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This paper addresses an concept of Complex ŧ-fuzzy Graphs (CTFGs) effectively utilized for 

realization and visualizing intricate collaborations thus may be challenging for grasp. This  

highlights how CTFGs can typically make complex relationships that involve multiple 

apparatuses or scopes under a certain context. The paper covers a fundamental set operations of 

CTFGs, while exploring concepts of homomorphism & isomorphism under this outline. In 

addition, this study presents a real-time solicitation of CTFGs, illustrating the utility of hospital 

resource management by accounting for a multiplicity of appropriate dynamics. Through this 

application, this apporoach demonstrates the tractability & efficiency of CTFGs by way like a 

decision-support apparatus for visualizing and prioritizing actions aimed at optimizing hospital 

resource management.  

Keywords: Complex Fuzzy Graph, complex ŧ -Fuzzy Graph, Operations, Product Complex ŧ - 
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1. INTRODUCTION 

 

1.1. DECISION-MAKING 

Decision-making plays a crucial role in both personal and professional settings, as it directly influences the 

accomplishment and flaws of association. Analysts engage in decision-making throughout every stage that 

administrate the process and effectiveness of results determines overall managerial success. Without strong decision-

making abilities, managers struggle to perform essential tasks like forecasting, consolidating, directing, adapting, 

and recruiting. This process must be in both progressive & collaborative, fostering structural growth. In uncertain 

scenarios, management solutions become essential. To address ambiguity, fuzzy decision-making methodologies 

leverage fuzzy set theory, which effectively handles situations where data is imprecise or uncertain. This theory 

assigns membership grade toward elements within a traditional set, accounting for the inherent vagueness present 

in decision-making. 

1.2. FUZZY SET 

Fuzzy set theory, first introduced by Zadeh [1], establishes a robust mathematical approach for managing uncertainty, 

imprecision, and ambiguity in computational processes. Since its inception, this theory has been effectively utilized 

in diverse scientific and technical fields, containing shopper micro electronics, automated mechanism organisations, 

pattern recognition, robotics, machine learning, and manufacturing computerisation. What's more, it has 

demonstrated its utility in various operational investigation zones, for instance project scheduling, decision support, 

logistics optimization, queuing theory, and quality assurance. Several scholars, including Kandel [2], Klir and Yuan 

[3], as well as Mendel [4] and Zimmermann [5], have authored foundational texts that elaborate on the key principles 

and methodologies of fuzzy set theory, providing readers with an in-depth comprehension and practical insights into 

its applications. 

 

 

mailto:m.alqahtani@seu.edu.sa


165  
 

J INFORM SYSTEMS ENG, 10(27s) 

1.3. FUZZY GRAPH 

Graphs are a handy way to depict connections among substances, with vertices (nodes) and edges (connection). The 

philosophy of graphs remains an effective utility for analysing & reducing complex networks. Molecular descriptors 

are significant in mathematical chemistry because they allow researchers to investigate the model of particles with 

sourece of mathematical methods. Chemical graph theory investigates the interplay between chemistry, graph theory, 

and mathematics by utilizing molecular graphs to illustrate atoms, chemical linkages, and their relationships within 

molecular frameworks. When dealing with uncertain or ambiguous relationships among elements, a Fuzzy Graph 

Model becomes essential. Fuzzy graphs serve as powerful mathematical tools for analyzing structures with unknown 

or imprecise components. Rosenfeld [17] was the first to do study on fuzzy graph theory, after that Morde-son and 

Chang-Shyh's [18] description of fuzzy graph operations and Bhattacharya's [19] verification of graph abstract 

discoveries. Bhutani [20] explored the automorphisms of fuzzy networks. FG model is applied across various 

scientific and technological domains, including telecommunications, manufacturing, social network analysis, 

machine intelligence, information processing, and neural networks. 

  The conceptual framework of complex fuzzy graphs (CFGs) serves as a powerful tool for addressing and clarifying 

complex and confusing issues encountered in real-life situations. This effectiveness is due to their ability to clearly 

capture the inherent sorts of changeability, intricacy, fuzziness, & ambiguity present within elements of sets. Yet, to 

resolve applied issues related to membership, these methods must be redefined by clear-cut arithmatical standards. 

Noticing these challenge, CTFG’s concepts was introduced, incorporating linear ŧ -norm and ŧ -co norm operators. 

By adopting the CTFGs rises the need for structured and flexible approach to effectively handle uncertainty and 

facilitate decision-making founded in established principles. 

From the scenario, an argument ' ŧ ' streamlines a method specifying the basis for calculating membership degrees. 

In many real-world scenarios, decision-making must take into consideration varying degree of certianty. Adding the 

parameter ' ŧ ' to CTFGs aims to overcome normal FG restrictions by offering specific access over rigidity, enhancing 

customisation, permits to separate decision inceptions, boosting elasticity & reducing obscurity. These characteristics 

make CTFGs a active method to modeling insecurity and aiding well-versed decision-making on circumstances that 

require a customized & skilful method to managing indecision. 

CTFGs offer a significant advantage in understanding and navigating intricate decision-making scenarios where 

conventional fuzzy graphs fall short. These graphical models equip decision-makers with powerful tools to explore 

and evaluate various alternatives by thoroughly representing the intricate relationships between inputs and 

outcomes. By incorporating complex fuzzy interconnections, decision-makers can systematically assess multiple 

criteria and their interdependencies, fostering a more comprehensive and well-rounded approach to tackling 

challenging decision-making problems. A complicated method in CTFGs significantly improves resolution-creation, 

particularly in circumstances described by membership & parameter ' ŧ '. This signifies a shift away from the 

limitations of binary logic, paving the path for enhanced precision in decision-making procedures. 

1.3 MOTIVATION 

Grasping intricate relationships in various perspectives, like biodiversity preservation, essential to building well-

informed judgments. Nevertheless, conventional methods might struggle for fully capture the complexity kind of vast 

occurrences. Consequently, there is a demand for an advanced framework capable of precisely representing and 

analyzing these complex interactions. 

1.4 NOVELTY 

This research is distinguished by its use of CTFGs as an innovative approach to describing and evaluating intricate 

relationships. While various graph-based models exist, the incorporation of complex ŧ-fuzzy sets (CTFS) introduces 

a new perspective to the problem. This integration enhances the ability to represent uncertainty in sophisticated 

systems, making the proposed approach highly effective for modeling real-world phenomena with multiple 

networking components. Additionally, the study explores fundamental set operations, homomorphism, and 

isomorphism within the back ground of CTFGs, more contributing the inventiveness. 

 

1.5  GOAL 
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o To familiarize CTFGs and their characteristics. 

o The new CTFG framework aims to preserve biodiversity. 

o Establish conceptual for CTFGs. 

o Explain how CTFGs may be utilised for biodiversity conservation in real-world applications.  

o Explore how isomorphism and homomorphism in CTNGs might improve biodiversity preservation   

decisions. 

1.6 OBJECTIVE 

• ŧ -fuzzy graphs are mathematical tools used to describe obscure, and vague information under the structured 

graph. To broaden this concept of conventional graphs, ŧ -fuzzy sets, a generalisation of FS and traditional sets, are 

introduced. 

• Broaden the utilization of modern graph theory concepts and methodologies within the framework of 

complex ŧ-fuzzy graphs, facilitating a more comprehensive examination and enhanced problem-solving capabilities 

in evolving and interlinked systems. 

• Use complicated ŧ -fuzzy graphs for decision-making with several incompatible conditions or ambiguous 

facts. 

• Use complex ŧ -fuzzy graphs to tackle actual problems in disciplines such as biology, transportation, social 

networks, and communication. 

1.7 KEY CONTRIBUTION 

The primary impact of this research lies in the improvement of CTFGs, a powerful methodology for visualizing and 

comprehending intricate relationships, particularly within the domain of biodiversity preservation. This study 

illustrates how CTFGs effectively represent complex interdependencies among various conservation elements, 

facilitating more well-informed decision-making processes. Additionally, it highlights the adaptability of CTFGs in 

tackling challenges related to hospital resource allocation through practical implementations, accounting for multiple 

influential parameters. The incorporation of membership functions within CTFGs strengthens decision-makers' 

ability to analyze conservation strategies, thereby optimizing the prioritization of key initiatives. Moreover, the 

inclusion of the "ŧ" parameter in CTFGs introduces flexibility in responding to diverse sensitivities and conditions, 

equipping decision-makers with the means to address risk and uncertainty in multifaceted decision-making contexts. 

Collectively, this research establishes a comprehensive framework and analytical instruments that enhance decision-

making in hospital resource administration, ultimately fostering improved societal well-being.  

1.8 STRUCTURE OF PAPER  

The following is how the paper moves forward: To emphasise the uniqueness of the provided work, the "Basics 

of CTFGs" section explains important terminology. The next section,  Symmetric operations on CTFGs 

examines a number of set-theoretical procedures using graphical representations. After that, homomorphisms 

and isomophisms inside CTFGs are defined in the section titled "Isomorphism CTFGs." The newly created 

approach is then used to support ecosystem preservation in the section titled "Application of CTFG inbiodiversity 

conservation." Sensitivity analysis, comparison analysis, and conclusive closes succinct the results are the last steps 

in the research process. 

2 t-FUZZY GRAPH 

Definition 1. Given a universal set U, let G be the fuzzy set (FS) and ŧ ∈ [0,1]. Well-known as a ŧ-fuzzy set (ŧ-FS), the 

𝐹𝑆𝒢ŧ  of U is well-defined as ϻ𝒢ŧ(ȵ1) = ⋀ {ϻ𝒢ŧ(ȵ1), ŧ}, ∀ ȵ1 ∈ 𝑈. The form of ŧ-FS is 𝒢ŧ = {ȵ1, ϻ𝒢ŧ(ȵ1): ȵ1 ∈ 𝑈} where 

ϻ𝒢ŧ , function that give a degree of membership are. Moreover, the function ϻ𝒢ŧ   satisfy the condition 0 ≤ ϻ𝒢(ȵ1) ≤ 1. 
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Definition 2. A CFS 𝐴, defined on a universe of discourse U is an objective of the form Ƥ = {ȵ1, ϻ𝒢ŧ(ȵ1)𝑒
𝑖ϻϝ𝒢ŧ(ȵ1)}, 

where 𝑖 = √−1, (ϻ𝒢ŧ(ȵ1)  ∈ [0,1], 0 ≤ ϻϝ𝒢ŧ(ȵ1) ≤ 2𝜋. 

