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This research introduces three NIDS systems, named new Parallel Deep Auto-Encoder (NEW 

PDAE), as opposed to APAE, and DFE that has been proposed, with the goal of reducing 

processing load while enhancing or maintaining detection accuracy. Each of these models 

leverages different deep learning techniques to create an optimized structure. The proposed 

models were trained and evaluated on three datasets—CICIDS2017, UNSW-NB15, and 

KDDCup99—and then compared to the NDAE and MemAE algorithms. For multi-class 

classification, the NEW PDAE model achieved accuracies of 99.43%, 99.84%, and 99.92% on 

CICIDS2017, UNSW-NB15, and KDDCup99 datasets, respectively. The APAE model yielded 

accuracies of 99.50%, 99.89%, and 99.94%, while the DFE model achieved 99.31%, 99.96%, and 

99.92% on these datasets. These results demonstrate that the proposed models provide sufficient 

accuracy and outstanding performance on these benchmark datasets for NIDS applications. 

Conclusions: In this study, we presented three architectures, NEW PDAE, APAE, and DFE, for 

use in NIDSs. These architectures have demonstrated higher performance compared to simple 

encoder methods. The NEW PDAE method employs a parallel auto encoder technique with the 

ability to extract representations in different views. Due to the parallel feature extraction 

operations, NEW PDAE incurs less computational overhead, time, and fewer parameters 

compared to traditional methods for feature extraction. Another method, the APAE model, is 

based on an asymmetric auto encoder utilizing convolutional layers. This approach excels in 

extracting the best features in the encoder section by virtue of utilizing its modules effectively. 

Lastly, we introduced a very lightweight and powerful method called DFE, capable of using 

minimal processing and memory due to feature structuring while maintaining a very high 

detection accuracy. 

For model implementation and testing, we utilized three datasets: CICIDS2017, UNSW-NB15, 

and KDDCup99, comparing our architectures with MemAE and NDAE models. As observed from 

the results presented in Section Four, our models NEW PDAE, APAE, and DFE exhibit higher 

accuracy compared to other models while offering fewer parameters. Therefore, it can be 

concluded that our proposed models are more suitable choices for devices like Internet of Things, 

where computational time and cost are critical, providing a much more viable option. 

Considering the hardware and computational constraints of Internet of Things devices, and 

bearing in mind the mentioned limitations, the aim is to substitute conventional layers in the 

presented methods with novel, extremely lightweight, and efficient convolutional layers in the 

future.. 

Keywords: Security, IoT, cloud, fog, intrusion detection system, deep learning 

INTRODUCTION 

In recent years, the deployment of IoT devices has raised significant security concerns, making network intrusion 

detection a crucial area of research. Chaabouni et al. [1] highlighted the importance of learning-based techniques in 

IoT security, emphasizing the role of adaptive models. Dhand and Tyagi [2] reviewed data aggregation techniques, a 

core requirement for efficiently managing IoT data. Pawar and Ghumbre [3] discussed IoT’s vast applications and 

associated security challenges, while Vishwakarma and Jain [4] addressed the vulnerability of IoT networks to DDoS 

attacks, underscoring the need for robust defenses. Hassija et al. [5] explored various IoT security threats, identifying 
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potential solution architectures that can be applied to intrusion detection systems. Frustaci et al. [6] further analyzed 

critical IoT security issues, suggesting future directions for addressing evolving threats.Yang et al. [7] introduced IoT-

based systems for remote health monitoring, showcasing the application of IoT in sensitive data environments, which 

emphasizes the need for security. Shah and Mishra [8] examined IoT in environmental monitoring, underscoring its 

role in smart cities where data security is critical. Smys [9] provided a comprehensive survey on smart IoT systems, 

detailing various applications and associated threats, while Saif et al. [10] addressed the vulnerability of home 

networks to unauthorized access. Kour et al. [11] analyzed IoT’s dual impact on industries, focusing on its extensive 

applications but also highlighting inherent security risks.Lee et al. [12] discussed future IoT network requirements, 

