
Journal of Information Systems Engineering and Management
2025, 10(28s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An Enhancement of the Jaro-Winkler Fuzzy Searching

Algorithm Applied in Library Search Engine

Karl Benedict K. Malaga 1, Korinne L. Verdillo 2, Elsa S. Pascual 3

1 Student in Computer Science, College of Information Systems and Technology Management, University of the City of Manila, Manila,

Philippines. Email: malaga.karlbenedict@gmail.com, Orcid Id: 0009-0008-8702-9389
2 Student in Computer Science, College of Information Systems and Technology Management, University of the City of Manila, Manila,

Philippines. Email: korinnverdillo@gmail.com, Orcid Id: 0009-0008-6093-6501
3 Faculty in Computer Science, College of Information Systems and Technology Management, University of the City of Manila, Manila,

Philippines. Email: espascual@plm.edu.ph

*Corresponding Author: Karl Benedict K. Malaga

ARTICLE INFO ABSTRACT

Received: 30 Dec 2024

Revised: 12 Feb 2025

Accepted: 26 Feb 2025

The Jaro-Winkler algorithm is widely used for approximate string matching, offering reliable

similarity calculations between two strings. However, its performance declines with increasing

string length due to bias against longer strings and its reliance on prefix similarity, which neglects

significant suffix matches. This paper presents an Enhanced Jaro-Winkler algorithm that

addresses these challenges by integrating a Rabin-Karp Rolling Hash – inspired technique and

applying suffix weights to balance the prefix bias. Experimental evaluations using 100 words

commonly found in book titles demonstrate the enhanced algorithm’s robustness across varying

fuzzy match thresholds (0.7, 0.8, and 0.9). Unlike the traditional algorithm, where higher

thresholds reduce match accuracy, the enhanced algorithm consistently achieves 100% accuracy

in identifying titles regardless of query position or threshold. Additionally, it showcases superior

performance by improving the quality and quantity of retrieved results by a significant number

of titles compared to the traditional approach. These advancements highlight the algorithm’s

potential for improving search performance in applications requiring precise and flexible string

matching.

Keywords: Approximate String Matching, Fuzzy Matching, Fuzzy Logic, Jaro-Winkler.

INTRODUCTION

Fuzzy Searching or Fuzzy Matching is another term for Approximate String Matching. It is a technique used to

compare strings that partially match rather than exactly. The algorithms in Fuzzy Matching aim to determine the

degree of closeness between two strings and decide whether they are considered as fuzzy match [1][17]. This matching

method is suitable for searching database items that may have spelling mistakes, typographical differences, or other

errors caused by humans or computers.

The Jaro-Winkler algorithm is an approximate string-matching algorithm that calculates how two strings are similar.

It calculates a percentage of similarity based on the string’s length and number of matching and unmatching

characters, 80% being the default threshold to be considered as a fuzzy match [18]. The Jaro distance was introduced

by Matthew A. Jaro as a record-linkage methodology for census to match large number of records quickly and

accurately [2]. It was later enhanced by William E. Winkler, by developing a Winkler scale which increases the

similarity score when the two strings have common prefixes [3].

Despite its wide range of applications, the Jaro-Winkler algorithm still faces multiple challenges affecting its

performance. While it demonstrates good performance with short strings, its efficiency declines as the length of the

string being compared increases [4][5]. Additionally, comparing a short and single string to a set of multiple strings

results in lower similarity score even though the strings are closely related to each other. This behavior occurs because

the Jaro-Winkler algorithm evaluates string similarity based on character order and proximity [6]. A study by

650

 J INFORM SYSTEMS ENG, 10(28s)

Karakasidis and Pitoura [7] highlights the importance of recognizing potential bias in string comparison methods.

The existence of potential bias can affect the results generated by an algorithm hence, it is crucial to also address this

issue. Other than these challenges, the Jaro-Winkler remains a highly effective algorithm, consistently delivering

strong performance. Furthermore, these existing challenges can be seen as opportunities for further enhancement of

the algorithm and expand its capabilities.

