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Introduction: Individuals with Autism Spectrum Disorder (ASD) struggle with social 

communication and emotional recognition. Traditional interventions have limitations, but 

emerging emotion recognition technologies offer potential improvements. This study explores 

the use of context-aware emotion recognition to enhance ASD interventions. 

Objectives: The main objectives of this research is to integrate Context-Based emotion 

recognition in ASD interventions. Develop and assess methods to improve social skills and 

emotional awareness. Analyze the impact of contextual factors on recognition accuracy. Compare 

RBM and DBN models for emotion classification. Support multimodal, context-based ASD 

intervention strategies. 

Methods: The proposed methodology utilizes the EMOTIC dataset to train emotion recognition 

models using deep learning techniques, specifically RBM and DBNs. The research employs an 

ablation study to analyze the impact of contextual factors such as multi-modalities, 

situational/background context, and inter-agent interactions. Model performance is evaluated 

using metrics such as precision, recall, F1 score, specificity, K-S statistic, and Gini coefficient. 

Additionally, a comparative analysis of emotion recognition methods is performed, with a focus 

on the mean Average Precision (mAP) scores achieved by RBM.  

Results: The results indicate strong recognition accuracy for specific emotional states while 

identifying areas for improvement. The inclusion of multiple modalities and contextual factors 

such as Affection, Engagement, Anger, and Excitement significantly enhances emotion 

recognition accuracy. The ablation study confirms that integrating situational and background 

context improves classification performance. The comparative analysis highlights RBM’s 

superior mAP scores compared to other techniques. These findings suggest that a context-aware, 

multimodal approach is beneficial for improving emotion recognition in ASD individuals.  

Conclusions: Context-aware, multimodal emotion recognition improves ASD intervention 

effectiveness. The findings highlight the need for personalized, data-driven approaches to 

enhance social communication and emotional intelligence in ASD individuals. 

Keywords: Autism Spectrum Disorder; Interventions; Deep Learning; Restricted Boltzmann 

Machines; Deep Belief Networks, special education needs. 

 

INTRODUCTION 

Autism spectrum disorder is a truly complex problem, as in addition to impaired social communication, people also 

have problems with understanding the complex play of expressions and emotions [1]. People with ASD are often 

unable not only to show the right feelings but also to recognize and achieve them from other people [2]. Therefore, 

in order to address this area, it is necessary to understand and to discuss how challenging it is for people to move 

beyond their abilities and perspectives. Given the high prevalence of ASD around the world, estimated at 52 million 

people, it is necessary to develop new ASD technologies [3]. It must be noted that in order to meet the needs of this 

group of people, it may be necessary to collaborate between social scientists, cognitive scientists, and technologists 
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[3]. In recent years, technologies have brought a revolution in the rehabilitation of ASD, and AR/VR games and 

applications on smartphone platforms offer new opportunities. Thus, AR/VR is a very promising tool that can be 

used for engagement and learning [4]. Furthermore, the integration of assistive technologies into ASD training holds 

immense potential [5]. 

Central to the efficacy of ASD intervention strategies is the conceptual framework provided by theories such as the 

Empathy-Systemizing (E-S) theory [6]. This theory elucidates the cognitive underpinnings of ASD, highlighting the 

intricate interplay between empathy and systemizing tendencies [6]. Traditional approaches to ASD training, such 

as card teaching, have demonstrated effectiveness in emotion recognition [4]. However, incorporating context-based 

methodologies aligns more closely with the socio-communicative challenges faced by individuals with ASD [7]. 

Understanding emotions within their contextual milieu is paramount for fostering social communication skills in 

individuals with ASD [7]. context-based approach, encompassing not only facial expressions but also body posture, 

gestures, and environmental cues, reflects a nuanced understanding of the complexities inherent in emotional 

expression [7]. By harnessing context-based emotion recognition technologies, researchers and practitioners can 

tailor interventions to the unique needs of individuals with ASD, thereby enhancing their social communication 

abilities and overall quality of life [7]. Autism Spectrum Disorder (ASD) is characterized by significant challenges in 

social communication, emotional recognition, and interaction. Traditional emotion recognition systems primarily 

rely on facial expressions or speech cues, often neglecting contextual factors such as body language, surroundings, 

and inter-agent interactions. However, context-aware emotion recognition has been identified as a promising 

direction, enabling a more comprehensive understanding of emotional states in ASD individuals. Despite 

advancements in deep learning-based emotion recognition, several research gaps remain. Existing emotion 

recognition models primarily focus on facial expressions and voice analysis, overlooking situational cues, background 

context, and social dynamics, which are critical for ASD interventions. Most studies rely on single-modal data (facial 

expressions or speech), while multi-modal approaches (combining facial, vocal, and contextual cues) have shown 

potential in improving recognition accuracy. Traditional Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) struggle to learn abstract representations from context-heavy emotion datasets, leading to 

suboptimal performance. Deep learning models, especially black-box approaches, lack interpretability, making it 

difficult to understand which contextual factors influence emotion classification results. 