pointing to security as a foundational aspect, whereas Matharu et al. [13] presented IoT security challenges, 

reinforcing the importance of robust defense mechanisms. Kumar et al. [14] proposed enhancements to IoT security 

at the hardware level, while Liao et al. [15] focused on preventing eavesdropping in heterogeneous IoT systems, which 

is crucial for data privacy. Kolias et al. [16] reviewed DDoS attacks in IoT, stressing the need for specific defenses like 

botnet mitigation. Choudhary and Kesswani [17] explored routing attack prevention in IoT, a vital area for 

maintaining secure network communication.Bandyopadhyay et al. [18] and Razzaque et al. [21] reviewed middleware 

solutions that facilitate secure communication in IoT, and Zhang and Wang [19] examined SQL injection 

vulnerabilities, highlighting the importance of secure back-end systems. Dorai and Kannan [20] further analyzed 

SQL injection threats, which are prevalent in IoT-connected databases. Swamy et al. [24] examined application-layer 

threats, emphasizing the need for comprehensive security models.For deep learning, Deng [25] provided an extensive 

overview of architectures and algorithms, relevant to intrusion detection systems, while Sadiq and Shyu [26] 

highlighted the importance of handling imbalanced data in IoT, a common issue in NIDS. Shyu et al. [27] extended 

this to multimedia data, emphasizing deep learning's role in complex classification tasks. Matharu et al. [28] and 

Nakov et al. [29] discussed algorithm optimization for anomaly detection, relevant to maintaining high accuracy in 

IoT. Pouyanfar et al. [30] reviewed deep learning applications for data-rich environments like IoT, while Paul and 

Singh [31] discussed recent advances, relevant for selecting optimal algorithms.Liu et al. [32] highlighted deep 

learning’s effectiveness in general image classification, a technique that parallels feature extraction in NIDS. Sainath 

et al. [33] introduced bottleneck features with deep belief networks, beneficial for IoT due to reduced computational 

load. Krizhevsky et al. [34] demonstrated convolutional networks’ power in complex data processing, crucial for 

intrusion detection. Fu et al. [35] discussed attention networks for data segmentation, which can enhance anomaly 

detection.Dai et al. [37] and Hochreiter and Schmidhuber [38] presented feature extraction and memory networks, 

respectively, providing architectures suited for capturing IoT data dependencies. Sainath et al. [39] and Sak et al. 

[40] demonstrated LSTM applications in handling sequential data, a common characteristic in network intrusion 

datasets. Benabdessalem et al. [41] and Li et al. [42] surveyed IoT security models, emphasizing the need for dynamic, 

multi-layered approaches to combat IoT-specific threats. Islam and Rahman [43] and Oliveira et al. [44] explored 

wireless security systems and IPv6 networks, both critical for scalable, secure IoT implementations. Jyothsna et al. 

[45] reviewed anomaly-based intrusion detection, a key approach for real-time IoT security, and Singh and Singh 

[46] compared host- and network-based intrusion detection systems, supporting the need for hybrid solutions in 

complex IoT environments. Karatas et al. [47] provided insights into deep learning applications in IDS, supporting 

the effectiveness of deep learning approaches, like those used in NEW PDAE, APAE, and DFE models.Xiao et al. [48] 

introduced a CNN-based model for intrusion detection that leverages feature reduction for improved efficiency, while 

Yu et al. [49] used convolutional autoencoders to enhance detection accuracy. Similarly, Yin et al. [50] demonstrated 

the utility of RNNs in intrusion detection, capturing temporal dependencies in network data. Shone et al. [51] 

presented a deep learning approach integrating feature extraction with neural networks to improve detection 

rates.For unsupervised anomaly detection, Gong et al. [52] used a memory-augmented autoencoder to recognize 

deviations from normal network behavior. Basati and Faghih [53] introduced APAE, an IoT-focused intrusion 

detection model using asymmetric autoencoders, which balances computational efficiency with high accuracy.[54] 

proposed a recalibration mechanism for fully convolutional networks using spatial and channel “squeeze and 