The Jaro-Winkler algorithm demonstrates potential for broader applications beyond its current use. This study

focuses on exploring how the algorithm might be adapted for library search engines, given the importance of efficient

search methods in modern libraries. By leveraging the algorithm, library search engines can deliver enhanced services

to meet the needs of contemporary users.

RELATED WORKS

Ali et.al. [10] applied the Jaro-Winkler fuzzy matching in correlating and integrating a database. The Jaro-Winkler

was used to calculate the similarity in two different data, where it turns one if the comparison indicates match or zero

if there is no similarity. The study concluded that Jaro-Winkler is considered as the best algorithm for fuzzy matching,

however its speed is dependent on the length of the strings being compared [8]. Manaf et al. [6] compared the

effectiveness of the Jaro-Winkler and Rabin-Karp algorithms for detecting document similarity. The Jaro-Winkler

algorithm measures similarity between two strings by calculating their length, identifying character matches,

accounting for transpositions (Jaro), and applying a prefix scale adjustment (Winkler). In contrast, the Rabin-Karp

algorithm uses the rolling hash technique, which calculates the hash of a specific pattern and checks if that hash exists

in the target string. Their comparison showed that Jaro-Winkler is not well-suited for long or non-sequential

patterns, but excels with shorter patterns, such as names. Additionally, they noted that Jaro-Winkler performs

significantly faster than Rabin-Karp. Using these two algorithms, Leonardo and Hansun [9] compared the

effectiveness of detecting plagiarism in text documents. Their experiment involved analyzing text, docx, and pdf files,

with sizes ranging from under 1000 KB to over 1000 KB. The results consistently showed Rabin-Karp outperforming

Jaro-Winkler in terms of both processing time and average similarity score. Based on these findings, the researchers

concluded that Rabin-Karp is a more effective algorithm for document plagiarism detection. This supports Agbehadji

et al.'s [11] assertion that Jaro-Winkler is better suited for comparing short strings, such as names or individual

words, but its accuracy declines when working with larger datasets.

Rozinek and Mares [12] addressed the problem of Jaro and Jaro-Winkler where it overlooks the sequence of

characters in the matching window when comparing two strings. In their study, Convolutional Jaro (ConvJ) and

Convolutional Jaro-Winkler (ConvJW) were introduced to address the issue where character sequence is affecting its

accuracy in string matching. The enhanced version of both algorithms utilizes Gaussian Weighting for calculating the

positional proximity of each matching character. Results demonstrate improvement in computational efficiency as

well as its accuracy compared to the conventional Jaro and Jaro-Winkler. The Convolutional Jaro performed 7x faster

than the conventional Jaro and had a 10% increase in F1-score. Both ConvJ and ConvJW displayed exceptional

performance in a wide range of datasets.

To address the issue of srting matching for names with multiple variations and errors in spelling, Christen [13]

conducted an experimental comparison on some of the existing name matching techniques. Various Phonetic

Encoding and Pattern Matching techniques including Soundex, Levenshtein Distance, and Jaro-Winkler were

evaluated based on matching accuracy and computational performance. The study had mixed results which revealed

that no particular matching technique is considered the best. The characteristics of names, and the computational

requirement must be considered when selecting a technique. Although it is recommended to use Jaro-Winkler or q-

grams if the algorithm's execution time is a priority.

Friendly (2019) utilized result indexing to save the Jaro-Winkler results for all queries that the users enter. Their

enhancement decreased the search time 90-92% resulting in much faster access. The access time for querying a word

for the first time is the same as a normal search, but when the results have already been saved, the access speed

reduces greatly. [16]

A study conducted by Yancey (2005) evaluated string comparators to check which has the best performance. The

study used different string comparators including variations of Jaro-Winkler, Edit Distance, and Hybrid

Comparators. A test deck that was clerically matched was used to determine the best comparator. Each algorithm

651

 J INFORM SYSTEMS ENG, 10(28s)

was applied and assessed to check if it would also identify the clerically matched records as matches. The study

highlighted that the hybrid comparator performs slightly better among all the variations, however the downside is

that it takes longer to run. [19]

METHODOLOGY

This study used quantitative research design with a descriptive-comparative approach. The dataset of book titles was

used in the experimental setup to test the base Jaro and Jaro-Winkler algorithms along with the Levenshtein

Distance, Soundex algorithm and the proposed enhanced Jaro-Winkler algorithm. Levenshtein and Soundex were

selected as they are the currently available fuzzy matching functions in SQL [15]. Despite the comprehensive

approach, the study also has its limitations. The study only prioritized accuracy, and not speed as, in comparison, the

enhanced algorithm has more processes than the base algorithm.

