definitive ‘PROBABILITY DOES NOT EXIST’ (capital in the text), 

an apparently paradoxical thesis stated by the authoritative statistician Bruno de Finetti (de Finetti, 1990), later 

supported by Nau (2001). 
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MATERIALS AND METHODS 

The purpose of this research is assessing the epistemic characteristics of probability by analyzing two variations of 

the standard Monty Hall problem and applying novel methodologies. One of the most interesting features of the 

Problem is that any minimal change in its assumptions may modify the outcome because of the impact on its 

epistemic environment. Probability depends on the information available; when new information arrives, so 

changing the ex-ante environment into an ex-post environment, evaluation of probability changes accordingly. For 

this reason, the section on epistemic and ontic probability first takes into account two well-known scenarios, Random 

Monty and Monty Fall. Indeed, probability is closely related to uncertainty, on its turn depending on our knowledge. 

“Probability […] if regarded as something endowed with some kind of objective existence, is […] a misleading 

misconception, an illusory attempt to exteriorize or materialize our true probabilistic beliefs” (de Finetti, 1990, p.x). 

As shown in this paper, minimal variations of actors’ knowledge do affect probabilistic evaluation; shifts in the 

epistemic sequence of events do affect probabilistic evaluation; apparently uninfluential changes do affect 

probabilistic evaluation, leading to wondering whether (ontic) probability exists at all. If different subjective 

evaluations materialize in different objective outcomes (and all at the same time), de Finetti’s paradoxical statement 

about non-existence of probability no longer seems so paradoxical. 

Random Epistemic Sequence 

Methodology used: modification of the sequence of events. 

The basic operations performed in the Monty Hall problem are: 

A. Organizer conceals the prize behind a door 

B. Player makes her initial guess about the location of prize 

C. Host opens an empty door  

D. Player makes her final decision about which door to open. 

That is pretty standard stuff. However, from an epistemic viewpoint it is interesting to analyze what happens when 

the four events A, B, C and D do not occur in that sequence. For example, Organizer may have the chance to hide the 

prize after Player’s initial selection (sequence B, A, C, D). In this case, knowledge of Player’s choice takes a major role, 

as Organizer can be assumed to always be trying to minimize the cost to the show and therefore exploiting its 

knowledge to deceive Player. At the contrary, its ignorance of Player’s choice may lead to different results. The 

analysis of all possible combinations of sequence and knowledge presents epistemic scenarios that completely 

overturn the solution patterns. A limitation in this analysis is the number of mutual knowledge levels that are 

considered. Organizer may, or may not, know Player’s choice (if the latter occurs first) and Player may, or may not, 

know whether Organizer is aware of her choice. The complexity of the example goes rapidly up if we take into account 

schemes like ‘I know that you know that I know, …’ (as per common knowledge, Aumann, 1976). In this study, no 

more than two levels of mutual knowledge are investigated as the purpose is discovering the impact of epistemic 

probability on the decision-making process, not reaching the highest probability of winning the prize or suggesting 

an optimal strategy. Once the relationship between knowledge and probability is established, the goal of this section 

will be considered achieved. 

Two Players 

Methodology used: modification of epistemic statuses. 

The scenario with two players is interesting because of their potentially different epistemic degrees. Two players are 

shown the three closed doors at the same time and they select one of the doors. They may (i) both select the winning 

door, (ii) one winning and one empty door or both empty doors. Moreover, in the last case, they may (iii) both choose 

the same empty door or (iv) different ones. Whereas scenarios (i) and (iii) do not provide particular food for thought, 

as both players share the same information and reach the same conclusion, scenarios (ii) and (iv) lead to interesting 

outcomes. 

The two methodologies used in this study have wide application in many other real-life events. 
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ONTIC AND EPISTEMIC PROBABILITY 

Before digging into the scenarios discussed in this paper, two scenarios are worth a brief presentation for reference 

and comparison. In the following, we will assume Organizer being an impersonal entity, Host being a gentleman (as 

in the TV show), and Player being a lady, with all pronouns declined accordingly, with an eye to inclusive language 

and the other to confusion avoidance. 

Random Monty 

Host is assumed to ignore the location of prize. He can open any door except the one selected by Player. In case Host 

opens the door concealing the prize, the game stops immediately. At that point, there are two possible ways to 

continue: the game is terminated and perhaps it continues with another participant or the game is repeated with the 

same participant. This scenario relaxes epistemic characteristics of Host, that is, of an Agent not directly involved in 

the decision-making process. Nevertheless, his behavior carries information and therefore influences Player’s 

epistemic status. As explained in detail by Rosenhouse (2009), the winning probabilities of sticking or switching are 

now 50% each. 