excitation” blocks to enhance feature learning, particularly in medical imaging. Similarly, [55] explored the feasibility 

of deep learning deployment on IoT devices, highlighting challenges such as computational constraints and energy 

efficiency. To address security concerns in IoT networks, [56] introduced the UNSW-NB15 dataset for network 

intrusion detection, providing a benchmark for evaluating anomaly detection models. Building on this, [57] proposed 

an autoencoder-based botnet detection framework to enhance IoT security, demonstrating its efficacy in detecting 

malicious activities. A similar approach was adopted by [58], where a deep autoencoder-based anomaly detection 

model was developed for identifying electricity theft cyberattacks in smart grids. Further extending autoencoder 
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applications, [59] employed a denoising autoencoder for intrusion detection in IoT systems, showing improved 

detection performance in noisy environments. [60] investigated trust management in deep autoencoder-based 

anomaly detection, aiming to enhance reliability in Social IoT. Meanwhile, [61] introduced a quantized autoencoder 

(QAE) for intrusion detection, designed to optimize anomaly detection in resource-constrained IoT devices using the 

RT-IoT2022 dataset. In terms of feature construction, [62] leveraged an autoencoder-based technique for clustering 

IoT attack patterns, enhancing threat categorization. However, [63] presented a transfer learning-based autoencoder 

for detecting DDoS attacks in IoT networks, though the study was later retracted, raising concerns about its validity. 

Our focus in this paper is on a type of intrusion detection systems that utilize deep learning techniques.  

 Problem statement 

In this section of the research, considering the constraints of processing power, memory, and energy in Internet of 

Things devices, we will present NIDS systems. Therefore, we will employ three proposed methods for NIDS systems, 

including the NEW PDAE method, the APAE [51] model, and DFE mentioned. In all three mentioned methods, the 

emphasis lies on reducing processing and computational loads by decreasing the number of learnable parameters in 

the presented models. As one of the major challenges in deep learning-based architectures is reducing model 

parameters without compromising accuracy, the aim of each of these three methods is to reduce computational 

complexity while maintaining model accuracy and efficiency. Hence, in the following section, we will observe that 

our three proposed architectures will outperform the benchmark models NDAE [51] and MemAe [52] in terms of 

accuracy and classification while having significantly fewer parameters.Initially, we must outline various general 

aspects of implementing the aforementioned methods. Based on this, we will articulate the data preparation and 

normalization process. Subsequently, we will explain the construction of two-dimensional features from one-

dimensional features and also discuss the advantages of transforming features into a two-dimensional structure. 

 Proposed method 

3.1 The Presented Methods  

3.1.1 Parallel Deep Auto-Encoder (NEW PDAE) 

 Using an encoder-decoder structure, a deep autoencoder can help reduce the dimensionality of input vectors. This 

process allows irrelevant information, which could lower classification accuracy, to be discarded, while the most 

influential features for classification are preserved. However, traditional deep autoencoders have drawbacks when 

applied to an NIDS system. They typically use standard convolutional filters, focusing only on a specific type of feature 

representation, and often overlook features that arise from interactions between more distant elements. This 

limitation results in reduced model efficiency and, conversely, increases computational load and the number of 

parameters, making it less feasible for IoT devices.To address this, the proposed method introduces an advanced 

model called the Parallel Deep Autoencoder (NEW PDAE). NEW PDAE integrates two types of autoencoders: one 

with a regular convolutional filter and another with an extended convolutional filter. This dual approach in NEW 

PDAE facilitates capturing different types of feature representations from varied feature spaces. As shown in Fig. 5, 

the NEW PDAE receives a 2D vector as input, produced through the preprocessing technique. In Fig. 1, the input 

dimensions are represented as 8x8, specific to the KDDCup99 dataset, while for the CICIDS2017 dataset, they are 

represented as 9x9. 