The metric used to measure and compare the algorithms are the number of matches the algorithms returned that

included the exact search query over the total number of titles that include the search query.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑞𝑢𝑒𝑟𝑦

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑡𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑞𝑢𝑒𝑟𝑦
 

If the exact match is found in the title, it is guaranteed that the fuzzy matches were considered during the process.

Further analysis was conducted after the experimental process to determine if the enhanced algorithm was, in fact,

better than the base algorithms. Moreover, despite speed being a limitation of this study, the researchers still

measured the processing time to compare against the existing algorithms.

The researchers used Python as the main programming language for the enhancement of the Jaro-Winkler algorithm,

utilizing libraries such as the Levenshtein library (including base Jaro and Jaro-Winkler algorithms) and the Soundex

library from pypi.org.

3.1) Base Jaro-Winkler Algorithm:

The Jaro-Winkler Algorithm consists of two techniques, the Jaro Distance and the Winkler Scale. The Jaro Distance

calculates the fuzzy similarity of two strings based on their matching characters and transpositions. After calculating

the Jaro Distance, the Winkler Scale is added to increase the similarity score if the two strings have similar prefixes

(maximum of 4 characters).

𝑗𝑑  =   (
𝑚

𝑙𝑒𝑛𝑔𝑡ℎ(target)
+

𝑚

𝑙𝑒𝑛𝑔𝑡ℎ(referent)
+

𝑚 − 𝑡

𝑚
) ⋅

1

3

Where m is the number of matching characters and t is the number of transpositions. To consider matching

characters, a maximum distance window is used. This distance looks symmetrically into the characters before and

after the current index to determine if there are matching characters within the window. The maximum distance

formula is as follows:

𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ⌊
max (𝑡𝑎𝑟𝑔𝑒𝑡, 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑡)

2
⌋ − 1

The Winkler Scale, on the other hand, adds more emphasis and weight on words that have the same prefix with a

maximum of 4 letters. Using the formula:

𝑗𝑤 = 𝑗𝑑(𝑡𝑎𝑟𝑔𝑒𝑡, 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑡) + 𝐿 × 𝑃 × (1 − 𝑗𝑑(𝑡𝑎𝑟𝑔𝑒𝑡, 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑡))

Where L is the length of the common prefix at the start of the string up to a maximum of 4 characters and P is the

scaling factor which is usually 0.1 by default.

652

 J INFORM SYSTEMS ENG, 10(28s)

3.1.1) Pseudocode of Base Jaro-Winkler Algorithm

3.1.2) Flowchart of the Base Jaro-Winkler Algorithm

Figure 1: Base Jaro-Winkler Algorithm Flowchart

Figure 1 shows the flow chart of the existing process of the Jaro Winkler Algorithm. The target and referent undergo

data preparation and gets passed to the algorithm and a result will be returned.

Base Jaro Winkler Algorithm

jaro_winkler(target, referent):

 tLength = get the length of target

 rLength = get the length of referent

 maxD = get the max range that will be considered as “matched characters”

 floor(max(tLength, rLength) / 2) – 1

m = get matched characters with per s1 character ± maxD

t = get number of transposable characters

Perform the Jaro Distance on the two strings:

 jd = (
𝑚

𝑠1
+

𝑚

𝑠2
+

𝑚−𝑡

𝑚
) ×

1

3

Perform the Winkler Scaler:

 prefix = 0

 for I in range 4:

 if target[i] == referent[i]:

 prefix += 1

jw = jd + prefix * 0.1 * (1-jd)

return jw;

653

 J INFORM SYSTEMS ENG, 10(28s)

3.2) Proposed Enhanced Jaro-Winkler Algorithm:

The proposed enhanced Jaro-Winkler Algorithm consists of two techniques:

1.) The algorithm performs a rolling comparison (inspired by the Rabin Karp algorithm) wherein it compares the

target to a substring of the referent, depending on the number of words the target has.