Definition 3. For a specific simple graph 𝐺 = (Ϗ, Ŋ), consider 𝒢ŧ = (Ƥ, Ʀ) is a FG. The form of annotation 𝒢ŧ = (Ƥŧ,  Ʀŧ) 

indicates CTFG, everywhere Ƥŧ = {(ȵ𝑖 , ϻ𝜍𝒢ŧ(ȵ𝑖)𝑒
𝑖ϻϝ𝒢ŧ(ȵ𝑖)): ȵ𝑖 ∈ Ϗ} it is a CTFS on Ϗ and                                                                          

 Ʀŧ = {((ȵ𝑖 , ȵ𝑗), ϻ𝜍𝒢ŧ(ȵ𝑖 , ȵ𝑗)𝑒
𝑖ϻϝ𝒢ŧ(ȵ𝑖, ȵ𝑗)) : (ȵ𝑖 , ȵ𝑗) ∈ Ŋ} is a CTFG on Ŋ ⊆ Ϗ × Ϗ, As to ensure (ȵ𝑖 , ȵ𝑗) ∈ Ŋ. Satisfy the 

condition, 0 ≤ ϻ𝜍Ƥŧ(ȵ𝑖) ≤ 1 and 0 ≤ ϻ𝜍 Ʀŧ(ȵ𝑖 ,  ȵ𝑗) ≤ 1. 

ϻ𝜍 Ʀŧ(ȵ𝑖 , ȵ𝑗)𝑒
𝑖ϻϝƦŧ(ȵ𝑖,  ȵ𝑗)     ≤ ⋀ {ϻ𝜍Ƥŧ(ȵ𝑖),  ϻ𝜍Ƥŧ(ȵ𝑗)}𝑒

𝑖 ⋀{ϻϝƤŧ(ȵ𝑖),  ϻϝƤŧ(ȵ𝑗)} 

Example 1. Explore 𝐺′ = (Ϗ, Ŋ) where Ϗ = {ȵ1, ȵ2, ȵ3} and Ŋ = {ȵ1ȵ2,  ȵ1ȵ3,  ȵ1ȵ4,  ȵ2ȵ3,  ȵ3ȵ4}. Let Ƥ be a CTFSs of 

Ϗ and Ŋ be a CTFG of Ŋ ⊆  Ϗ ×  Ϗ, such as specified at ŧ =  0.60𝑒𝑖0.9𝜋 in fig 1. 

Ƥ0.60𝑒𝑖0.6𝜋 =

{
 
 

 
 (ȵ1, 0.3𝑒

𝑖0.4𝜋),

(ȵ2, 0.4𝑒
𝑖0.3𝜋),

(ȵ3, 0.2𝑒
𝑖0.5𝜋)

(ȵ4, 0.5𝑒
𝑖0.1𝜋 )}

 
 

 
 

𝑎𝑛𝑑  Ʀ0.60𝑒𝑖0.6𝜋 =

{
 
 

 
 
(ȵ1ȵ2, 0.3𝑒

𝑖0.3𝜋)

(ȵ1ȵ3, 0.2𝑒
𝑖0.4𝜋)

(ȵ1ȵ4, 0.3𝑒
𝑖0.1𝜋)

(ȵ2ȵ3, 0.2𝑒
𝑖0.3𝜋)

(ȵ3ȵ4, 0.2𝑒
𝑖0.1𝜋 )}

 
 

 
 

 

 

Figure 1.  CTFG. 

Definition 4. Let 𝒢ŧ = (Ƥŧ,  Ʀŧ) be a CTFG and then, ℋŧ = (Ƥŧ
′,  Ʀŧ

′) is regarded as a CTFSG if Ƥŧ
′ ⊆ Ƥŧ and  Ʀŧ

′ ⊆  Ʀŧ. 

Definition 5. A CTFG 𝒢ŧ = (Ƥŧ,  Ʀŧ) is termed a complete CTFG if it fulfils the subsequent requirement:   

 ϻ𝜍 Ʀŧ(ȵ1, ȵ2)𝑒
𝑖ϻϝ Ʀŧ(ȵ1,   ȵ2) = ⋀{ϻ𝜍Ƥŧ(ȵ1), ϻ𝜍Ƥŧ(ȵ2)} 𝑒

𝑖 ⋀{ϻϝƤŧ(ȵ1),   ϻϝƤŧ(ȵ2)}, ∀ (ȵ1, ȵ2) ∈ Ŋ. 

 

Definition 6. The order is specified below in the CTFG 

𝑂(𝒢ŧ) = (∑ ϻ𝜍Ƥŧ(ȵ1) 𝑒
𝑖 ∑ ϻϝƤŧ(ȵ1)ȵ1∈Ϗ  

ȵ1∈Ϗ

) 

Example 2. The derived (1.4𝑒𝑖1.3𝜋) of CTFG 𝒢ŧ since Ex 1. 

Definition 7. The CTFG's size is determined in  

𝑆(𝒢ŧ) = ( ∑ ϻ𝜍 Ʀŧ(ȵ1, ȵ2)𝑒
𝑖 ∑ ϻϝ Ʀŧ(ȵ1,ȵ2)(ȵ1,ȵ2)∈Ŋ

 

(ȵ1,ȵ2)∈Ŋ

) 

Definition 8. The degree of vertex ȵ1 in 𝒢ŧ is well-demarcated such as shadows in the CTFG. 
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1. 𝑑𝑒𝑔𝒢ŧ(ȵ1) = (𝑑𝑒𝑔ϻ Ʀŧ
(ȵ1)),       𝑑𝑒𝑔𝒢ŧ(ȵ1) = (∑ ϻ𝜍 Ʀŧ(ȵ1, ȵ2)𝑒

𝑖 ϻϝ Ʀŧ(ȵ1,ȵ2)(ȵ1,ȵ2)∈Ŋ
) 

2. The CTFG's minimal degree ∆(𝒢ŧ) is ∆(𝒢ŧ) = (𝛿ϻ𝜍 Ʀŧ
(𝒢ŧ)𝑒

𝑖(𝛿ϻϝ Ʀŧ
(𝒢ŧ)) 

 

𝛿(𝒢ŧ) = (⋀ {𝑑𝑒𝑔ϻ𝜍 Ʀŧ
(ȵ1)} 𝑒

𝑖 ⋀{𝑑𝑒𝑔ϻϝ Ʀŧ
(ȵ1)})ȵ1 ∈ Ϗ. 

 

3. The the CTFG’s maximal degree ∆(𝒢ŧ) is ∆(𝒢ϻ) = (∆ϻςBϻ(𝒢ϻ)e
i(∆ϻϝBϻ

(𝒢ϻ)
) 

Example 3. According to Ex 1, the vertex's degree of 𝒢ŧ  

  𝑑𝑒𝑔𝒢ŧ(ȵ1) = (0.8𝑒𝑖0.8𝜋); 𝑑𝑒𝑔𝒢ŧ(ȵ2) = (0.5𝑒
𝑖0.6𝜋)  

 𝑑𝑒𝑔𝒢ŧ(ȵ3) =     (0.6𝑒
𝑖0.8𝜋);  𝑑𝑒𝑔𝒢ŧ(ȵ4) = (0.5𝑒

𝑖0.2𝜋).  

3. OPERATION ON CTFG 

3.1. CARTESIAN PRODUCT OF CTFG 

Definition 9. Let 𝒢ŧ = (Ƥŧ,  Ʀŧ) and 𝒢ŧ
′ = (Ƥŧ

′,  Ʀŧ
′) stand every twofold CTFGs in 𝐺 = (Ϗ, Ŋ) & 𝐺’= (Ϗ’, Ŋ’), 

correspondingly. 𝒢ŧ × 𝒢ŧ
′ is Cartision product of twofold CTFGs, 𝒢ŧ and 𝒢ŧ

′ stand demarcated by (Ƥŧ × Ƥŧ
′,  Ʀŧ ×  Ʀŧ

′) 

anywhere Ƥŧ × Ƥŧ
′ and  Ʀŧ ×  Ʀŧ

′ are CTNSs on Ϗ × Ϗ′ = {(ȵ1,  ѡ1), (ȵ2,  ѡ2): ȵ1 &ȵ2 ∈ Ϗ;  ѡ1 &  ѡ2 ∈ Ϗ
′} and Ŋ × Ŋ′ =

{(ȵ1,  ѡ1), (ȵ2,  ѡ2): ȵ1 = ȵ2, ȵ1 & ȵ2 ∈ Ϗ, ( ѡ1,  ѡ2) ∈ Ŋ
′} 𝑈 {(ȵ1,  ѡ1), (ȵ2,  ѡ2):  ѡ1 =  ѡ2,  ѡ1& ѡ2 ∈ Ϗ

′, (ȵ1, ȵ2) ∈

Ŋ} 𝑈 {(ȵ1,  ѡ1), (ȵ2,  ѡ2):  ѡ1 ≠  ѡ2, ȵ1 ≠ ȵ2, ( ѡ1,  ѡ2) ∈ Ŋ
′, (ȵ1, ȵ2) ∈ Ŋ}, which satisfies the following condition: 