  

Fig. 1: Parallel Auto Encoder Model for the KDDCup99 Dataset 

 The NEW PDAE structure includes a feature transformer layer and three main components: the encoder, latent 

feature layer (or code layer), and decoder. The feature transformer layer contains eight standard convolutional filters, 
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which convert the input from a single-channel to an eight-channel format. These channels are then split into two 

groups, with each group prepared for input into the encoder. The encoder consists of two processing pipelines, called 

Tubes: the Surrounding feature extractor and the Local feature extractor. The Surrounding extractor pipeline utilizes 

a deep autoencoder with expanded convolution filters of size 3x3, while the Local extractor employs a deep 

autoencoder with standard 3x3 convolution filters.  

 

Fig. 2: Proposed NIDS Model using NEW PDAE and a Classifier 

3.1.3 Architecture of the Asymmetric Parallel Auto-Encoder (APAE) 

 On standard encoder-decoder architectures, conventional deep autoencoders in NIDS face limitations due to their 

reliance on convolutional layer filters. For accurate feature extraction, these architectures require stacking numerous 

layers, which increases network complexity and makes them impractical for IoT applications. Moreover, as shown in 

Fig. 3, standard autoencoder encoders are symmetric—each layer in the decoder mirrors and reverses the function of 

its corresponding layer in the encoder. However, having fewer encoder layers with a higher number of processing 

units and a greater number of decoder layers can enhance data reconstruction in an autoencoder. This approach 

allows the encoder to develop a more robust abstract representation with fewer layers, while additional layers in the 

decoder improve the model’s ability to reconstruct the input data. Based on this insight, our proposed approach 

leverages an advanced autoencoder, termed the Asymmetric Parallel Autoencoder (APAE), to optimize feature 

extraction and reconstruction for NIDS. 

 

  

Fig. 3: The proposed model of Asymmetric Parallel Auto-Encoder (APAE) 

3.1.4   Architecture of the deep Feature Extraction (DFE)  

 As outlined in our prior work [53], we converted the model's input data from a one-dimensional (1D) to a two-

dimensional (2D) format before inputting it into the model. This transformation aggregates more cells/parameters, 

which simplifies the model’s complexity. However, some parameters remain relatively far apart, posing challenges 

for 2D filters to capture meaningful correlations. Alternatively, by arranging individual parameters closer together 

within a three-dimensional (3D) space, we can simplify the network structure even further.Fig. 4 shows the complete 

structure of the proposed model. The model’s input is a 2D version of the input vector, generated through a 

preprocessing step. The approach begins with a transfer layer comprising four standard 1x1 convolutional filters that 

transform the single-channel input into a four-channel representation (illustrated in blue). These channels are then 

split into two branches, each applying a different permutation type (as previously described) to capture the most 

relevant correlated information.Following the permutation step, each branch applies a convolutional layer with 

8x2x2 filters and a stride of 2. In the first branch, this operation produces an output of 2x1x4, while in the second 

branch, the output size is 4x1x2. After this initial convolution and permutation stage, a second permutation is 
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performed in each branch to generate a new feature representation, ensuring that the outputs from both branches 

can be connected seamlessly. Once the branches are recombined, a Booster module further refines these features to 

create more sophisticated representations. Finally, a classifier is placed at the end of the model to identify and 

categorize different types of attacks. 

 

Fig.4: General structure of the proposed architecture. 

 RESULTS AND ANALYSIS 

4.1 Simulation 

In this section, the results of the APAE, NEW PDAE, and DFE models are presented using measurable parameters 

and metrics, followed by a comparison with the NDAE and MemAE models. It is important to note that for comparing 

the presented methods APAE, NEW PDAE, and DFE with the NDAE and MemAE models, more information on the 

algorithms and additional outputs on the datasets were required, which the authors of those papers did not provide.  

However, the source codes for NDAE and MemAE have been made publicly available. By utilizing their codes on all 

three datasets, we obtained the necessary outputs for analysis. For implementing the presented methods APAE, NEW 

PDAE, and DFE, we also used the Python programming language based on the Pytorch framework. All models were 

trained using the Adam optimizer and batch sizes of 128 for 40 iterations. 