Monty Fall 

A slightly different scenario is the case in which Host is supposed to slip on a banana´s peel and accidentally open 

any door. This scenario increases the percentage of null games, because either Host may reveal the winning door or 

may open the door selected by Player. In both cases the game terminates and again either of the two possible 

continuations described above could occur. This scenario modifies the epistemic environment even more profoundly 

than the Random Monty but conceptually (and mathematically) the outcome is similar: an information is revealed 

that should not. As described in Rosenthal (2008), winning probabilities are, again, 50% on either door. 

Random Epistemic Sequence 

The basic operations performed in the Monty Hall problem are: 

Organizer hides prize 

Player selects a door 

Host opens an empty door 

Player decides whether to stick or switch 

Now we are going to investigate how Player’s winning probabilities vary as events occur in a non-standard sequence 

and as agents’ knowledge changes. Simple permutation of the four steps yields 4! = 24 possible sequences, as shown 

in Table 1. Yet, Table 1 can be, at a large extent, simplified. Events B, C, and D must always occur in this sequence, 

otherwise it would no longer be an instance of Monty Hall game. Only event A may change its position in the sequence. 

Therefore, several sequences in Table 1 can be canceled out; these are indicated by the grey rows. 

Table 1: Possible permutations of MHP events’ sequence. Grey rows indicate non-MHP scenarios 

  Steps of the game 

Permutation I II III IV 

1 A B C D 

2 A B D C 

3 A C B D 

4 A C D B 

5 A D B C 

6 A D C B 

7 B A C D 

8 B A D C 

9 B C A D 

10 B C D A 
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  Steps of the game 

Permutation I II III IV 

11 B D A C 

12 B D C A 

13 C A B D 

14 C A D B 

15 C B A D 

16 C B D A 

17 C D A B 

18 C D B A 

19 D A B C 

20 D A C B 

21 D B A C 

22 D B C A 

23 D C A B 

24 D C B A 

Only four scenarios need to be analyzed further, namely 1 (A, B, C, D), 7 (B, A, C, D), 9 (B, C, A, D), and 10 (B, C, D, 

A). In these, and many other examples in probability, information assumes great importance. This may sound a trivial 

statement, especially in the light of conditional probability and Bayes’ theorem. Yet, the case under study is different 

from commonplace ‘importance of information’ as apparently irrelevant information has an impact on the outcome 

and the resulting decision. As seen in the Random Monty scenario, it is not immaterial whether Host knows, or 

ignores, the location of prize, but it is also important whether Organizer knows, or ignores, Player’s choice before 

hiding the prize behind a door, and whether Player knows, or ignores, about the other two agents’ knowledge. For the 

purpose of reasoning, the scheme will be limited to the following scenarios: 

• Organizer may know (k), or not know (n), Player’s choice 

• Host may know (k), or not know (n), the location of prize but he never opens the door chosen by Player (i.e., 

Random Monty is allowed but Monty Fall is not) 

• Player may know (k), or not know (n), about Organizer’s knowledge of her choice 

• Player may know (k), or not know (n), about Host knowledge of prize location. 

Based on knowledge available to each Agent (a collective name comprising Organizer, Host and Player), the above 

scenarios present different epistemic probabilities, as shown in Table 2. 

Table 2: Probabilities of events A, B, C and D under different scenarios (k=knows; n=ignores). 

Scenario I I% II II% III III% IV IV% Choice Stick% Switch% Rational% Mult 

1nk== A 1/3 B 1/3 C 1; 1/2 D 2/3 W  1/3  2/3  2/3 4 

1nn=k A 1/3 B 1/3 C 1/2* D 1/2 =  1/2  1/2  1/2 2 

1nn=n A 1/3 B 1/3 C 1/2* D 2/3 W  1/2  1/2  1/2 2 

7kkk= B 1/3 A 1 C 1/2 D 1 T 1 0 1 2 

7kkn= B 1/3 A 1 C 1/2 D 2/3 W 1 0 0 2 

7knkk B 1/3 A 1 C 1/2* D 1 T 1 0 1 1 

7knkn B 1/3 A 1 C 1/2* D 1 T 1 0 1 1 

7knnk B 1/3 A 1 C 1/2* D 1/2 = 1 0  1/2 1 

7knnn B 1/3 A 1 C 1/2* D 2/3 W 1 0 0 1 
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Scenario I I% II II% III III% IV IV% Choice Stick% Switch% Rational% Mult 