1. ∀ (ȵ1,  ѡ1) ∈  Ϗ × Ϗ
′ 

ϻ𝜍Ƥŧ×Ƥŧ′(ȵ1,  ѡ1) 𝑒
𝑖ϻϝ

Ƥŧ×Ƥŧ
′(ȵ1,  ѡ1)

= ⋀{ϻ𝜍Ƥŧ(ȵ1), ϻ𝜍Ƥŧ′
( ѡ1)} 𝑒

𝑖 ⋀{ϻϝƤŧ(ȵ1), ϻϝƤŧ′
( ѡ1)} 

2. If ȵ1 = ȵ2 and ∀ ( ѡ1,  ѡ2) ∈ Ŋ
′ 

ϻ𝜍 Ʀŧ× Ʀŧ′((ȵ1,   ѡ1), (ȵ2,  ѡ2))𝑒
𝑖ϻϝ

 Ʀŧ× Ʀŧ
′((ȵ1,  ѡ1),(ȵ2,  ѡ2))

= ⋀{ϻ𝜍Ƥŧ(ȵ1), ϻ𝜍 Ʀŧ′
( ѡ1,  ѡ2)} 𝑒

𝑖 ⋀{ϻϝƤŧ(ȵ1),ϻϝ Ʀŧ′
( ѡ1, ѡ2)} 

 

3. If  ѡ1 =  ѡ2 and ∀ (ȵ1, ȵ2) ∈ Ŋ 

ϻ𝜍 Ʀŧ× Ʀŧ′((ȵ1,  ѡ1), (ȵ2,   ѡ2))𝑒
𝑖 ϻϝ

 Ʀŧ× Ʀŧ
′((ȵ1,  ѡ1),(ȵ2, ѡ2))

= ⋀ {ϻ𝜍 Ʀŧ(ȵ1, ȵ2),  ϻ𝜍Ƥŧ′
( ѡ1)} 𝑒

𝑖 ⋀{ϻϝ Ʀŧ(ȵ1,ȵ2), ϻϝƤŧ′
( ѡ1)}   

 

Example 4. Figures 3(a) and 3(b) illustrate two 0.5𝑒𝑖0.6𝜋-FG 𝒢ŧ & 𝒢′ŧ, Each of the variables that must be considered. 

The Cartesian product 𝒢 0.5𝑒𝑖0.6𝜋×G’0.5𝑒𝑖0.6𝜋, this is shown in Figure 4 and relates to them. 

 

 

 

 

 

 

 

 

Figure 3(a). 𝒢0.5𝑒𝑖0.6𝜋. 

Figure 3(b). 𝒢
0.5𝑒𝑖0.6𝜋
′ . 

ȵ1(0.4𝑒
𝑖0.2𝜋) 

(0.2𝑒𝑖0.2𝜋) 

ȵ2(0.2𝑒
𝑖0.5𝜋) 

ώ2(0.1𝑒
𝑖0.5𝜋) ώ3(0.2𝑒

𝑖0.3𝜋) 

ώ1(0.5𝑒
𝑖0.5𝜋) 

(0
.1
𝑒
𝑖0
.5
𝜋
) 

(0.1𝑒𝑖0.3𝜋) 
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Figure 4. The corresponding Cartesian product 𝒢0.5𝑒𝑖0.6𝜋 × 𝒢0.5𝑒𝑖0.6𝜋
′ . 

Definition 10. The vertex of degree 𝒢ŧ × 𝒢ŧ
′ is well-defined, for any (ȵ1,  ѡ1) ∈ Ϗ × Ϗ

′. 

𝑑𝑒𝑔 𝒢ŧ×𝒢ŧ′(ȵ1,  ѡ1) = (𝑑𝑒𝑔{ϻ𝜍 Ʀŧ× Ʀŧ′((ȵ1,  ѡ1), (ȵ2,  ѡ2))}𝑒
𝑖ϻϝ

 Ʀŧ× Ʀŧ
′((ȵ1, ѡ1),(ȵ2, ѡ2))

)  

where 

𝑑𝑒𝑔{ϻ𝜍 Ʀŧ× Ʀŧ′((ȵ1,  ѡ1), (ȵ2,  ѡ2))} 𝑒
𝑖ϻϝ

 Ʀŧ× Ʀŧ
′((ȵ1, ѡ1),   (ȵ2, ѡ2))

= ∑ ⋀{ϻ𝜍Ƥŧ(ȵ1), ϻ𝜍 Ʀŧ′
( ѡ1,  ѡ2)}

ȵ1=ȵ2,( ѡ1, ѡ2)∈Ŋ
′ 

 𝑒
𝑖 ∑ ⋀{ϻϝƤŧ(ȵ1),ϻϝ Ʀŧ′

( ѡ1, ѡ2)}ȵ1=ȵ2,( ѡ1, ѡ2)∈Ŋ
′  

                       +∑ ⋀{ϻ𝜍 Ʀŧ(ȵ1, ȵ2), ϻ𝜍Ƥŧ′
( ѡ1)}  ѡ1= ѡ2,(ȵ1,ȵ2)∈Ŋ 𝑒

𝑖 ∑ ⋀{ϻϝ Ʀŧ(ȵ1,ȵ2),ϻϝƤŧ′
( ѡ1)}  ѡ1= ѡ2,(ȵ1,ȵ2)∈Ŋ   

                                        +∑ ⋀{ϻ𝜍 Ʀŧ(ȵ1, ȵ2), ϻ𝜍 Ʀŧ′
( ѡ1,  ѡ2)} ѡ1≠ ѡ2,ȵ1≠ȵ2 𝑒

𝑖 ∑ ⋀{ϻϝ Ʀŧ(ȵ1,ȵ2),ϻϝ Ʀŧ′
( ѡ1, ѡ2)} ѡ1≠ ѡ2,ȵ1≠ȵ2 , 

Example 5. Every single vertex in 𝒢ŧ × 𝒢ŧ
′  from example 4 consumes the degree shown below 

𝑑𝑒𝑔𝒢ŧ×𝒢ŧ′(ȵ1 ѡ1) = (0.3𝑒
𝑖0.3𝜋),𝑑𝑒𝑔𝒢ŧ×𝒢ŧ′(ȵ1 ѡ2) = (0.3𝑒

𝑖0.6𝜋), 𝑑𝑒𝑔𝒢ŧ×𝒢ŧ′(ȵ1 ѡ3) = (0.3𝑒𝑖0.4𝜋), 

 𝑑𝑒𝑔𝒢ŧ×𝒢ŧ′(ȵ2 ѡ2) = (0.3𝑒
𝑖0.4𝜋) 𝑑𝑒𝑔𝒢ŧ×𝒢ŧ′(ȵ2 ѡ2) = (0.3𝑒

𝑖0.7𝜋), 𝑑𝑒𝑔𝒢ŧ×𝒢ŧ′(ȵ2 ѡ3) = (0.3𝑒𝑖0.5𝜋),, 

Theorem 1. A Cartesian product of two CTFGs yields another CTFG. 

Proof: For Aŧ × Aŧ
′ , It is clear that the situation. Considering that u1 ∈ Ϗ and ( ѡ1,  ѡ2) ∈ Ŋ

′, 

ϻςBŧ×Bŧ′((ȵ1,  ѡ1), (ȵ1,  ѡ2))e
i ϻϝ

Bŧ×Bŧ
′((ȵ1,  ѡ1),(ȵ1,  ѡ2))

  = ⋀{ϻςAŧ(ȵ1), ϻςBŧ′
( ѡ1,  ѡ2)} e

i ⋀{ϻϝAŧ(u1), ϻϝBŧ′
( ѡ1,  ѡ2)} 

≤ ⋀{ϻςAŧ(u1), ⋀ {ϻςAŧ′
( ѡ1), ϻςA

ŧ′
( ѡ2)}} e

i ⋀{ϻϝAŧ(ȵ1),   ⋀ {ϻϝAŧ′
( ѡ1), ϻA

ŧ′
( ѡ2)}} 

       ≤ ⋀{⋀ {ϻςAŧ(ȵ1), ϻςAŧ′
( ѡ1)} , ⋀ {ϻςAŧ(ȵ1), ϻςAŧ′

( ѡ2)}} e
i ⋀ {⋀{ ϻϝAŧ(ȵ1),   ϻϝAŧ′

( ѡ1)},   ⋀ {ϻϝAŧ(ȵ1), ϻϝAŧ′
( ѡ2)}} 

ϻςBŧ×Bŧ′((ȵ1,  ѡ1), (ȵ2,  ѡ2))e
i ϻϝ

Bŧ×Bŧ
′((ȵ1,  ѡ1),   (ȵ2,  ѡ2))

 

= ⋀{ϻςAŧ×Aŧ′(ȵ1,  ѡ1), ϻςAŧ×Aŧ′( ѡ1,  ѡ2)} e
i ⋀{ϻϝ

Aŧ×Aŧ
′(ȵ1,  ѡ1),   ϻϝAŧ×Aŧ

′( ѡ1,  ѡ2)}
 

Consequently, 

ϻςBŧ×Bŧ′((ȵ1,  ѡ1), (ȵ2,  ѡ2))e
i ϻϝ

Bŧ×Bŧ
′((ȵ1,  ѡ1),   (ȵ2,  ѡ2))

≤ ⋀{ϻςAŧ×Aŧ′(ȵ1,  ѡ1), ϻςAŧ×Aŧ′( ѡ1,  ѡ2)} e
i ⋀{ϻϝ

Aŧ×Aŧ
′(ȵ1,  ѡ1),   ϻϝAŧ×Aŧ

′( ѡ1,  ѡ2)}
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3.2. CTFG IN COMPOSISTION 