4.2 Datasets 

For implementation, training, and assessing model performance, we have utilized public datasets in the domain of 

CICIDS2017, UNSW-NB15: NIDS, and KDDCup99 as the foundation. The assessment of models is conducted in two 

ways on these datasets, involving binary classification where one class represents normal and the other represents 

attack instances. However, in multi-class classification scenarios where one class represents normal and multiple 

classes represent different types of attacks, a detailed examination of model performance is undertaken. Multi-class 

evaluations are performed to scrutinize the performance of models across the classes within the dataset. 

4.4 Model Evaluation 

4.4.1 Binary Classification Analysis 

4.4.1.1KDDCup99 

In this section, the performance and efficiency of the proposed models NEW PDAE, APAE, and DFE are assessed 

alongside other models, NDAE and MemAE, on the KDDCup99 dataset concerning binary classification. Based on 

the results obtained from the models, as seen in Table 1, it can be inferred that our proposed models (NEW PDAE, 

APAE, and DFE) exhibit better performance compared to other models, providing higher accuracy.As observed from 

the presented results, in terms of accuracy and efficiency, the NEW PDAE model shows a 1.1% improvement, the 

APAE model shows an 1.11% improvement, and ultimately the DFE model demonstrates a 1.09% enhancement over 

the NDAE model. Additionally, the NEW PDAE model shows a 0.09% improvement, the APAE model 0.1%, and 

finally, the DFE model exhibits an 0.08% enhancement over the MemAE model. In terms of the number of learnable 

parameters in the models, we observe that the parameter count for the NEW PDAE model is 63.5%, while for the 

APAE model, it is approximately equal. Ultimately, the DFE model shows a 92% reduction in parameter count 

compared to the NDAE model, indicating a significant improvement in the proposed models over the NDAE.   
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Table 1: Presented results for binary classification on the KDDCup'99 dataset. 

  Precision (%) Recall (%) F-Score (%) 

 
NEW 

PDAE 
APAE DFE MemAE NDAE 

NEW 

PDAE 
APAE DFE MemAE NDAE 

NEW 

PDAE 
APAE DFE MemAE NDAE 

Normal 99.76 99.86 99.8 99.3 95.37 99.89 99.94 99.8 99.91 98.86 99.84 99.86 99.78 99.9 97.09 

Attack 99.97 99.98 100 99.98 99.72 99.95 99.97 99.9 99.83 99.83 99.96 99.97 99.95 99.97 99.27 

 

 
NEW 

PDAE 
APAE DFE MemAE NDAE   

Accuracy 

(%) 
99.93 99.94 99.92 99.84 98.83   

Parameter 1162 3274 266 9996 3177   

 

 

Fig.5: Comparison of parameter count in models on the KDDCup'99 dataset. 

4.4.1.2 CICIDS2017 

In this section, the performance and efficiency of our proposed models, NEW PDAE, APAE, and DFE, are compared 

and examined against other models, MemAE and NDAE, on the CICIDS2017 dataset for binary classification. As 

depicted in the results in Table 2, concerning accuracy and efficiency, the NEW PDAE model achieved 4.73%, the 

APAE model reached 4.09%, and ultimately, the DFE model exhibited a 4.34% improvement over the NDAE model. 

Furthermore, the NEW PDAE model showed an 1.18% improvement, the APAE model demonstrated a 0.54% 

improvement, and ultimately, the DFE model showcased a 0.79% enhancement over the MemAE model. However, 

in terms of the number of learnable parameters in the models, we observe that the NEW PDAE model had a 68% 

reduction, the APAE model a nearly 12% reduction, and ultimately, the DFE model a 92% decrease compared to the 

number of parameters in the NDAE model, indicating significant improvements in the proposed models over NDAE. 

Additionally, we find that the parameter counts for the NEW PDAE model reduced by 92%, the APAE model by 77%, 

and finally, the DFE model by approximately 98.5% compared to the parameter count in the MemAE model, 

showcasing either a reduction or enhancement in parameter numbers. 

Table 2: Presented results for binary classification on the CICIDS2017 dataset. 