Table 1: Rolling Comparison Example with 1-word target

Iteration Target Referent Score Match?

1 “coloring” “A” 0% No

2 “coloring” “simple” 43.1% No

3 “coloring” “coloring” 100% Yes

4 “coloring” “book” 58.3% No

Example 1: Target = “coloring” | Referent = “A simple coloring book” | Threshold = 0.8

Table 2: Rolling Comparison Example with 2-word target

Iteration Target Referent Score Match?

1 “colour bok” “A simple” 40.8% No

2 “colour bok” “simple coloring” 47.8% No

3 “colour bok” “coloring book” 91.8% Yes

Example 2: Target = “colour bok” | Referent = “A simple coloring book” | Threshold = 0.8

2.) The suffix scale enhancement is only applicable if the prefix scale does not return a value greater than 0.8. The

algorithm checks three criteria before applying the suffix scale [4]:

1. Both target and referent lengths are greater than 5 characters

2. There are at least 2 matching characters other than the accepted prefix

3. The matching characters must be greater than or equal to the length of the shorter string excluding the accepted

prefix

The algorithm uses the same formula it used for the prefix scale but for the last characters (maximum 4) to get the

modified and enhanced score.

3.2.1) Pseudocode of Proposed Enhanced Jaro-Winkler Algorithm

suffix_weight(target, referent, matches, prefix, jd):

 if (

 lengths of target and referent > 5,

 matches – prefix ≥ 2,

 matches – prefix ≥ (short-prefix)/2

):

 suffix = number of similar in last 4 letters

 jw = jd + suffix * 0.1 * (1-jd)

 return jw

654

 J INFORM SYSTEMS ENG, 10(28s)

3.2.2) Flowchart of the Proposed Enhanced Jaro-Winkler Algorithm

Figure 2: Proposed Enhanced Jaro-Winkler Flowchart

jaro_winkler(target, referent):

 tSplit = words from target separated with spaces

 rSplit = words from referent separated with spaces

 tLength = length of target

 rLength = length of referent

 tsLength = length of tSplit

 rsLength = length of rSplit

 maxJW = 0.0

if tsLength < rsLength:

 for word in rSplit:

 group = word + [(len of tSplit – 1) words from rSplit]

 gLength = length of group

 perform Jaro-Winkler for each group

 if jw > maxJW:

 maxJW = jw

 jw = suffix_weight(target, referent, m, prefix, jd)

 if jw > maxJW:

 maxJW = jw

 return maxJW

else:

 Perform base Jaro-Winkler

if jw > maxJW:

 maxJW = jw

jw = suffix_weight(target, referent, m, prefix, jd)

if jw > maxJW:

 maxJW = jw

 return maxJW

655

 J INFORM SYSTEMS ENG, 10(28s)

Figure 2 shows the proposed enhancement with two techniques, the Rolling Jaro Winkler and the Suffix Weight. If

the target words are less than the referent words, the algorithm will execute the Rolling Jaro Winkler with additional

Suffix Weighting, else, it will execute the plain Jaro Winkler but with additional Suffix Weighting. After the additional

processes, the max value of the results will be returned.

Figure 3: Rolling Jaro Winkler with Suffix Weight Enhancement Flowchart

Figure 3 shows the algorithm for the Rolling Jaro Winkler. It iterates the referent according to the number of words

in the target. After all iteration, the algorithm will return the highest match value.

Figure 4: Jaro Winkler with Suffix Weight Enhancement Flowchart

656

 J INFORM SYSTEMS ENG, 10(28s)

Figure 4 shows the flow chart for the Jaro Winkler with Suffix Weight enhancement. It first processes the prefix

weight, then compare if the suffix weight gets a better score. The larger score will be the one returned.