Definition 11. 𝒢ŧ ∘ 𝒢ŧ
′ is composition of two CTFGs, 𝒢ŧ & 𝒢ŧ

′ is a CTFG and demarcated as a pair(Ƥŧ ∘ Ƥŧ
′,   Ʀŧ ∘  Ʀŧ

′) 

everywhere (Ƥŧ ∘ Ƥŧ
′) and ( Ʀŧ ∘  Ʀŧ

′) are CTFSs on Ϗ × Ϗ′ = {(ȵ1,  ѡ1), (ȵ2,  ѡ2): ȵ1&ȵ2 ∈ Ϗ;  ѡ1& ѡ2 ∈ Ϗ
′}and Ŋ × Ŋ′ =

{(ȵ1,  ѡ1), (ȵ2,  ѡ2): ȵ1 = ȵ2, ȵ1&ȵ2 ∈ Ϗ, ( ѡ1,  ѡ2) ∈ Ŋ
′} 𝑈 {(ȵ1,  ѡ1), (ȵ2,  ѡ2):  ѡ1 =  ѡ2,  ѡ1& ѡ2 ∈ Ϗ

′, (ȵ1, ȵ2) ∈

Ŋ} 𝑈 {(ȵ1,  ѡ1), (ȵ2,  ѡ2):  ѡ1 ≠  ѡ2, ȵ1 ≠ ȵ2, ( ѡ1,  ѡ2) ∈ Ŋ
′, (ȵ1, ȵ2) ∈ Ŋ}, respectively, which satisfies the following 

condition: 

1. ∀((ȵ1,  ѡ1) ∈  Ϗ ∘ Ϗ
′, 

ϻ𝜍Ƥŧ∘Ƥŧ′(ȵ1, ѡ1)𝑒
𝑖 ϻϝ

Ƥŧ∘Ƥŧ
′(ȵ1, ѡ1)

= ⋀ {ϻ𝜍Ƥŧ(ȵ1), ϻ𝜍Ƥŧ′
( ѡ1)} 𝑒

𝑖 ⋀ {ϻϝƤŧ(ȵ1), ϻϝƤŧ′
( ѡ1)} 

2. If ȵ1 = ȵ2 and ∀ ( ѡ1,  ѡ2) ∈ Ŋ
′, 

ϻ𝜍 Ʀŧ∘ Ʀŧ′((ȵ1,  ѡ1), (ȵ2,  ѡ2))𝑒
 𝑖 ϻϝ

 Ʀŧ∘ Ʀŧ
′((ȵ1,  ѡ1),(ȵ2,  ѡ2))

= ⋀{ϻ𝜍Ƥŧ(ȵ1), ϻ𝜍 Ʀŧ′
(ѡ1,  ѡ2)} 𝑒

𝑖⋀{ϻϝƤŧ(ȵ1),   ϻϝ Ʀŧ′
( ѡ1, ѡ2)} 

If  ѡ1 =  ѡ2 and ∀ (ȵ1, ȵ2) ∈ Ŋ, ϻ𝜍 Ʀŧ∘ Ʀŧ′((ȵ1,  ѡ1), (ȵ2,  ѡ2))𝑒
i ⋀ {ϻ𝜍

 Ʀŧ∘ Ʀŧ
′((ȵ1, ѡ1),(ȵ2, ѡ2))}

 

3. If  ѡ1 ≠  ѡ2 and ∀ (ȵ1, ȵ2) ∈ Ŋ  

ϻ𝜍 Ʀŧ∘ Ʀŧ′((ȵ1,  ѡ1), (ȵ2,  ѡ2))𝑒
𝑖 ϻϝ

 Ʀŧ∘ Ʀŧ
′((ȵ1,  ѡ1),(ȵ2,  ѡ2))

= ⋀{ϻ𝜍 Ʀŧ(ȵ1, ȵ2), ϻ𝜍Ƥŧ′
( ѡ1), ϻ𝜍Ƥ

ŧ′
( ѡ2)} 𝑒

i⋀{ϻϝ Ʀŧ(ȵ1, ȵ2), ϻϝƤŧ′
( ѡ1),ϻϝƤ

ŧ′
( ѡ2)} 

Example 7. The composition complex membership grade of fig 6 is 0.6𝑒𝑖0.5𝜋.  

 

Figure 5(a). 0.5𝑒𝑖0.6𝜋-𝒢ŧ.                                                 Figure 5(b). 0.5𝑒𝑖0.6𝜋- 𝒢ŧ
′. 

 

Figure 6. 𝒢0.5𝑒𝑖0.6𝜋 ∘ 𝒢0.5𝑒𝑖0.6𝜋
′ . 
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Definition 12. The degree of composition 𝒢ŧ & 𝒢ŧ
′ is define follows  

 (ȵ1,  ѡ1) ∈ Ϗ × Ϗ
′; 𝑑𝑒𝑔𝒢ŧ∘𝒢ŧ′(ȵ1,  ѡ1) = (𝑑𝑒𝑔{ϻ𝜍 Ʀŧ∘ Ʀŧ′((ȵ1,  ѡ1), (ȵ2,  ѡ2))}𝑒

𝑖{ϻϝ
 Ʀŧ∘ Ʀŧ

′((ȵ1, ѡ1),(ȵ2, ѡ2))} 
)  

where 

𝑑𝑒𝑔{ϻ𝜍 Ʀŧ∘ Ʀŧ′((ȵ1,  ѡ1), (ȵ2,  ѡ2))}𝑒
𝑖{ϻϝ

 Ʀŧ∘ Ʀŧ
′((ȵ1, ѡ1),(ȵ2, ѡ2))} 

 

= ∑ ⋀{ϻ𝜍Ƥŧ(ȵ1), ϻ𝜍 Ʀŧ′
( ѡ1,  ѡ2)} 𝑒

𝑖 ∑ ⋀{ϻϝƤŧ(ȵ1),ϻϝ Ʀŧ′
( ѡ1, ѡ2)}ȵ1=ȵ2,( ѡ1, ѡ2)∈Ŋ

′  
ȵ1=ȵ2,( ѡ1, ѡ2)∈Ŋ

′  +

 ∑ ⋀ {ϻ𝜍 Ʀŧ(ȵ1, ȵ2), ϻ𝜍Ƥŧ′
( ѡ1)} 𝑒

𝑖 ∑ ⋀{ϻϝ Ʀŧ(ȵ1,ȵ2), ϻϝƤŧ′
( ѡ1)}   ѡ1= ѡ2,(ȵ1,ȵ2)∈Ŋ    ѡ1= ѡ2,(ȵ1,ȵ2)∈Ŋ 

   +

∑ ⋀ {ϻ𝜍 Ʀŧ(ȵ1, ȵ2), ϻ𝜍Ƥŧ′
( ѡ1), ϻ𝜍Ƥ

ŧ′
( ѡ2)} 𝑒

𝑖 ∑ ⋀{ϻϝ Ʀŧ(ȵ1,ȵ2),ϻϝƤŧ′
( ѡ1),ϻϝƤ

ŧ′
( ѡ2)}  ѡ1≠ ѡ2,(ȵ1,ȵ2)∈Ŋ 

  ѡ1≠ ѡ2,(ȵ1,ȵ2)∈Ŋ     

 

Example 8. By using Definiton 7, and fig 6,  the degree of composition is  

𝑑𝑒𝑔𝒢ŧ∘𝒢ŧ′(ȵ1,  ѡ1) = (0.6𝑒
𝑖0.4𝜋),𝑑𝑒𝑔𝒢ŧ∘𝒢ŧ′(ȵ1,  ѡ2) = (0.6𝑒𝑖0.4𝜋)  

𝑑𝑒𝑔𝒢ŧ∘𝒢ŧ′(ȵ2,  ѡ1) = (1.1𝑒𝑖0.9𝜋), 𝑑𝑒𝑔𝒢ŧ∘𝒢ŧ′(ȵ2,  ѡ2) = (1.1𝑒𝑖0.7𝜋) 

𝑑𝑒𝑔𝒢ŧ∘𝒢ŧ′(ȵ3,  ѡ1) = (1.0𝑒𝑖1.1𝜋), 𝑑𝑒𝑔𝒢ŧ∘𝒢ŧ′(ȵ3,  ѡ2) = (1.0𝑒
𝑖0.8𝜋) 

𝑑𝑒𝑔𝒢ŧ∘𝒢ŧ′(ȵ4,  ѡ1) = (0.4𝑒𝑖0.7𝜋), 𝑑𝑒𝑔𝒢ŧ∘𝒢ŧ′(ȵ4,  ѡ2) = (0.4𝑒
𝑖0.6𝜋) 

 

3.3. UNION OF CTFG 

Definition 13. Supose  𝐺 = (Ϗ, Ŋ) & 𝐺’= (Ϗ’, Ŋ’) stand every twofold CTFGs, such that 𝒢ŧ = (Ƥŧ,  Ʀŧ), and 𝒢ŧ
′ = (Ƥŧ

′,  Ʀŧ
′). 