  Precision (%) Recall (%) F-Score (%) 
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Fig. 6: Comparison of the number of parameters in models on the CICIDS2017 dataset. 

4.4.1.3 UNSW-NB15 

In this section, the proposed model NEW PDAE is evaluated alongside other models on the UNSW-NB15 dataset. As 

indicated in Table 3, all models perform well in the binary classification task on the UNSW-NB15 dataset. Further 

examination reveals that in terms of accuracy and efficiency, the NEW PDAE model, APAE model, and ultimately the 

DFE model show an improvement of 0.08% compared to the NDAE model. Additionally, the APAE, NEW PDAE, and 

DFE models exhibit similar accuracy to the MemAE model. 

Table 3: Presented results for binary classification on the UNSW-NB15 dataset. 

 Precision (%) Recall (%) F-Score (%) 
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Fig. 7: Comparison of model parameters on the UNSW-NB15 dataset. 

4.4.2 Multi-class Classification Analysis on KDDCup99. 

4.4.2.1 KDDCup99 

In this section, the proposed models NEW PDAE, APAE, and DFE are compared with other models MemAE and 

NDAE on the KDDCup99 dataset concerning multi-class (5-class) classification. This dataset comprises 5 classes, 

including 1 normal class and 4 classes of various attacks. However, the U2R class in this dataset has the fewest 

records, only 52 in total, making different models weaker on this class. As shown in Table 4 results, models NEW 

PDAE and DFE show similar accuracies of 1.79%, and also the APAE model provides an improvement of 1.81% in 

accuracy compared to the NDAE model. On the other hand, compared to MemAE, models NEW PDAE and DFE offer 

improvements of 0.09% and APAE 0.11% in accuracy.  

Table 4: Results presented for multi-class classification on the KDDCup'99 dataset. 

  Precision (%) Recall (%) F-Score (%) 
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Fig. 8: Comparison of the number of parameters in models on the KDDCup'99 multi-class dataset. 

 

 

Fig. 9: Confusion matrix for models on the KDDCup'99 dataset. 

4.4.2.2 CICIDS2017 

In this section, the proposed models NEW PDAE, APAE, and DFE are evaluated and compared with other models 

NDAE and MemAE in terms of multi-class classification for the CICIDS2017 dataset. This dataset, for multi-class 

classification, consists of one normal class and six attack classes, encompassing a wide spectrum of novel network 

attacks. However, this dataset is highly imbalanced and complex in terms of record distribution. For instance, the 

Infiltration class has only 36 records while the Portscan class has 158,930 records.  

 

Fig. 10: Comparison of the number of parameters of models on the CICIDS2017 multi-class dataset. 
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Table 5: Presented Results for Multi-Class Classification on the CICIDS2017 Dataset. 

  Precision (%) Recall (%) F-Score (%) 
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Fig.11: Confusion matrix for models on the CICIDS2017 dataset. 

4.4.2.3 UNSW-NB15 

In this section, the proposed models NEW PDAE, APAE, and DFE are compared and evaluated against other models 

like MemAE and NDAE on the UNSW-NB15 dataset for multi-class classification. This dataset consists of 1 normal 

class and 9 attack classes, covering a wide spectrum of network attacks. In terms of the distribution of class records 

in the UNSW-NB15 dataset, it is highly complex and asymmetric. For example: The Worms class has 130 records in 

the training set and only 44 records in the test set. Similarly, the Shellcode class has 1133 records in the training set 

and 378 records in the test set. These two classes are minority classes compared to others. From the analysis and 
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results in Table 6, it is observed that in terms of accuracy and performance, the NEW PDAE model achieved 33.11%, 

the APAE model achieved 33.16%, and ultimately, the DFE model showed a 33.23% improvement over the NDAE 

model. 

Table 6: Presented results for multi-class classification on the UNSW-NB15 dataset. 
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NE

W 

PD

AE 

APA

E 

DF

E 

Mem

AE 

ND

AE 

NE

W 

PD

AE 

APA

E 

DF

E 

Mem

AE 

ND

AE 

NE

W 

PD

AE 

APA

E 

DF

E 

Mem

AE 

ND

AE 

Normal 
99.9

9 

99.9

6 
100 99.81 

68.7

8. 