7nk== B 1/3 A 1/3 C 1; 1/2 D 2/3 W  1/3  2/3  2/3 4 

7nn=k B 1/3 A 1/3 C 1/2* D 1/2 =  1/2  1/2  1/2 2 

7nn=n B 1/3 A 1/3 C 1/2* D 2/3 W  1/2  1/2  1/2 2 

9knk= B 1/3 C 1/2 A 1 D 1 T 1 0 1 2 

9knnk B 1/3 C 1/2 A 1 D 1/2 = 1 0  1/2 1 

9knnn B 1/3 C 1/2 A 1 D 2/3 W 1 0 0 1 

9nn=k B 1/3 C 1/2 A 1/2 D 1/2 =  1/2  1/2  1/2 2 

9nn=n B 1/3 C 1/2 A 1/2 D 2/3 W  1/2  1/2  1/2 2 

10knk= B 1/3 C 1/2 D 1 A 1 T 0 0 0 2 

10knnk B 1/3 C 1/2 D 1/2 A 1 = 0 0 0 1 

10knnn B 1/3 C 1/2 D 2/3 A 1 W 0 0 0 1 

10nn=k B 1/3 C 1/2 D 1/2 A 1/2 =  1/2  1/2  1/2 2 

10nn=n B 1/3 C 1/2 D 2/3 A 1/2 W  1/2  1/2  1/2 2 

                  Average 56.67% 33.33% 50.83%   

In the first column, an initial digit represents the scenario from Table 2, and subsequent letters (‘k’ or ‘n’) indicate 

the epistemic status of each Agent: the first letter refers to Organizer, the second to Host, third and fourth refer to 

Player’s knowledge of Organizer’s and Host’s knowledge, respectively. An equal sign (‘=’) indicates non-relevance. In 

the ‘Choice’ column, ‘T’ means sTick and ‘W’ indicates sWitch. Asterisks (‘*’) indicate scenarios in which the randomly 

opened door may reveal the location of prize. All values displayed in Table 2 are discussed in detail in the Appendix.  

Scenario 1 contains only 3 rows because it cannot happen that Organizer knows about Player’s choice as in that 

scenario event A always occurs first; therefore, the sequence 1k** is impossible because Organizer cannot know about 

Player’s choice. The purpose of Table 2 is computing statistics of wins under the Stick, Switch and Rational decision, 

which may not always be switching. The column ‘Mult’ represents the multiplying factor needed for working out 

averages: the default value 1 gets multiplied by 2 for every ‘=’ sign in the scenario, so taking into account the fact that 

the equal sign stands for both ‘k’ and ‘n’. The scenarios in which sticking wins are more numerous than those in which 

a win is given by switching, against an expected 33% versus 67%, as in the Classical Monty. The Stick+Switch 

percentages do not add up to 1 since in some cases under scenario 10, Player will lose no matter whether she sticks 

or switches. Knowledge definitely has an impact on outcome of the Monty Hall Problem. This variation of the MHP 

suggests that determinants of probability are the doors but also the information known by Player, Host’s knowledge 

about prize location, Organizer’s knowledge, and decision-making process, or any combination of the above. 

Moreover, as discussed in the Appendix, knowledge does display hierarchy. In particular, when Player is aware that 

Organizer knows her choice, this piece of information takes priority over knowledge (or ignorance) of Host’s 

knowledge about prize location, which was instead crucial in other scenarios. The search for the determinants of 

probability is getting more and more complicated. 

Two Players Scenario 

Let us assume that two players (Mrs. A and Mr. B) participate in the same game at the same time. However, for 

obvious reasons, they do not know about presence of the other participant and each player is being shown the content 

of the open door privately, that is, Host may open a different door to each player. The four possible scenarios are 

those described in section 3.2. Without loss of generality the prize is assumed to be behind door X. Black doors are 

closed, white doors are open. 

Scenario 1 (figure 1) 

i) Pr(Prize behind door X | Prize behind door X or Y or Z) = 1/3 
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Figure 1. Both players choose door X, Host opens door Y 

ii) Pr(Prize behind door X | Host opens door Y) = 1/3 

iii) Pr(Prize behind door Z | Host opens door Y) = 2/3 

In this case, following Bayes’ theorem, both players assign ⅓ probability to win if they stick and ⅔ if they switch to 

door Z. This is the standard scenario. 

Scenario 2 (figure 2) 

i) Pr(Prize behind door X or prize behind door Y | Prize behind door X or Y or Z) = 1/3 

 

Figure 2. Player A chooses door X, Player B chooses door Y, Host opens door Z 

ii-A) Pr(Prize behind door X | Host opened door Z) = 1/3 

ii-B) Pr(Prize behind door Y | Host opened door Z) = 1/3 

iii-A) Pr(Prize behind door Y | Host opened door Z) = 2/3 

iii-B) Pr(Prize behind door X | Host opened door Z) = 2/3 

According to Player A, door X carries ⅓ probability and door Y carries ⅔. The opposite is true for Player B. They share 

the same information but reach different conclusions. 