The union 𝒢ŧ ∪ 𝒢ŧ
′ of these twofold CTFGs stands demarcated, in certain norms, as (Ƥŧ ∪ Ƥŧ

′,  Ʀŧ ∪  Ʀŧ
′), anywhere Ƥŧ ∪

Ƥŧ
′ and  Ʀŧ ∪  Ʀŧ

′ , correspondingly, characterize CTFGs on Ϗ ∪ Ϗ′ and Ŋ ∪ Ŋ′, this meets the subsequent criteria: 

• If ȵ1 ∈ Ϗ and ȵ1 ∉ Ϗ
′, ϻ𝜍Ƥŧ∪Ƥŧ′  (ȵ1)𝑒

𝑖 ϻϝ
Ƥŧ∪Ƥŧ

′(ȵ1)
 = ϻ𝜍Ƥŧ(ȵ1)𝑒

𝑖 ϻϝƤŧ(ȵ1) 

• If ȵ1 ∉ Ϗ and ȵ1 ∈ Ϗ
′, ϻ𝜍Ƥŧ∪Ƥŧ′(ȵ1)𝑒

𝑖 ϻϝ
Ƥŧ∪Ƥŧ

′(ȵ1)
 =ϻ𝜍Ƥŧ′(ȵ1)𝑒

𝑖 ϻϝ
Ƥŧ
′(ȵ1)

 

• If ȵ1 ∈ Ϗ ∩ Ϗ
′,ϻ𝜍Ƥŧ∪Ƥŧ′(ȵ1)𝑒

𝑖 ϻϝ
Ƥŧ∪Ƥŧ

′(ȵ1)
 = 𝑚𝑎𝑥{ϻ𝜍Ƥŧ(ȵ1), ϻ𝜍Ƥŧ′(ȵ1)}𝑒

𝑖 𝑚𝑎𝑥{ϻϝƤŧ(ȵ1),ϻϝƤŧ
′(ȵ1)}

 

• If (ȵ1,  ѡ1) ∈ Ŋ and (ȵ1,  ѡ1) ∉ Ŋ
′, ϻ𝜍 Ʀŧ∪ Ʀŧ′(ȵ1,  ѡ1)𝑒

𝑖 ϻϝ
 Ʀŧ∪ Ʀŧ

′(ȵ1, ѡ1)
 =ϻ𝜍 Ʀŧ(ȵ1,  ѡ1)𝑒

𝑖ϻϝ Ʀŧ(ȵ1, ѡ1)  

• If (ȵ1,  ѡ1) ∉ Ŋ and (ȵ1,  ѡ1) ∈ Ŋ
′,ϻ𝜍 Ʀŧ∪ Ʀŧ′(ȵ1,  ѡ1)𝑒

𝑖ϻϝ
 Ʀŧ∪ Ʀŧ

′(ȵ1, ѡ1)
= ϻ𝜍 Ʀŧ′(ȵ1,  ѡ1)𝑒

𝑖ϻϝ
 Ʀŧ
′(ȵ1, ѡ1)

 

• If (ȵ1,  ѡ1) ∈ Ŋ ∩ Ŋ
′, 

ϻ𝜍 Ʀŧ∪ Ʀŧ′(ȵ1,  ѡ1)𝑒
𝑖ϻϝ

 Ʀŧ∪ Ʀŧ
′(ȵ1, ѡ1)

= 𝑚𝑎𝑥{ϻ𝜍 Ʀŧ(ȵ1,  ѡ1), ϻ𝜍 Ʀŧ′(ȵ1,  ѡ1)}𝑒
𝑚𝑎𝑥{ϻϝ Ʀŧ(ȵ1, ѡ1),ϻϝ Ʀŧ

′(ȵ1, ѡ1)}
 

Example 9. The 0.7𝑒𝑖0.6𝜋-CTFGs of 𝒢ŧ & , presented now Fig 7(a) & 7(b). The unon of CTFGs is show in Figu 8. 
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                                         Figure 7(a). 0.7𝑒𝑖0.6𝜋 − 𝑁𝐺𝒢0.7𝑒𝑖0.6𝜋.                 Figure 7(b). 0.7𝑒𝑖0.6𝜋 − 𝑁𝐺𝒢
0.7𝑒𝑖0.6𝜋
′  

 

Figure 8. 𝒢0.7 ∪ 𝒢0.7
′ . 

Definition 14. The degree of vertex (ȵ1,  ѡ1) at a CTFG for every (ȵ1,  ѡ1) ∈ Ϗ × Ϗ
′ 

𝑑𝑒𝑔𝒢ŧ∪𝒢ŧ′(ȵ1,  ѡ1) = (𝑑𝑒𝑔{ϻ𝜍 Ʀŧ∪ Ʀŧ′(ȵ1,  ѡ1)}𝑒
𝑖 {ϻϝ

 Ʀŧ∪ Ʀŧ
′(ȵ1, ѡ1)}

) where 

𝑑𝑒𝑔 {ϻ𝜍 Ʀŧ∪ Ʀŧ′(ȵ1,  ѡ1)𝑒
𝑖 ϻϝ

 Ʀŧ∪ Ʀŧ
′(ȵ1, ѡ1)

} = ∑ ϻ𝜍 Ʀŧ(ȵ1,  ѡ1)(ȵ1,  ѡ1)∈Ŋ ,(ȵ1,  ѡ1)∉Ŋ
′ 𝑒

𝑖 ∑ ϻϝ Ʀŧ(ȵ1, ѡ1)(ȵ1,    ѡ1)∈Ŋ ,(ȵ1,    ѡ1)∉Ŋ
′      

                                                 +  ∑ ϻ𝜍 Ʀŧ′(ȵ1,  ѡ1)𝑒
𝑖 ∑ ϻϝ

 Ʀŧ
′(ȵ1, ѡ1) (ȵ1, ѡ1)∉Ŋ,(ȵ1, ѡ1)∈Ŋ

′ 
 (ȵ1,  ѡ1)∉Ŋ,(ȵ1, ѡ1)∈Ŋ

′   

                                        +∑  𝑚𝑎𝑥{ϻ𝜍 Ʀŧ(ȵ1,  ѡ1), ϻ𝜍 Ʀŧ′(ȵ1,  ѡ1)}𝑒
∑  𝑚𝑎𝑥{ϻϝ Ʀŧ(ȵ1, ѡ1), ϻϝ Ʀŧ

′(ȵ1, ѡ1)} (ȵ1, ѡ1)∈Ŋ∩Ŋ
′ 

 (ȵ1,  ѡ1)∈Ŋ∩Ŋ
′   

3.4. JOINIFG OF CTFGS 

Definition 15. Suppose two CTFGs 𝒢ŧ = (Ƥŧ,  Ʀŧ) &  𝒢ŧ
′ = (Ƥŧ

′,  Ʀŧ
′). These CTFGs’ joining procedure 𝒢ŧ + 𝒢ŧ

′ be presentas 

(Ƥŧ + Ƥŧ
′,  Ʀŧ +  Ʀŧ

′), everywhere Ƥŧ + Ƥŧ
′ yields a CTFG on Ϗ ∪ Ϗ′ and  Ʀŧ +  Ʀŧ

′ formulae a CTFG on Ŋ ∪ Ŋ′ ∪ Ŋ′′ 

If ȵ1 ∈ Ϗ and ȵ1 ∉ Ϗ
′, ϻ𝜍Ƥŧ+Ƥŧ′(ȵ1)𝑒

𝑖ϻϝ
Ƥŧ+Ƥŧ

′(ȵ1)
= ϻ𝜍Ƥŧ(ȵ1) 𝑒

𝑖ϻϝƤŧ(ȵ1) 

i.If ȵ1 ∉ Ϗ and ȵ1 ∈ Ϗ
′, ϻ𝜍Ƥŧ+Ƥŧ′(ȵ1)𝑒

𝑖ϻϝ
Ƥŧ+Ƥŧ

′(ȵ1)
= ϻ𝜍Ƥŧ′(ȵ1)𝑒

𝑖ϻϝ
Ƥŧ
′(ȵ1)

 

ii.If ȵ1 ∈ Ϗ ∩ Ϗ
′, ϻ𝜍Ƥŧ+Ƥŧ′(ȵ1) 𝑒

𝑖ϻϝ
Ƥŧ+Ƥŧ

′(ȵ1)
= 𝑚𝑎𝑥{ϻ𝜍Ƥŧ(ȵ1), ϻ𝜍Ƥŧ′(ȵ1)}𝑒

𝑖𝑚𝑎𝑥{ϻϝƤŧ(ȵ1), ϻϝƤŧ
′(ȵ1)}
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iii.If (ȵ1,  ѡ1) ∈ Ŋ and (ȵ1,  ѡ1) ∉ Ŋ
′, ϻ𝜍 Ʀŧ+ Ʀŧ′(ȵ1,  ѡ1)𝑒

𝑖 ϻϝ
 Ʀŧ+ Ʀŧ

′(ȵ1, ѡ1)
= ϻ𝜍 Ʀŧ(ȵ1,  ѡ1)𝑒

𝑖 ϻϝ Ʀŧ(ȵ1, ѡ1) 

iv.If (ȵ1,  ѡ1) ∉ Ŋ and (ȵ1,  ѡ1) ∈ Ŋ
′, ϻ𝜍 Ʀŧ+ Ʀŧ′(ȵ1,  ѡ1)𝑒

𝑖 ϻϝ
 Ʀŧ+ Ʀŧ

′(ȵ1, ѡ1)
=  ϻ𝜍 Ʀŧ′(ȵ1,  ѡ1)𝑒

𝑖 ϻϝ
 Ʀŧ
′(ȵ1, ѡ1)

 

v.If (ȵ1,  ѡ1) ∈ Ŋ ∩ Ŋ
′ 

ϻ𝜍 Ʀŧ+ Ʀŧ′(ȵ1,  ѡ1)𝑒
𝑖 ϻϝ

 Ʀŧ+ Ʀŧ
′(ȵ1, ѡ1)

 = 𝑚𝑎𝑥{ϻ𝜍 Ʀŧ(ȵ1,  ѡ1), ϻ𝜍 Ʀŧ′(ȵ1,  ѡ1)}𝑒
𝑖𝑚𝑎𝑥{ϻϝ Ʀŧ(ȵ1, ѡ1),ϻϝ Ʀŧ

′(ȵ1, ѡ1)}
 

vi.If (ȵ1,  ѡ1) ∈ Ŋ
′′ 

ϻ𝜍 Ʀŧ+ Ʀŧ′(ȵ1,  ѡ1) 𝑒
𝑖ϻϝ

 Ʀŧ+ Ʀŧ
′(ȵ1, ѡ1)

= 𝑚𝑎𝑥{ϻ𝜍 Ʀŧ(ȵ1), ϻ𝜍 Ʀŧ′( ѡ1)}𝑒
𝑖 𝑚𝑎𝑥{ϻϝ Ʀŧ(ȵ1),ϻϝ Ʀŧ

′( ѡ1)}
 

Example 10. The join 𝒢ŧ + 𝒢ŧ
′ 𝑖𝑠  0.4𝑒𝑖0.7𝜋 is presented now Fig 12. 