Figure 5: Suffix Weight Enhancement Flowchart

Figure 5 shows the process of the Suffix Weight enhancement. It first checks the validity of the two strings then

proceeds to adding the weight. The formula that is used for the suffix score is same to the one used in the prefix score

The enhanced version of the Jaro-Winkler algorithm is composed of several optimizations to further improve its

accuracy for fuzzy matching. In the traditional Jaro-Winkler, when comparing a shorter string to a longer string,

each string is treated as a whole, regardless of whether it has substrings. Consequently, for cases where the exact

match of the target string is located in the middle or the end of the referent string, matches often go unidentified and

excluded from search results, as they are given a lower similarity score. The aim of the study was to optimize the

algorithm’s searching capabilities. Instead of treating the strings as a whole, the enhanced version divides long strings

into substrings before performing a comparison, as shown in 3.2 Proposed Enhanced Jaro-Winkler Algorithm. This

method allows the algorithm to take account for finding the match of the shorter string, that may be located in the

middle or towards the end of the longer string.

The enhanced version of the algorithm was tested in more than 100k book titles obtained from Kaggle, varying from

two-word titles to twenty-word titles. The experiment conducted to test the performance of the enhanced Jaro-

Winkler was somewhat similar to a study conducted by the Yancey (2005) where a set of records are used to check

whether a string comparator can accurately match strings that are considered clerically matched. The top 100 most

frequently occurring words in book titles were selected through an automated program, the test involves counting

the exact matches of the words in the database. The underlying theory is that the optimized Jaro-Winkler comparator

should identify the same number of matches as those found by the automated program. This aims to demonstrate

that the enhanced comparator can successfully match shorter strings even when their corresponding matches are

located at the middle or the end of longer strings.

Table 3: Top 100 words with 4 or more letters in book titles

Book What People Secrets Work

Guide Little Good Secret Reading

Your Books House Make Every

657

 J INFORM SYSTEMS ENG, 10(28s)

Novel Best Classics Tales Over

From America Handbook When Faith

Life Cookbook Power Garden Night

Series That Business Level Most

With First Children Food Gods

American Women Health Mysteries Making

World Family Easy Journey Child

Edition Other Better Golden Healthy

Love Time Collection True Year

History Christmas Kids Dictionary School

Stories More Science Gardens Things

Home Living Know Everything Washington

Story Cooking Americas Illustrated Young

Recipes Library Country Volume Read

Great Mystery Guides Readers Century

Complete Heart Years Last Modern

About Bible Through Into Adventures

Table 3 shows the top 100 most frequently occurring words, with 4 or more letters found in book titles. These common

words are used as the target string when utilizing the optimized version of the algorithm. The list of titles above is

obtained from an automated frequency counting using a program. The exact matches of these words were counted

and is compared to the returned matches of the enhanced JW.

The dataset for testing is extracted from Kaggle.com specifically a dataset entitled “Books Dataset” where information

was scraped from wonderbk.com a popular online bookstore. This dataset contains 103,063 records, with key

attributes such as title, authors, description, category, publisher, starting price, and publish date. [14]

RESULTS

To determine the performance of the algorithm, the data was collected from the experiment conducted as described

in section 3.2.1. Below is a table containing the average metrics results of searching through a set of data containing

more than 100k book titles as the target strings, and the top 100 most frequently occurring words in titles as referent

string. The enhanced Jaro-Winkler algorithm is compared to Base Jaro, Base Jaro-Winkler, Levenshtein Distance,

and Soundex. The Base Jaro and Base Jaro-Winkler are divided into three versions, differing only in their threshold

values. The tests conducted measured the average search results, returned exact matches, actual exact matches, exact

match accuracy, and time of execution.

Table 4: Average statistics result from testing 100 words against the dataset

Search

Results

Returned Exact

Matches

Actual Exact

Matches

Exact Match

Accuracy

Time of

Execution

Base JW (0.7) 688.39 113.65 890.77 14.48%

1.294s Base JW (0.8) 137.01 80.82 890.77 11.14%

Base JW (0.9) 3.61 1.95 890.77 0.3%

658

 J INFORM SYSTEMS ENG, 10(28s)