Scenario 3 (figure 3) 

i) Pr(Prize behind door Y | Prize behind door X or Y or Z) = 1/3 

 

Figure 3. Both players choose door Y, Host opens door Z 

ii) Pr(Prize behind door Y | Host opened door Z) = 1/3 

iii) Pr(Prize behind door X | Host opened door Z) = 2/3 

Again, Player A and Player B assign ⅓ probability to the selected door, and ⅔ to the other door. 

Scenario 4 (figure 4) 

i) Pr(Prize behind door Y or prize behind door Z | Prize behind door X or Y or Z) = 1/3 

 

Figure 4. Player A chooses door Y, Player B chooses door Z. Door Y (black-white) is closed for Player A but open 

for Player B, door Z (white-black) is the other way around 

ii-A) Pr(Prize behind door Y | Host opened door Z) = 1/3 

ii-B) Pr(Prize behind door Z | Host opened door Y) = 1/3 

Door X Door Y Door Z

Prize

A's choice

B's choice

Door X Door Y Door Z

Prize B's choice

A's choice

Door X Door Y Door Z

Prize A's choice

B's choice

Door X  Door Y  Door Z

Prize A's choice B's choice
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iii-A) Pr(Prize behind door X |Host opened door Z) = 2/3 

iii-B) Pr(Prize behind door X | Host opened door Y) = 2/3 

In this scenario Host cannot open and show the same empty door to both players, as there is no such a door available. 

Door X cannot be opened because it conceals the prize, door Y has been selected by Player A and door Z by Player B. 

The only possible way ahead is opening door Z privately to Player A and door Y, privately as well, to Player B. The 

players do not know that the content of the other door has been shown to the other participant, otherwise it would 

be too easy to guess the prize location. The players receive different information. Player A assigns ⅓ probability to 

door Y, ⅔ to door X, and 0 to door Z whereas Player B assigns ⅓ probability to door Z, ⅔ to door X and 0 to door Y. 

Scenarios 1 and scenario 3 are not particularly interesting. Yet, we have a paradoxical situation for which in scenario 

2 both players share the same common knowledge but diverge in assigning probabilities, depending on their 

respective initial choice, whereas in scenario 4 they have different information about the open door but both agree in 

assigning ⅔ probability to door X (switch). This raises with even more strength the question: what are the 

determinants of probability? The door or the information players possess and their initial decision? Differently from 

the classical MHP case, and according to Bayes’ theorem, conditional probability depends on information each player 

subjectively possesses. Objective probability does not seem to play any role. 

DISCUSSION 

Meaning of Probability 

Non-standard Monty Hall scenarios display unexpected results. The Two-Player version makes it rather clear that 

not only information but also opinions (guess, in this case) impact on probability. Indeed, when the two players select 

different doors, one of which is right (figure 2 in section 4.4), they both assign ⅓ probability to the selected door and 

⅔ to the other one – and they are both right! This results in an unclear overall evaluation since the same door carries 

⅓ probability for one player and ⅔ for the other – and the opposite applies to the other door. Computer simulation 

confirms that both players win according to their expected probabilities, even though their probability assessment 

are different. At this point it is difficult to state what is the ontic probability associated to each door as it depends on 

the initial choice of the player, which is unrelated to the real location of the prize. This is compliant with the Bayesian 

interpretation of probability assignments as the representation of our degree of belief in a given proposition. 

However, despite the fact that the assessments are different, they are both rational and both turn out to be right. De 

Finetti (2008, p.3) summarizes it as follows: “it is senseless to speak of the probability of an event unless we do so in 

relation to the body of knowledge possessed by a given person”. Yet, this example shows that probability does not 

only depend on ‘body of knowledge’ but on individual opinions, too. So far, one can conclude that each player assigns 

probability according to his/her level of knowledge and therefore that probability depends on his/her mind rather 

than on the door. The matter gets even more complicated than it already looks when we analyze Table 2. In this case, 

probabilities follow the random sequence of events and are heavily impacted by each agent’s knowledge about other 

agents’ knowledge. This consideration moves probability determinants from information owned by Player to Host’s 

and Organizer’s, or at least involves their knowledge, as it seems confirmed by discussion of the Random Epistemic 

Sequence. Moreover, in the Random Monty scenario, probability seems to depend on Host’s knowledge and in the 

Monty Fall scenario, its determinants are in Fate’s hands (the banana´s peel). In this case, regardless of whether Host 

got the information about the winning door or otherwise, Player should make her choice based on what happened on 

stage. One could even speculate on the probability of Host slipping on the banana peel or on the unlikely probability 

that there is one on the floor. Indeed, according to the examples above, probability seems to depend on a multiplicity 

of factors, not all of them directly related to the prize location – and some even totally unrelated to it. At this point 

one may be drawn to agree with de Finetti (1990, p.x): “My thesis, paradoxically, and a little provocatively, but 

nonetheless genuinely, is simply this: PROBABILITY DOES NOT EXIST”. Less paradoxical but equally strong is 