 

Figure 9(a). 0.4ei0.8π − 𝒢0.4ei0.8π.                         Figure 9(b). 0.4ei0.8π − 𝒢
0.4ei0.8π
′  

 

Figure 9. 𝒢 0.4ei0.7π + 𝒢 0.4𝑒𝑖0.7𝜋
′ . 

Definition 16. The two 𝒢ŧ & 𝒢ŧ
′ be CTFGs and the degree of CTFG 𝒢ŧ + 𝒢ŧ

′ is termed below. For every (ȵ1,  ѡ1) ∈

Ϗ × Ϗ′.   𝑑𝑒𝑔𝒢ŧ+𝒢ŧ′(ȵ1,  ѡ1) = (𝑑𝑒𝑔{ϻ𝜍 Ʀŧ+ Ʀŧ′(ȵ1,  ѡ1)}𝑒
𝑖{ϻϝ

 Ʀŧ+ Ʀŧ
′(ȵ1, ѡ1)} 

),  wherever 

𝑑𝑒𝑔 {ϻ Ʀŧ+ Ʀŧ′(ȵ1,  ѡ1)𝑒
𝑖ϻϝ

 Ʀŧ+ Ʀŧ
′(ȵ1, ѡ1)

} =

(∑ ϻ𝜍 Ʀŧ(ȵ1,  ѡ1)(ȵ1, ѡ1)∈Ŋ ,(ȵ1, ѡ1)∉Ŋ
′ 𝑒

𝑖 ∑ ϻϝ Ʀŧ(ȵ1, ѡ1)(ȵ1, ѡ1)∈Ŋ ,(ȵ1, ѡ1)∉Ŋ
′ +

∑ ϻ𝜍 Ʀŧ′(ȵ1,  ѡ1) (ȵ1, ѡ1)∉Ŋ,(ȵ1, ѡ1)∈Ŋ
′ 𝑒

𝑖 ∑ ϻϝ
 Ʀŧ
′(ȵ1, ѡ1) (ȵ1, ѡ1)∉Ŋ,(ȵ1, ѡ1)∈Ŋ

′ +

∑  𝑚𝑎𝑥{ϻ𝜍 Ʀŧ(ȵ1,  ѡ1), ϻ𝜍 Ʀŧ′(ȵ1,  ѡ1)} (ȵ1, ѡ1)∈Ŋ+Ŋ
′ 𝑒

𝑖 ∑  𝑚𝑎𝑥{ϻϝ Ʀŧ(ȵ1, ѡ1),   ϻϝ Ʀŧ
′(ȵ1, ѡ1)} (ȵ1, ѡ1)∈Ŋ∩Ŋ

′ +

∑  𝑚𝑎𝑥{ϻ𝜍 Ʀŧ(ȵ1), ϻ𝜍 Ʀŧ′( ѡ1)} (ȵ1, ѡ1)∈Ŋ
′′ 𝑒

𝑖 ∑  𝑚𝑎𝑥{ϻϝ Ʀŧ(ȵ1),ϻϝ Ʀŧ
′( ѡ1)} (ȵ1, ѡ1)∈Ŋ

′′ ),  
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Theorem 2. The CTFGs 𝒢ŧ = (Ƥŧ,  Ʀŧ) & 𝒢ŧ
′ = (Ƥŧ

′,  Ʀŧ
′) of 𝐺  = (Ϗ, Ŋ) and 𝐺’ = (Ϗ’, Ŋ’), correspondingly, everywhere Ϗ ∩

Ϗ′ ≠ ∅, 𝒢ŧ ∪ 𝒢ŧ
′ = (Ƥŧ ∪ Ƥŧ

′,  Ʀŧ ∪  Ʀŧ
′) is a CTFG of 𝐺 = 𝐺 ∪  𝐺 ′ if 𝒢ŧ and 𝒢ŧ

′ are the CTFGs of 𝐺 & 𝐺’, correspondingly. 

Proof. Let (ȵ1,  ѡ1) ∈ Ŋ, (ȵ1,  ѡ1) ∉ Ŋ
′, & (ȵ1,  ѡ1) ∈ Ϗ −  Ϗ

′.   

Consider 

ϻςBϻ(ȵ1,  ѡ1)e
i ϻϝBϻ(ȵ1,  ѡ1) = ϻςBϻUBϻ′ (ȵ1,  ѡ1) e

i ϻϝ
BϻUBϻ

′ (ȵ1, ѡ1)
 

≤ ⋀ {ϻςAϻ∪Aϻ′ (ȵ1), ϻςAϻ∪Aϻ′ ( ѡ1)}e
i ⋀ {ϻϝ

Aϻ∪Aϻ
′ (ȵ1),   ϻϝAϻ∪Aϻ

′ ( ѡ1)}
 

= ⋀ {ϻςAϻ(ȵ1), ϻςAϻ( ѡ1)}e
i ⋀ {ϻϝAϻ(ȵ1), ϻϝAϻ( ѡ1)} 

 

Correspondingly, we determine 𝒢ŧ
′ = (Ƥŧ

′,  Ʀŧ
′) as a CTFG of 𝐺′′. Undertake FG 𝒢ŧ & 𝒢ŧ

′ and considerate that the of two 

CTFGs creates a CTFG it tracks that 𝒢ŧ ∪ 𝒢ŧ
′.   □ 

4. ISOMORPHISM OF CTFGS 

Definition 17. Suppose 𝒢ŧ = (Ƥŧ,  Ʀŧ) &  𝒢ŧ
′ = (Ƥŧ

′,  Ʀŧ
′) stand every twofold CTFGs of 𝐺  = (Ϗ, Ŋ) & 𝐺’ = (Ϗ’, Ŋ’) 

correspondingly. A homomorphism 𝜃 from CTFG 𝒢ŧ & 𝒢ŧ
′ is a mapping  𝜃: Ϗ → Ϗ′, adequate below  

 ϻ𝜍Ƥŧ(ȵ1)𝑒
𝑖 ϻ𝜍Ƥŧ(ȵ1) ≤ ϻ𝜍Ƥŧ′(𝜃(ȵ1))𝑒

𝑖 ϻϝ
Ƥŧ
′(𝜃(ȵ1))

,∀ȵ1 ∈ Ϗ. 

1. ϻ𝜍 Ʀŧ(ȵ1,  ѡ1)𝑒
𝑖 ϻϝ Ʀŧ(ȵ1, ѡ1) ≤ ϻ𝜍 Ʀŧ′(𝜃(ȵ1), 𝜃( ѡ1)) 𝑒

𝑖 ϻϝ
 Ʀŧ
′(𝜃(ȵ1),𝜃( ѡ1))

, ∀(ȵ1,  ѡ1) ∈ Ŋ. 

Definition 18. A weak isomorphism 𝜃: Ϗ → Ϗ′, from CTFG 𝒢ŧ ϻo 𝒢ŧ
′ , necessity below circumstances 

ϻ𝜍Ƥŧ(ȵ1)𝑒
𝐼 ϻϝƤŧ(ȵ1) ≤ ϻ𝜍Ƥŧ′(𝜃(ȵ1))𝑒

𝐼 ϻϝ
Ƥŧ
′(𝜃(ȵ1))

, ∀ȵ1 ∈ Ϗ  

Definition 19. A strong co-isomorphism is demarcated such as a bijective mapping 𝜃: Ϗ → Ϗ′ between every twofold 

CTFGs, 𝒢ŧ = (Ƥŧ,  Ʀŧ) & 𝒢ŧ
′ = (Ƥŧ

′,  Ʀŧ
′) of 𝐺 = (Ϗ,E) & 𝐺’ = (Ϗ’,E’), correspondingly, adequate below 

1. ϻ𝜍Ƥŧ(ȵ1)𝑒
𝑖 ϻϝƤŧ(ȵ1) ≤ ϻ𝜍Ƥŧ′(𝜃(ȵ1))𝑒

ϻϝ
Ƥŧ
′(𝜃(ȵ1))

, ∀ȵ1 ∈ Ϗ 

2. ϻ𝜍 Ʀŧ(ȵ1,  ѡ1)𝑒
𝑖ϻϝ Ʀŧ(ȵ1, ѡ1) ≤ ϻ𝜍 Ʀŧ′(𝜃(ȵ1), 𝜃( ѡ1)) 𝑒

𝑖ϻϝ
 Ʀŧ
′(𝜃(ȵ1),𝜃( ѡ1))

, ∀(ȵ1,  ѡ1) ∈ Ŋ. 

3. ϻ𝜍 Ʀŧ(ȵ1,  ѡ1)𝑒
𝑖ϻϝ Ʀŧ(ȵ1,  ѡ1) = ϻ𝜍 Ʀŧ′(𝜃(ȵ1), 𝜃( ѡ1))𝑒

𝑖ϻϝ
 Ʀŧ
′(𝜃(ȵ1),𝜃( ѡ1))

, ∀(ȵ1,  ѡ1) ∈ Ŋ. 

Definition 20. An isomorphism among two CTFGs 𝒢ŧ = (Ƥŧ,  Ʀŧ) & 𝒢ŧ
′ = (Ƥŧ

′,  Ʀŧ
′) stands a bijective homomorphism 

mapping 𝜃: Ϗ → Ϗ′ adequate below: 

ϻ𝜍Ƥŧ(ȵ1)𝑒
𝑖ϻϝƤŧ(ȵ1) ≤ ϻ𝜍Ƥŧ′(𝜃(ȵ1))𝑒

ϻϝ
Ƥŧ
′(𝜃(ȵ1))

, ∀ȵ1 ∈ Ϗ. 