Search

Results

Returned Exact

Matches

Actual Exact

Matches

Exact Match

Accuracy

Time of

Execution

Base Jaro (0.7) 276.91 79.58 890.77 10.36%

0.178s Base Jaro (0.8) 9.66 4.27 890.77 0.7%

Base Jaro (0.9) 0.64 0.32 890.77 0.06%

Levenshtein 44.35 0.43 890.77 0.07% 0.184s

Soundex 4.39 1.00 890.77 0.02% 2.357s

Enhanced JW (0.7) 18,344.97 890.77 890.77 100%

5.179s Enhanced JW (0.8) 3,379.3 890.77 890.77 100%

Enhanced JW (0.9) 1,522.58 890.77 890.77 100%

Average Search Results

The values collected for search results are the average number of book titles that are returned by each algorithm. The

enhanced Jaro-Winkler with a 0.7 threshold shows the highest average of search results among the other algorithms,

followed by the Base Jaro-Winkler with a 0.7 threshold with an average of 688.39 returned search results. The

algorithm with the lowest returned search results is the Base Jaro with a 0.9 threshold, which only returns 0.64 on

average. The three enhanced versions with three different thresholds show a significant increase in returned search

results.

Average Returned Exact Matches

The values in the "Returned Exact Matches" column represent the average number of returned search results that

are identified by each algorithm as a 100% exact match with the target string. The three enhanced versions show the

same highest average number of returned exact matches while the Levenshtein and Base Jaro (0.9) have the lowest.

Both Base Jaro and Base Jaro-Winkler with a 0.7 threshold return a higher average of returned exact matches

compared to those with 0.8 and 0.9 thresholds.

Average Actual Matches

The "Actual Matches" values represent the number of correct matches that are considered as the actual matches for

the target strings. These indicate the number of valid matches for each of the 100 book titles. All algorithms share the

same "Actual Matches" values since they are evaluated using a single, consistent dataset for testing.

Exact Match Accuracy

The values in the "Exact Match Accuracy" column represent the percentage of correct matches accurately and

correctly returned by each algorithm. Compared to the traditional version, the enhanced Jaro-Winkler demonstrates

higher matching accuracy, as it successfully identifies all exact matches in the database. All three versions with

different thresholds achieve 100% match accuracy, consistently returning all valid matches. Base Jaro (0.7) with

14.48% exact matching accuracy, is the second highest, although significantly lower than the enhanced Jaro-Winkler.

The Levenshtein, Base Jaro (0.9), and Soundex algorithms have the lowest matching accuracy, with only 0.07%,

0.06% and 0.02%, respectively.

Time of Execution

The “Time of Execution” values represent the average time, in seconds, that each algorithm took to perform the fuzzy

search. All three enhanced versions show a significant increase in execution time, with an average of 5.179 seconds.

The Base Jaro (0.7, 0.8, and 0.9) performs the fastest execution among all the algorithms with an average of 0.178s,

followed by Levenshtein with an average of 0.184s. Soundex is the second slowest in execution time, with an average

of 2.357 seconds. In the middle, is the Base Jaro-Winkler (0.7, 0.8, and 0.9), with an average of 1.294s.

659

 J INFORM SYSTEMS ENG, 10(28s)

CONCLUSION

This paper presented an enhancement of the Jaro-Winkler algorithm using two methods, the Rolling Jaro Winkler

Technique and Suffix Weighting. This approach has been assessed by using a dataset with 100k data comparing the

speed and accuracy of several other algorithms including the Levenshtein Distance, Soundex, Jaro Distance, and Base

Jaro Winkler (0.7, 0.8, and 0.9 thresholds in Jaro and Jaro Winkler included). The results indicate that despite

having an increase in execution time, the Enhanced Jaro Winkler showcased a consistent accuracy of 100%, finding

keywords regardless of the position in the referent word. Finding the exact match guarantees finding the fuzzy match

in the referent string.

ACKNOWLEDGEMENT

We would like to express our gratitude to Karl Benedict Malaga and Korinne Verdillo for their hard work and

dedication to this work. Our appreciation goes to our thesis coordinator, Vivien Agustin, for their guidance and

support throughout this process, as well as to our defense panelist, Raymund Dioses, for their valuable insights and

recommendations, which helped refine and improve our work. Finally, we are also deeply thankful to our advisor,

Elsa Pascual, for their insightful feedback and constructive criticism, which greatly enhanced the quality of this paper.