Carnap (1945, p.8) who introduces two different concepts of ‘probability’, that he calls probability1 and probability2: 

“When we look at the formulations which the authors themselves offer in order to make clear which meanings of 

‘probability’ they intend to take as their explicanda, we find phrases as different as ‘degree of belief,’ ‘degree of 

reasonable expectation,’ ‘degree of possibility,’ ‘degree of proximity to certainty,’ ‘degree of partial truth,’ ‘relative 

frequency,’ and many others”. 
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This leads to differentiate between the probability2 (‘relative frequency in the long run’, as the coin I am about to toss 

– ex-ante probability) as the one referred to events that have not happened yet versus probability1 (‘degree of 

confirmation’) to those events that have already occurred but whose outcome in still unknown (the door that hides 

the prize – ex-post probability). It is difficult to disagree with Carnap (1945, p.13), according to whom “[t]his is 

primarily due to the unfortunate fact that both concepts are designated by the same familiar, but ambiguous word 

‘probability’”. The matter is taken up again by Hacking (2006, p.13): 

“Poisson and Cournot said we should use the ready-made French words chance and probabilité to mark the same 

distinction. Before that Condorcet suggested facilité for the aleatory concept and motif de croire for the epistemic 

one […]. Bertrand Russell uses ‘credibility’ for the latter […]. There have been many other words. We have had 

Zuverlässigkeit, ‘propensity’, ‘proclivity’, as well as a host of adjectival modifiers of the word ‘probability’, all used 

to indicate different kinds of probability”. 

Confusion is great under the probability sky! 

The issue of identification of probability determinants seems a hard nut to crack. However, we believe that the 

difficulty comes from the mistake (highlighted by the authors cited above) that the same word is being used to indicate 

two deeply different concepts, only apparently akin to each other. When I toss a coin, I must distinguish between 

‘before’ and ‘after’. Before tossing it, it is pretty unanimously agreed upon 50% chance to get head as well as tail. But 

let’s suppose that after tossing the coin, I cover it with my hand and then assess the probability of head or tail. This 

is a question that gives rise to much more controversial answers. Some may insist that chances are 50-50 whereas 

others may state that at that point it is no longer a matter of probability. The single-case probability has been 

discussed by Baumann (2005), criticized by Levy (2007), counter-responded by Baumann (2008), with Sprenger 

(2010) temporarily settling the matter. For some authors, whatever the guess, the answer is either right or wrong: 

once the coin has landed, probability can only be 1 or 0, no more ½. Even if we agree on the different probabilistic 

result in the aftermath of an uncertain event, and on the different meaning of probability (in this case picking up 

Carnap’s probability1), the question remains unanswered: what are the determinants of probability1? So far in the 

MHP we have identified five possible dependencies: the doors, Player’s mind, Organizer’s mind, Host’s mind or Fate. 

Other probabilistic problems may show dependence on different factors. Nevertheless, this is not the end of the story. 

As section 4.3 points out, probability (whatever meaning is being assigned to the word) might be an entity unevenly 

shared between all those actors. If it depends on a complex relationship between the knowledge of Player, Host and 

Organizer – and dynamically changing as each one of them acquires more information – the concept of probability 

assumes some ethereal borders, a concept to which assigning mathematical formulas seems something more akin to 

wishful thinking than logical reasoning. The Random Epistemic Sequence is different from assessing the probability 

before tossing a fair coin, where all knowledge of the world would not change the fact that outcome probability is (as 

the number of tosses tends to infinity) 50% head and 50% tail. Therefore, it seems clear that the two kinds of 

probability are not the same and it is also deeply doubtful (agreeing with Carnap) whether the same name should be 

used to designate two such wide apart phenomena. 

Probability pops up anywhere in our daily life, from crossing a road to investing money, to undergoing a surgical 

treatment, letting alone quantum mechanics that has probability at its core. Every decision we make is a decision 

about the future and, since nobody owns the crystal ball, we all make much heavier use, albeit informally, of 

probability than we usually think. 