ϻ𝜍 Ʀŧ(ȵ1,  ѡ1)𝑒
𝑖 ϻϝ Ʀŧ(ȵ1, ѡ1) = ϻ𝜍 Ʀŧ′(𝜃(ȵ1), 𝜃( ѡ1))𝑒

𝑖ϻϝ
 Ʀŧ
′(𝜃(ȵ1),𝜃( ѡ1))

, ∀(ȵ1,  ѡ1) ∈ Ŋ. 

Example 11. According to the following figures, take the Two 0.8𝑒𝑖0.7𝜋-𝒢ŧ and 𝒢ŧ
′ as shown in Figures 10(a) and 10(b). 

 

Figure 10(a) . 0.8𝑒𝑖0.7𝜋 − 𝑁𝐺 𝒢 0.8𝑒𝑖0.7𝜋.               Figure 10(b). 0.8𝑒𝑖0.7𝜋 −𝑁𝐺 𝒢
 0.8𝑒𝑖0.7𝜋
′ . 
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Giving to Definition (20), the mapping ζ(a)=g, ζ(b)=f, and ζ(c) = e provides 

 𝒢 0.8𝑒𝑖0.7𝜋 ≈ 𝒢 0.8𝑒𝑖0.7𝜋
′   

Theorem 3. By connecting an isomorphism between CTFGs, the properties of a relation of equivalents are met. 

Proof. Symmetry as well as reflexivity are both evident. The notations 𝜑: Ϗ → Ϗ′ and 𝜃: Ϗ′ → Ϗ′′ represent the 

isomorphism of 𝒢ŧ onto 𝒢ŧ
′ and 𝒢ŧ

′ onto 𝒢ŧ
′′, respectively. it is defined as follows, and 𝜃 ∘ 𝜑: Ϗ → Ϗ′′ is a bijective map 

from Ϗ′ to Ϗ′′. 

(𝜃 ∘ 𝜑)(ȵ1) = 𝜃(𝜑(ȵ1)), ∀ȵ1 ∈ Ϗ  

For a map 𝜑:Ϗ → Ϗ′demarcated by 𝜑(ȵ1) =  ѡ1, ∀ȵ1 ∈ Ϗ, iϻ is an isomorphism. In view of def (20) 

ϻ𝜍Ƥŧ(ȵ1)𝑒
𝑖ϻϝƤŧ(ȵ1) = ϻ𝜍Ƥŧ′(𝜑(ȵ1))𝑒

𝑖ϻϝ
Ƥŧ
′(𝜑(ȵ1))

= ϻ𝜍Ƥŧ′( ѡ1)𝑒
𝑖ϻϝ

Ƥŧ
′(𝜑(ȵ1))

, ∀ȵ1 ∈ Ϗ  (1) 

and 

 ϻ𝜍 Ʀŧ(ȵ1, ȵ2)𝑒
𝑖ϻϝ Ʀŧ(ȵ1,ȵ2) = ϻ𝜍 Ʀŧ′(𝜑(ȵ1), 𝜑(ȵ2))𝑒

𝑖ϻϝ
 Ʀŧ
′(𝜑(ȵ1),𝜑(ȵ2))

  

= ϻ𝜍 Ʀŧ′( ѡ1,  ѡ2)𝑒
𝑖ϻϝ

 Ʀŧ
′( ѡ1, ѡ2)

, ∀(ȵ1, ȵ2) ∈ Ŋ 

(2) 

Similarly, we derive that 

ϻ𝜍Ƥŧ′( ѡ1)𝑒
𝑖ϻϝ

Ƥŧ
′( ѡ1)

= ϻ𝜍Ƥŧ′′(𝑣1)𝑒
𝑖ϻϝ

Ƥŧ
′′(𝑣1)

, ∀  ѡ1 ∈ Ϗ
′ (3) 

and 

 ϻ𝜍 Ʀŧ′( ѡ1,  ѡ2)𝑒
𝑖ϻϝ

 Ʀŧ
′( ѡ1, ѡ2)

= ϻ𝜍 Ʀŧ′′(𝑣1, 𝑣2)𝑒
𝑖ϻϝ

 Ʀŧ
′′(𝑣1,𝑣2)

, ∀( ѡ1,  ѡ2) ∈ Ŋ
′ (4) 

By using the relations (1) and (7) and 𝜑(ȵ1) =  ѡ1 , ∀ ȵ1 ∈ Ϗ, we have 

ϻ𝜍Ƥŧ(ȵ1)𝑒
ϻϝƤŧ(ȵ1) = ϻ𝜍Ƥŧ′(𝜑(ȵ1))𝑒

𝑖ϻϝ
Ƥŧ
′(𝜑(ȵ1))

  

= ϻ𝜍Ƥŧ′( ѡ1)𝑒
𝑖ϻϝ

Ƥŧ
′( ѡ1)

 

= ϻ𝜍Ƥŧ′′(𝜃( ѡ1))𝑒
𝑖ϻϝ

Ƥŧ
′′(𝜃( ѡ1))

 

              = ϻ𝜍Ƥŧ′′ (𝜃(𝜑(ȵ1))) 𝑒
𝑖 ϻϝ

Ƥŧ
′′(𝜃(𝜑(ȵ1)))

 

When using the relations (4) and (10), the outcome is 

                       ϻ𝜍 Ʀŧ(ȵ1, ȵ2)𝑒
𝑖ϻϝ Ʀŧ(ȵ1,ȵ2) = ϻ𝜍 Ʀŧ′( ѡ1,  ѡ2)𝑒

𝑖ϻϝ
 Ʀŧ
′( ѡ1,    ѡ2)

  

                                                                                 = ϻ𝜍 Ʀŧ′′(𝜃( ѡ1), 𝜃( ѡ2))𝑒
ϻϝ
 Ʀŧ
′′(𝜃( ѡ1) ,   𝜃( ѡ2))

 

= ϻ𝜍 Ʀŧ′′ (𝜃(𝜑(ȵ1)), 𝜃(𝜑(ȵ2))) 𝑒
𝑖ϻϝ

 Ʀŧ
′′(𝜃(𝜑(ȵ1)),   𝜃(𝜑(ȵ2)))

 

 

When using the relations (6) and (12), the outcome is 

          𝐹𝜍 Ʀŧ(ȵ1, ȵ2)𝑒
𝑖𝐹𝜌 Ʀŧ(ȵ1,ȵ2) = 𝐹𝜍 Ʀŧ′( ѡ1,  ѡ2)𝑒

𝑖𝐹𝜌
 Ʀŧ
′( ѡ1,  ѡ2)

  

= 𝐹𝜍 Ʀŧ′′(𝜃( ѡ1), 𝜃( ѡ2))𝑒
𝐹𝜌

 Ʀŧ
′′(𝜃( ѡ1),   𝜃( ѡ2))

 

                                                                     = 𝐹𝜍 Ʀŧ′′ (𝜃(𝜑(ȵ1)), 𝜃(𝜑(ȵ2))) 𝑒
𝑖𝐹𝜌

 Ʀŧ
′′(𝜃(𝜑(ȵ1)),   𝜃(𝜑(ȵ2)))

 

 

Hence, 𝒢ŧ and 𝒢ŧ
′′ are isomorphic to every other via 𝜃 ∘ 𝜑.  

 



176  
 

J INFORM SYSTEMS ENG, 10(27s) 

5. REAL-WORLD APPLICATIONS IN HOSPITAL RESOURCE MANAGEMENT 

Hospital resource management solutions based on CTFGs and TFGs are examined in this section.  

5.1 DESCRIPTION OF THE EXPERIMENT 

The study leveraged CTFGs to explore and identify challenges in hospital resource management. By utilizing CTFGs, 

healthcare administrators could examine uncertain data and evaluate multiple dimensions of resource distribution, 

including bed occupancy, workforce scheduling, medical equipment allocation, patient flow coordination, emergency 

response planning, and financial oversight. The CTFG-based model incorporated membership functions to depict the 

interdependencies among resource management variables, capturing the extent of conformity or divergence from 

optimal hospital resource utilization. 

The results of the study are as follows: 

• CTFGs proved instrumental in pinpointing key determinants impacting hospital resource administration, 

equipping decision-makers with a deeper understanding of the intricate connections between various allocation 

factors. 

• Leveraging CTFGs to examine interdependencies among resource variables enabled more effective 

prioritization, thereby refining strategic decision-making in hospital management. 

• The adjustable parameter ‘ŧ’ within CTFGs empowered administrators to customize the graphical models 

based on their specific expertise in healthcare operations and domain-specific challenges, leading to improved 

efficiency in resource distribution and management. 

• Graphical depictions of CTFGs illuminated complex interrelationships among hospital resources, assisting 

in the formulation of robust strategies for streamlined hospital workflows and enhanced patient care. 

5.2. APPLICATION OF CTFGS IN HOSPITAL RESOURCE MANAGEMENT 

Efficient management of hospital resources is crucial for maintaining high standards of patient care and maximizing 

operational effectiveness. Various elements, including workforce availability, medical asset allocation, bed utilizetion, 

emergency preparedness, budgetary limitations, and shifts in patient demand, significantly impact hospital 

functionality. A comprehensive strategy that accounts for the interconnections among these factors is necessary for 

effective resource administration. By employing CTFGs, healthcare decision makers can analyze ambiguous data and 

evaluate key resource parameters. This approach facilitates the identification of critical determinants and strengthens 

strategic planning in hospital management. 