REFERENCES

[1] Pikies, M., & Ali, J. (2020). Analysis and safety engineering of fuzzy string-matching algorithms. ISA

Transactions, 113, 1–8. https://doi.org/10.1016/j.isatra.2020.10.014

[2] Jaro, M. A. (1987). Advances in Record-Linkage methodology as applied to matching the 1985 census of Tampa,

Florida. Journal of the American Statistical Association, 84(406), 414–420. https://doi.org/10.1080/01621459.

1989.10478785

[3] Winkler, William. (1994). Advanced Methods for Record Linkage. https://www.researchgate.net/publication/

245534659_Advanced_Methods_For_Record_Linkage

[4] Ranzijn, B.A. (2013, October 30). A Geocoding Algorithm Based on A Comparative Study Of Address Matching

Techniques. Econometrie. Retrieved from http://hdl.handle.net/2105/14891

[5] Yulianto, Muhamad & Nurhasanah, Nurhasanah. (2021). The Hybrid of Jaro-Winkler and Rabin-Karp

Algorithm in Detecting Indonesian Text Similarity. Jurnal Online Informatika. 6. 88. https://doi.org/10.

15575/join.v6i1.640

[6] Leonardo, B., & Hansun, S. (2017, February). Text documents plagiarism detection using Rabin-Karp and Jaro-

Winkler Distance Algorithms. ResearchGate. https://www.researchgate.net/publication/316681173_Text_

Documents_Plagiarism_Detection_using_Rabin-Karp_and_Jaro-Winkler_Distance_Algorithms

[7] Novyantika, R. D., & Isa, S. M. (2023, January). Improve Data Text Quality by Applying Text Pre- Processing

Method (Case Study). International Journal of Engineering Trends and Technology. https://ijettjournal.org/

Volume-71/Issue-1/IJETT-V71I1P209.pdf

[8] Manaf, K., Pitara, S., Subaeki, B., Gunawan, R., Rodiah, & Bakhtiar. (2019). Comparison of Carp Rabin algorithm

and Jaro-Winkler distance to determine the equality of Sunda languages. 2019 IEEE 13th International

Conference on Telecommunication Systems, Services, and Applications (TSSA), 77–81. https://doi.org/10.

1109/TSSA48701.2019.8985470

[9] Karakasidis, A., & Pitoura, E. (2019). Identifying Bias in Name Matching Tasks. Open Proceedings.

http://dit.unitn.it/~pavel/OM/articles/EDBT19_paper_213.pdf#page=2.42

[10] Ali, M., Saikia, A., Baruah, R., & Sarma, U. (2018, August). Jaro Winkler Fuzzy match algorithm to calculate a

similarity index between two strings using open-source platform. International Journal for Innovative Research

In Multidisciplinary Field. https://www.ijirmf.com/wp-content/uploads/IJIRMF201808019.pdf

[11] Agbehadji, I. E., Yang, H., Fong, S., & Millham, R. (2018). The Comparative Analysis of Smith-Waterman

Algorithm with Jaro-Winkler Algorithm for the Detection of Duplicate Health Related Records. ResearchGate.

https://www.researchgate.net/publication/327712322_The_Comparative_Analysis_of_Smith-

Waterman_Algorithm_with_Jaro-

Winkler_Algorithm_for_the_Detection_of_Duplicate_Health_Related_Records

[12] Rozinek, O., & Mares, J. (2024, May). Fast and precise convolutional Jaro and Jaro-Winkler similarity.

ResearchGate. https://www.researchgate.net/publication/380360789_Fast_and_Precise_Convolutional_