Interpretations of Probability 

In the Stanford Encyclopedia of Philosophy, Alan Hájek (2023) explains in details the various and different 

interpretations of probability. However, whatever kind of interpretation one decides to adopt, it falls short of 

explicative power as far as ex-post probability is concerned. According to the author, “an interpretation should be 

precise, unambiguous, non-circular, and use well-understood primitives” (ibid, p.5). Section 4.3. about Random 

Epistemic Sequence, demonstrates that it is difficult, to say the least, to precisely and unambiguously identify 

probability determinants, something that clashes with those basic criteria, especially if some sort of similarity can be 

drawn between ‘primitives’ and ‘determinants’ in this context. Discussing the Applicability to the Frequencies 

criterion, the author states that “an interpretation should render perspicuous the relationship between probabilities 

and (long-run) frequencies” (ibid. p.6). This is fundamental to any interpretation of probability – and indeed, Two-

Player scenario 2 complies with this basic requirement: despite each player having different information from the 
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other, they are both right and long-run frequencies confirm their respective views. Also, the criteria Applicability to 

Rational Beliefs (“knowing that one event is more probable than another, a rational agent will be more confident 

about the occurrence of the former event”, ibid, p.6) and Applicability to Rational Decision (“an interpretation should 

make clear how probabilities figure in rational decision-making”, ibid, p.6) fail to apply to scenario 2. Although each 

player would choose the door that carries more probabilities, they will make different decisions (as they own different 

information) but still they will prove both right on long-run. Hájek’s disheartening conclusion is “It should be clear 

from the foregoing that there is still much work to be done regarding the interpretations of probability” (ibid, p.34). 

If there is much work to do about ex-ante probability, the judgement on ex-post probability seems even more ethereal. 

A definitive conclusion suggests Jaynes (1968), according to whom, if two scenarios share the same epistemic 

condition, they should be assigned the same probability, which is not the case depicted by scenario 2. Ramsey (1926) 

admits that placing a bet changes the environment and therefore impacts on bettor’s opinion, something that justifies 

a shift in probability assessment. But, again, the long-run trial, the definitive reality check, confirms that, whatever 

the bet and whatever the opinion, both bettors are always right. This sounds like a logical contradiction, and even 

more so if, as described by scenario 4, when two bettors have different epistemic states, they may share the same 

opinion. If there is a border between creative confusion and illogical conclusion, that border has definitely been 

trespassed. Human beings have a natural tendency to disagree with each other but, as pointed out by Frances (2018), 

if two people, that share the same epistemic condition, disagree, there is evidence that one of them made a mistake. 

Again, this conflicts with the results of this study, confirming, once more, that ex-post probability does not obey the 

fundamental rules of probability, leading to a logical contradiction. 

CONCLUSION 

The conclusion of the previous reasoning, “paradoxically, and a little provocatively, but nonetheless genuinely, is 

simply this: PROBABILITY DOES NOT EXIST”. Indeed, “only subjective probabilities exist – i.e., the degree of belief 

in the occurrence of an event attributed by a given person at a given instant and with a given set of information. (De 

Finetti, 1990, p.3–4)”, to which we may add “and other (unspecified) factors”. 

According to our study, probability seems to depend on very different factors, some directly related to the problem 

at hand (the doors and Player’s information), others only indirectly related to it (Host’s and Organizer’s knowledge 

as well as Player’s knowledge about Host’s and Organizer’s knowledge), and some totally unrelated to the problem at 

hand. Indeed, in our opinion this is the most striking finding of this paper. It may even depend on some completely 

unrelated factors, or others that we have not discovered, or hypothesized, yet. Given these premises, de Finetti’s 

statement comes as the most, and perhaps only, logical conclusion. If probability depends on such a wide range of 

different factors, it can be concluded that, according to “[t]he radical part of de Finetti’s claim [, …] there is no 

‘objective’ semantics for probability” (Jeffrey, 1984:85), at least in its ex-post, or Carnap’s probability2, meaning. A 

mathematical concept that lacks an objective semantics does not exist as such, although, pragmatically, “in favourable 

circumstances frequency can be a good tool for evaluating probabilities” (Galavotti, 1989:246). Whereas on the one 

side probability is undeniably useful to help solving innumerable practical problems, on the other side it is still 

unclear whether it leads to ‘real’ knowledge. Our analysis of spurious variants of the Monty Hall problems found that 

probability may provide the right answer using the wrong procedure and that we can mistake the wrong solution for 

the right one despite making use of mathematically correct calculations. This is particularly worrying with respect to 

our confidence to be achieving probabilistic knowledge. If, as shown in the Two Players versions of the Problem, 

statistical results confirm that Player’s ambiguous, or even plainly wrong, interpretation of the reality leads to right 

results, we cannot avoid the question to invade other fields of science, starting from, but not necessarily limiting to, 

those that more than others rely on probability, as quantum physics, that is, the very essence of our being. Research 

on the deepest meaning of probability goes on – and rightly so – together with other branches of science. Yet, 

according to scientific method, researchers must always be ready to work as hard to the goal of falsifying their own 

findings. Including supporters of ontic probability and, of course, the authors of this paper. 