99.9

9 
100 100 100 

94.9

1 

99.9

9 

99.9

8 
100 99.91 

76.7

6 

Reconnaiss

ance 

99.9

7 
100 100 100 17.64 

99.9

1 
99.8 

99.

97 
96.28 3.03 

99.9

4 

99.9

9 
100 98.11 5.17 

Backdoor 
98.6

4 

98.5

31 
100 88.08 12.66 

99.8

3 
100 100 91.25 8.23 

99.2

3 

99.1

5 
100 89.64 9.98 

Dos 
97.9

6 

99.4

6 

99.

42 
85.84 15 

99.8

5 

99.5

6 

99.

98 
98.26 12.74 98.9 

99.5

1 
99.7 91.63 13.78 

Exploit 
99.9

9 
100 100 98.91 2.21 

99.2

5 

99.5

3 

99.7

8 
93.7 0.04 

99.6

2 

99.7

7 

99.

89 
96.24 0.07 

Analysis 
99.8

4 

96.9

8 

99.

85 
90.35 3.13 99.7 

99.5

6 
100 99.56 5.47 

98.2

5 

98.2

5 

99.

93 
94.73  

Fuzzers 100 
99.6

9 
100 99.77 16.07 

99.5

9 

99.8

4 

99.

98 
98.14 16.58 

99.7

9 

99.7

6 
100 98.94  

Worms 
93.6

2 

91.6

7 
100 8.19 0 100 100 100 84.09 0 

967.

7 

95.6

5 
100 14.92 0 

Shellcode 
99.7

3 
100 

99.7

4 
52.78 0 

99.2

1 
100 100 5.03 0 

99.4

7 
100 

99.

87 
9.18 0 

Generic 
99.9

8 
100 100 99.89 

98.8

4 

99.9

9 
100 100 99.88 

95.9

5 

99.9

9 
100 100 99.89 97.37 

 

 

NE

W 

PD

AE 

APA

E 

DF

E 

Mem

AE 

ND

AE 
  

Accuracy 

(%) 

99.8

4 

99.8

9 

99.

96 
98.23 

66.7

3 
  

Parameter 1682 3794 402 12061 3372   

 

 

Fig. 12: Comparison of the number of parameters of the models on the UNSW-NB15 dataset for multi-class 

classification. 
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Fig. 13: Confusion matrix for the models on the UNSW-NB15 dataset. 

CONCLUSION 

In this study, we presented three architectures, NEW PDAE, APAE, and DFE, for use in NIDSs. These architectures 

have demonstrated higher performance compared to simple encoder methods. The NEW PDAE method employs a 

parallel auto encoder technique with the ability to extract representations in different views. Due to the parallel 

feature extraction operations, NEW PDAE incurs less computational overhead, time, and fewer parameters compared 

to traditional methods for feature extraction. Another method, the APAE model, is based on an asymmetric auto 

encoder utilizing convolutional layers. This approach excels in extracting the best features in the encoder section by 

virtue of utilizing its modules effectively. Lastly, we introduced a very lightweight and powerful method called DFE, 

capable of using minimal processing and memory due to feature structuring while maintaining a very high detection 

accuracy. 

For model implementation and testing, we utilized three datasets: CICIDS2017, UNSW-NB15, and KDDCup99, 

comparing our architectures with MemAE and NDAE models. As observed from the results presented in Section 

Four, our models NEW PDAE, APAE, and DFE exhibit higher accuracy compared to other models while offering 

fewer parameters. Therefore, it can be concluded that our proposed models are more suitable choices for devices like 

Internet of Things, where computational time and cost are critical, providing a much more viable option.Considering 

the hardware and computational constraints of Internet of Things devices, and bearing in mind the mentioned 

limitations, the aim is to substitute conventional layers in the presented methods with novel, extremely lightweight, 

and efficient convolutional layers in the future. 
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