Jaro_and_Jaro-Winkler_Similarity

https://doi.org/10.1016/j.isatra.2020.10.014
https://doi.org/10.1080/01621459.1989.10478785
https://doi.org/10.1080/01621459.1989.10478785
https://www.researchgate.net/publication/245534659_Advanced_Methods_For_Record_Linkage
https://www.researchgate.net/publication/245534659_Advanced_Methods_For_Record_Linkage
http://hdl.handle.net/2105/14891
https://doi.org/10.15575/join.v6i1.640
https://doi.org/10.15575/join.v6i1.640
https://www.researchgate.net/publication/316681173_Text_Documents_Plagiarism_Detection_using_Rabin-Karp_and_Jaro-Winkler_Distance_Algorithms
https://www.researchgate.net/publication/316681173_Text_Documents_Plagiarism_Detection_using_Rabin-Karp_and_Jaro-Winkler_Distance_Algorithms
https://ijettjournal.org/Volume-71/Issue-1/IJETT-V71I1P209.pdf
https://ijettjournal.org/Volume-71/Issue-1/IJETT-V71I1P209.pdf
https://doi.org/10.1109/TSSA48701.2019.8985470
https://doi.org/10.1109/TSSA48701.2019.8985470
http://dit.unitn.it/~pavel/OM/articles/EDBT19_paper_213.pdf#page=2.42
https://www.ijirmf.com/wp-content/uploads/IJIRMF201808019.pdf
https://www.researchgate.net/publication/327712322_The_Comparative_Analysis_of_Smith-Waterman_Algorithm_with_Jaro-Winkler_Algorithm_for_the_Detection_of_Duplicate_Health_Related_Records
https://www.researchgate.net/publication/327712322_The_Comparative_Analysis_of_Smith-Waterman_Algorithm_with_Jaro-Winkler_Algorithm_for_the_Detection_of_Duplicate_Health_Related_Records
https://www.researchgate.net/publication/327712322_The_Comparative_Analysis_of_Smith-Waterman_Algorithm_with_Jaro-Winkler_Algorithm_for_the_Detection_of_Duplicate_Health_Related_Records
https://www.researchgate.net/publication/380360789_Fast_and_Precise_Convolutional_Jaro_and_Jaro-Winkler_Similarity
https://www.researchgate.net/publication/380360789_Fast_and_Precise_Convolutional_Jaro_and_Jaro-Winkler_Similarity

660

 J INFORM SYSTEMS ENG, 10(28s)

[13] Christen, P. (2006). A comparison of personal name matching: Techniques and practical issues. ResearchGate.

https://www.researchgate.net/publication/215992032_A_Comparison_of_Personal_Name_Matching_Tech

niques_and_Practical_Issues

[14] Books Dataset. (2023, December 20). Kaggle. https://www.kaggle.com/datasets/elvinrustam/books-dataset

[15] Wei, L. W. (2024, April 29). Mastering Fuzzy Match Techniques in SQL - Explore the intricacies of implementing

fuzzy match techniques in SQL, enhancing data matching accuracy for better data management and analysis. -

SQLPad.io. SQLPad. https://sqlpad.io/tutorial/mastering-fuzzy-match-techniques-in-sql/

[16] Friendly, F. (2019). Jaro–Winkler Distance Improvement For Approximate String Search Using Indexing Data

For Multiuser Application. Radware bot manager Captcha. https://iopscience.iop.org/article/10.1088/1742-

6596/1361/1/012080/meta

[17] Hall, P. a. V., & Dowling, G. R. (1980). Approximate string matching. ACM Computing Surveys, 12(4), 381–402.

https://doi.org/10.1145/356827.356830

[18] Fuzzy matching. (n.d.). https://www.soluling.com/Help/FuzzyMatch.htm

[19] Yancey, W. E. (2005). Evaluating String Comparator Performance for Record Linkage. RESEARCH REPORT

SERIES (Statistics #2005-05). https://www.census.gov/content/dam/Census/library/working-papers/2005/

adrm/rrs2005-05.pdf

https://www.researchgate.net/publication/215992032_A_Comparison_of_Personal_Name_Matching_Techniques_and_Practical_Issues
https://www.researchgate.net/publication/215992032_A_Comparison_of_Personal_Name_Matching_Techniques_and_Practical_Issues
https://www.kaggle.com/datasets/elvinrustam/books-dataset
https://sqlpad.io/tutorial/mastering-fuzzy-match-techniques-in-sql/
https://iopscience.iop.org/article/10.1088/1742-6596/1361/1/012080/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1361/1/012080/meta
https://doi.org/10.1145/356827.356830
https://www.soluling.com/Help/FuzzyMatch.htm
https://www.census.gov/content/dam/Census/library/working-papers/2005/adrm/rrs2005-05.pdf
https://www.census.gov/content/dam/Census/library/working-papers/2005/adrm/rrs2005-05.pdf