Key aspects contributing to hospital resource management include: 

• Bed availability (H₁) 

• Staff scheduling (H₂) 

• Medical equipment distribution (H₃) 

• Patient flow optimization (H₄) 

• Emergency preparedness (H₅) 

• Cost management (H₆) 

Let M = {H₁, H₂, H₃, H₄, H₅, H₆} represent a set of key resource factors that substantially influence hospital 

administration. The connections between these elements are quantified using t-fuzzy values, indicating the degree of 

interdependence among them. Within the CTFG framework, membership functions characterize the relationships 

among hospital resources, reflecting the extent to which each factor conforms to or deviates from optimal resource 

allocation. The incorporation of these functions offers a comprehensive understanding of resource interactions, 

enabling healthcare administrators to assess operational effectiveness. The parameter ‘t’ serves as a customizable 

element that allows administrators to tailor CTFGs based on their domain knowledge and hospital-specific 

challenges, facilitating precise interventions and enhanced resource coordination. Additionally, fluctuations in the t 

parameter encapsulate diverse perspectives on risk tolerance and uncertainty in resource allocation. By modifying 
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the t value, decision-makers can explore various operational scenarios, striking a balance between over-allocation 

and resource scarcity. This flexibility is essential for adapting to sudden increases in patient volume, financial 

constraints, and emergency conditions, ensuring resilient and efficient hospital management. 

Furthermore, different values of the parameter ‘t’ reflect diverse viewpoints on risk assessment and sensitivity in 

resource distribution. Decision-makers can prioritize or mitigate specific resource constraints depending on their 

strategic objectives and tolerance for operational uncertainty. The ‘t’ parameter enables healthcare institutions to 

customize CTFG models to suit various hospital environments and fluctuations in demand, supporting resilient and 

data-driven resource management. Additionally, adjustments in the ‘t’ parameter represent distinct approaches to 

handling uncertainty and risk. By modifying edge values for membership and non-membership functions, 

administrators gain the flexibility to emphasize or downplay specific resource factors, ensuring alignment by their 

desired levels of acceptance and rejection in decision-making. 

The parameter ‘ŧ’ enables the adaptation of CTFGs to various contexts and sensitivity levels. By modifying the ‘ŧ’ 

value, decision-makers can explore multiple scenarios, adjusting the equilibrium between supportive and opposing 

perspectives. This adaptability is especially vital when making decisions in dynamic or uncertain environments. 

Additionally, the ‘ŧ’ parameter permits decision-makers to tailor CTFGs to align with their domain expertise and 

specific problem requirements. Altered ideals of ‘ŧ’ correspond to varying approaches toward danger and ambiguity. 

By influencing verge values for membership, decision-makers can highlight or downplay specific resource factors 

based on their intended level of membership association. This ‘ŧ’ parameter serves as a crucial tool for fine-tuning 

CTFGs, ensuring they align with diverse operational settings and risk sensitivities. Adjusting ‘ŧ’ grants decision-

makers the ability to assess a broad spectrum of alternatives by recalibrating the balance between affirmative and 

contrasting viewpoints. This flexibility is essential for navigating complex decision-making processes in 

unpredictable conditions or during continuous alteration. Table 2 presents the CFSs and 0.7-CFS, as demarcated by 

the vertices, illustrating their structural composition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Graphical representation of Hospital Resource Management 

Table 2. Vertices of FS and 0.6𝑒0.7𝜋-FS. 

Vertices  CFS Complex 0.7-FS 

H1 (0.7𝑒𝑖0.8𝜋) (0.6𝑒𝑖0.6𝜋) 

H2       (0.5𝑒𝑖0.4𝜋) (0.5𝑒𝑖0.4𝜋) 

H3 (0.4𝑒𝑖0.6𝜋) (0.4𝑒𝑖0.3𝜋) 

H4 (0.7𝑒𝑖0.1𝜋)       (0.6𝑒𝑖0.1𝜋) 

H1

H4H5

H3

H2

H6

M12

M45

M
2

4

M
1

5

M36
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H5 (0.8𝑒𝑖0.2𝜋) (0.6𝑒𝑖0.2𝜋) 

H6 (0.9𝑒𝑖0.4𝜋) (0.6𝑒𝑖0.4𝜋) 

Table 5 presents the results derived from the scoring function formula outlined in Table 4. Meanwhile, Fig 12 provides 

a graphical representation of the score function corresponding to the parameters detailed in Table 5. Among the 

evaluated factors, H₁ (Bed Availability) and H₆ (Cost Management) exhibit the highest score of 2.992, indicating 

their predominant influence on hospital resource administration with respect to the parameter ‘ŧ’. The data in Table 

5 clearly highlights that Bed Availability (H₁) and Cost Management (H₆) play a critical role in shaping hospital 

resource management strategies, emphasizing their significance in operational decision-making.Table 3. Edges of 

CFS and complex 0.6𝑒0.7𝜋-FS. 

Edges Complex 0.6-FS 

M12 (0.5𝑒𝑖0.4𝜋) 

M13 (0.4𝑒𝑖0.3𝜋) 

M14 (0.6𝑒𝑖0.1𝜋) 

M15 (0.6𝑒𝑖0.2𝜋) 

M16 (0.6𝑒𝑖0.4𝜋) 

M23 (0.4𝑒𝑖0.3𝜋) 

M24 (0.5𝑒𝑖0.1𝜋) 

M25 (0.5𝑒𝑖0.2𝜋) 

𝑀26 (0.5𝑒𝑖0.4𝜋) 

𝑀34 (0.4𝑒𝑖0.1𝜋) 

𝑀35 (0.4𝑒𝑖0.3𝜋) 

𝑀36 (0.4𝑒𝑖0.2𝜋) 

𝑀45 (0.6𝑒𝑖0.1𝜋) 

𝑀46 (0.6𝑒𝑖0.1𝜋) 

𝑀56 (0.6𝑒𝑖0.2𝜋) 

Table 4. Table of membership degree of each factor. 

Factor  Degree of Each Factor 

H1 deg (𝐻1) = (2.7𝑒
𝑖 1.4𝜋) 

H2 deg (𝐻2) = (2.4𝑒
𝑖 1.5𝜋) 

H3 deg (𝐻3) = (2.0𝑒
𝑖 1.9𝜋) 

H4 deg (𝐻4) = (2.7𝑒
𝑖 0.5𝜋) 

H5 deg (𝐻5) = (2.7𝑒
𝑖 1.0𝜋) 

H6 deg (𝐻6) = (2.7𝑒
𝑖 1.4𝜋) 

Table 5. Score value of CTFGs. 

 

 

 

 

 

Factor Score Value of CTFG 

Bed availability (H₁) 2.992 

Staff scheduling (H₂) 2.638 

Medical equipment distribution (H₃) 2.3023 

Patient flow optimization (H₄) 2.779 

Emergency preparedness (H₅) 2.85 

Cost management (H₆) 2.992 
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5.3. PERFORMANCE COMPARATIVE ANALYSIS 

CTFGs enhance conventional hospital resource management frameworks by incorporating the parameter ‘ŧ’, which 

refines the representation of uncertainty based on specific operational requirements. Modifying ‘ŧ’ enables decision-

makers to more precisely simulate various resource allocation scenarios, subsequent in a additional nuanced 

description of uncertainty and fluctuations in demand. Given its applicability across multiple hospital functions, the 

adaptable nature of ‘ŧ’ allows for tailored adjustments to address varying concerns regarding resource availability, 

ensuring seamless hospital operations under diverse conditions. This flexibility is particularly vital in real-world 

hospital administration, where decision-makers must simultaneously navigate fluctuating patient admissions, 

workforce shortages, and medical equipment distribution challenges. The uniform structure of CTFGs implies that 

all resource elements contribute equally to hospital functions, regardless of their membership values. As well, 

allocating a membership rate of 0.6 to ‘ŧ’ signifies a strong interconnection among resources, granting administrators 

the ability to configure CTFGs according to their strategic priorities. The capacity to fine-tune ‘ŧ’’ ensures that CTFGs 

align with the distinct requirements of healthcare institutions, ultimately facilitating more accurate resource 

allocation and enhanced patient care delivery. 

5.4. SENSITIVITY ANALYSIS 

This study’s sensitivity investigation centers on the parameter ‘ŧ’ in CTFGs, underscoring its precarious role in the 

decision-making process for hospital resource management. The ‘ŧ parameter enables administrators to adjust the 

balance between resource allocation and demand variability, reflecting various approaches to risk and uncertainty. 

By altering the ‘ŧ’ value, hospital decision-makers can assess numerous scenarios, prioritizing particular resources in 

line with their confidence levels and operational goals. This flexibility proves invaluable when navigating 

unpredictable hospital environments, where factors like patient influx, resource shortages, and budget limitations 

demand adaptive allocation strategies. Additionally, the ability to modify ‘ŧ’ ensures that hospital management 

practices align with differing viewpoints on risk, uncertainty, and resource optimization. This customization provides 

decision-makers with the tools to fine-tune hospital strategies, guaranteeing that healthcare institutions maintain 

smooth operations while addressing the complexities inherent in real-world hospital resource management. 

6. CONCLUSIONS 

In this study, the CTFGs idea was maintained, and various fundamental apects of  this concept were explored. 

Numerous studies and demonstrations have been conducted on graphical depictions for multiple set-abstract of 

CTFGs. Additionally, a classification and an analysis of some of the essential components of the complement of 

CTFGs be presented. The study also introduced the conceptions of CTFG homomorphisms and isomorphisms. 

Furthermore, the practical utility of the newly developed framework was demonstrated through applications in 

hospital resource management. In hospital resource management, CTFGs provided a structured approach to 

optimizing critical resources such as staff scheduling, bed availability, and emergency preparedness. By leveraging 

the flexibility of the ‘ŧ’ parameter, administrators could adjust their decision-making models to reflect varying degrees 

of confidence in resource allocation strategies. This capability enhanced the hospital’s efficiency in managing 

uncertainties, ensuring improved patient care and operational effectiveness. The parameter ‘ŧ’ in CTFGs represents 

the degree of confidence or hesitation in decision-making processes. The two immoderations of this metric illustrate 

either a strong overtone or a insignificant effect on the preferred outcomes. By effectively tuning this parameter, 

choice-creators can refine ambiguity representation, ultimately leading to a more nuanced and adjustable basis aimed 

at addressing complex encounters across diverse domains, including biodiversity conservation and healthcare 

resource management. 
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