Appendix – EPISTEMIC TABLE OF EVENT SEQUENCES 

In the following, the meaning of all lines contained in Table 2 are explained in details. 

1nk== 

I: (A=1/3) Organizer randomly hides the prize behind any of the three doors 
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II: (B=1/3) No matter whether Player knows, or ignores, that Organizer does not know her choice, she will pick a 

door at random 

III: (C=1 or 1/2) If Player selected the right door, then Host can open any of the two empty doors, whereas in the 

opposite case, only one door can be opened 

IV: (D=2/3) According to Bayes’ theorem, switching door carries 2/3 probability against 1/3 sticking 

Choice: Switch 

Winning chances: 2/3 

1nn=k 

I: (A=1/3) As 1nk== I 

II: (B=1/3) As 1nk== II 

III: (C=1/2*) If Hosts does not know the location of prize, he can open any door except the one selected by Player. If 

he opens the door concealing the prize, the game immediately stops and may terminate or repeat. In any case (as 

demonstrated in section 4.2 Random Monty) the probability of opening an empty door is 1/2. 

IV: (D=1/2) Player knows that Host ignores the location of prize and therefore, according to Random Monty, 

probability is 1/2 on each door 

Choice: Not relevant 

Winning chances: ½ 

1nn=n 

I: (A=1/3) As in 1nk== I 

II: (B=1/3) As 1nk== II 

III: (C=1/2*) As in 1nn=k 

IV: (D=2/3) Player ignores that Host does not know the location of prize and therefore she follows the Bayes’ theorem, 

switching door as it carries 2/3 probabilities 

Choice: Switch 

Winning chances: ½ 

7kkk= 

I: (B=1/3) Player selects any of the three closed doors 

II: (A=1) Organizer knows Player’s selection and therefore assumes that, based on Bayes’ theorem, she will switch. In 

order to minimize costs for the show, it applies the most rational decision, that is, hiding the prize behind the door 

Player selected 

III: (C=1/2) Host knows the location of prize and the selection of Player, which coincide. Thus, he opens any one of 

the two remaining doors with 1/2 probabilities 

IV: (D=1) Player is aware that Organizer knows her selection, therefore she counters Organizer’s strategy by sticking 

Choice: Stick 

Winning chances: 1 

7kkn= 

I: (B=1/3) As in 7kkk= (I) 

II: (A=1) As in 7kkk= (II) 

III: (C=1/2) As in 7kkk= (III) 
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IV: (D=2/3) Player is not aware that Organizer knows her selection, therefore she believes to be following the 

standard Bayes’ theorem and that switching grants her 2/3 wining chances 

Choice: Switch 

Winning chances: 0 

7knkk 

I: (B=1/3) As in 7kkk= (I) 

II: (A=1) As in 7kkk= /II) 

III: (C=1/2*) As 1nn=k (III) 

IV: (D=1) As in 7kkk= (IV) 

Choice: Stick 

Winning chances: 1 

7knkn 

I: (B=1/3) As in 7kkk= (I) 

II: (A=1) As in 7kkk= (II) 

III: (C=1/2*) As 1nn=k (III) 

IV: As in 7kkk= IV. Despite not knowing that Host ignores the location of prize, Player’s second choice is driven only 

by her awareness about Organizer knowledge of her initial selection. This scenario clearly shows that some 

information (awareness of Organizer’s knowledge) carries priority over other information (awareness of Host’s 

knowledge of prize location). When assessing probability, information is subject to hierarchy. For this reasons, 

scenarios 7knkk and 7knkn yield the same result 

Choice: Stick 

Winning chances: 1 

7knnk 

I: (B=1/3) As in 7kkk= (I) 

II: (A=1) As in 7kkk= (II) 

III: (C=1/2*) As 1nn=k (III) 

IV: (D=1/2) If Player ignores that Organizer knows her initial selection but is aware that Host ignores the location of 

prize, she will follow the Random Monty scheme 

Choice: Not relevant 

Winning chances: ½ 

7knnn 

I: (B=1/3) As in 7kkk= (I) 

II: (A=1) As in 7kkk= (II) 

III: (C=1/2*) As 1nn=k (III) 

IV: (D=2/3) Whenever Player ignores whether Host knows the location of prize, she will follow Bayes’ theorem 

Choice: Switch 

Winning chances: 0 
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7nk== 

 I: (B=1/3) As in 7kkk= (I) 

II: (A=1/3) If Organizer does not know Player’s selection, it will conceal the prize at random behind any of the three 

doors 

III: (C=1 or 1/2) As in 1nk== (III) 

IV: (D=2/3) No matter whether Player is aware or ignores that Host knows the location of prize, she will follow Bayes’ 

theorem 

Choice: Switch 

Winning chances: 2/3 

7nn=k 

I: (B=1/3) As in 7kkk= (I) 

II: (A=1/3) As in 7nk== (II) 

III: (C=1/2*) As 1nn=k (III) 

IV: (D=1/2) No matter whether Player knows, or otherwise, that Organizer ignores her initial selection but is aware 

that Host ignores the location of prize, she will follow the Random Monty scheme 

Choice: Not relevant 

Winning chances: ½ 

7nn=n 

I: (B=1/3) As in 7kkk= (I) 

II: (A=1/3) As in 7nk== (II) 

III: (C=1/2*) As 1nn=k (III) 

IV: (D=2/3) As in 1nn=n (IV) 

Choice: Switch 

Winning chances: ½ 

9kkk, 9kkn= and 9nk== 

These scenarios do not exist as in all scenarios 9 Host opens a door before Organizer conceals the prize and therefore, 

he cannot be aware of location 

9knk= 

I: (B=1/3) As in 7kkk= (I) 

II: (C=1/2) Host can open any of the two doors not selected by Player 

III: (A=1) As in 7kkk= (II) 

IV: (D=1) As in 7kkk= (IV) 

The same reasoning of scenarios 7knkk and 7knkn about information priority applies 

Choice: Stick 

Winning chances: 1 

9knnk 

I: (B=1/3) As in 7kkk= (I) 

II: (C=1/2) As in 9knk= (II) 
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III: (A=1) As in 7kkk= (II) 

IV: (D=1/2) By being aware that Host ignores prize location, Player follows the Random Monty scheme 

Choice: Not relevant 

Winning chances: ½ 

9knnn 

I: (B=1/3) As in 7kkk= (I) 

II: (C=1/2) As in 9knk= (II) 

III: (A=1) As in 7kkk= (II) 

IV: (D=2/3) By ignoring that Host does not know prize location, Player follows Bayes’ theorem 

Choice: Switch 

Winning chances: 0 

9nn=k 

I: (B=1/3) As in 7kkk= (I) 

II: (C=1/2) As in 9knk= (II) 

III: (A=1/2) Organizer does not know Player’s choice and therefore it randomly conceals the prize behind any of the 

two remaining closed doors 

IV: (D=1/2) Player knows about Organizer’s random selection and therefore cannot but follow a random choice 

Choice: Not relevant 

Winning chances: ½ 

9nn=n 

I: (B=1/3) As in 7kkk= (I) 

II: (C=1/2) As in 9knk= (II) 

III: (A=1/2) As in 9nn=k 

IV: (D=2/3) As in 9knnn 

Choice: Switch 

Winning chances: ½ 

10kkk, 10kkn= and 10nk== 

These scenarios do not exist as in all scenarios 10 Host opens a door before Organizer conceals the prize and therefore, 

he cannot be aware of location 

10knk= 

I: (B=1/3) As in 7kkk= (I) 

II: (C=1/2) As in 9knk= (II) 

III: (D=1) Player is aware that Organizer knows her selection and therefore she believes that it will try to minimize 

cost for the show by hiding the prize behind her initial selection, confident that she will switch. In order to counter 

Organizer’s strategy, Player decides to stick, sure to be winning 

IV: (A=1) Organizer conceals the prize after Player’s second selection and easily does so nullifying her winning 

chances 

The same reasoning of scenarios 7knkk and 7knkn about information priority applies 
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Choice: Stick 

Winning chances: 0 

10knnk 

I: (B=1/3) As in 7kkk= (I) 

II: (C=1/2) As in 9knk= (II) 

III: (D=1/2) Whenever Player ignores that Organizer knows her selection but is aware that Host does not know the 

location of prize, she is left with random choice about the winning door 

IV: (A=1) As in 10knk= 

Choice: Not relevant 

Winning chances: 0 

10knnn 

I: (B=1/3) As in 7kkk= (I) 

II: (C=1/2) As in 9knk= (II) 

III: (D=2/3) If Player does not know that Host ignores the prize location, she believes to be in a standard Bayes’ 

theorem scenario, believing that switching will increase her winning chances 

IV: (A=1) As in 10knk= (IV) 

Choice: Switch 

Winning chances: 0 

10nn=k 

I: (B=1/3) As in 7kkk= (I) 

II: (C=1/2) As in 9knk= (II) 

III: (D=1/2) As in 10knnk (III) 

IV: (A=1/2) If Organizer ignores Player’s selection, it will randomly conceal the prize 

Choice: Not relevant 

Winning chances: ½ 

10nn=n 

I: (B=1/3) As in 7kkk= (I) 

II: (C=1/2) As in 9knk= (II) 

III: (D=2/3) As in 10knnn (III) 

IV: (A=1/2) As in 10nn=k (IV) 

Choice: Switch 

Winning chances: ½ 
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