To address these gaps, this study proposes a context-aware deep learning framework using Restricted Boltzmann 

Machines (RBM) and Deep Belief Networks (DBN) for emotion recognition in ASD interventions. The major 

contributions include: 

1. Context-Based Emotion Recognition: Integrating facial expressions, body posture, scene context, and multi-

agent interactions for improved accuracy.  

2. RBM for Feature Learning: Capturing high-dimensional contextual features more effectively than traditional 

CNN-based methods.  

3. Ablation Study: Evaluating the impact of background, multi-agent interactions, and multimodal features on 

recognition performance.  

4. Comparative Analysis: Benchmarking against state-of-the-art models (GCN-Based, CNN-LSTM, Depth-

Based) and demonstrating superior classification performance. 

OBJECTIVES 

This research work aims to develop a context-aware deep learning framework for emotion recognition in Autism 

Spectrum Disorder (ASD) interventions, leveraging Restricted Boltzmann Machines (RBM) and Deep Belief 

Networks (DBN) to enhance the classification of emotional states. Specifically, the research focuses on integrating 

facial expressions, body posture, background context, and inter-agent interactions to address the limitations of 

traditional emotion recognition models, which often rely solely on facial cues. The study systematically investigates 

the impact of contextual factors such as situational background, multimodal features, and socio-dynamic interactions 

on emotion detection accuracy. By conducting an ablation study, the research aims to quantify the contributions of 

different contextual elements and determine their role in improving social communication and emotional intelligence 

skills in individuals with ASD. Additionally, the proposed approach is benchmarked against state-of-the-art emotion 

recognition models, including GCN-based, CNN-LSTM, and Depth-Based methods, to evaluate its effectiveness and 

robustness. Ultimately, the study seeks to contribute to the development of personalized, AI-driven ASD intervention 
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programs, integrating deep learning-based emotion recognition with insights from psychology, neuroscience, and 

education, thereby enhancing real-world applications in clinical and therapeutic settings. 

METHODS 

Dataset 

The EMOTIC dataset collection includes 23,571 images and 34,320 persons with annotations that were taken in a 

variety of unrestricted settings. A fraction of the photos were hand-picked from the Internet using Google searches, 

using a variety of queries covering different locations, social contexts, activities, and moods. The remaining pictures 

were from two open benchmark datasets, Ade20k and COCO, which offer a wide range of situations with people doing 

in diverse activities in different social contexts and places, as explained in [53]. The dataset was first annotated, and 

then it was split into three groups: training (70%), validation (10%), and testing (20%). In Figure 1, a small sample 

of dataset images are displayed. 

 

Figure 1: Samples of Emotic dataset 

Preprocessing 

Let 𝐷 represent the Emotic dataset consisting of images and corresponding annotations, where 𝐷 =  {(𝐼𝑖 , 𝐴𝑖)}𝑖=1
𝑁  with 

𝐼𝑖  denoting the 𝑖𝑡ℎ image and 𝐴𝑖 representing its annotations. The next step is to extract the categories associated with 

each person from the annotations as shown in equation 1. 

𝐶𝑖
𝑝

= {𝑐𝑖𝑗}
𝑗=1

𝑀𝑖
𝑝

                             (1) 

Where 𝐶𝑖
𝑝
 represents the categories associated with the 𝑝𝑡ℎ person in the 𝑖𝑡ℎ image, 𝑐𝑖𝑗  is the 𝑗𝑡ℎ 

category, and 𝑀𝑖
𝑝

 is the total number of categories associated with the 𝑝𝑡ℎ person in the 𝑖𝑡ℎ image. Then unique 

category folders are created with the dataset directory as shown in equation (2). 

𝐹𝑘 = {𝑓𝑘𝑙}𝑙=1
𝐾                                     (2) 

Where 𝐹𝑘 denotes 𝑘𝑡ℎ category folder 𝑓𝑘𝑙 is the 𝑙𝑡ℎfolder path, and 𝐾 is the total number of unique categories. For each 

person in each image extract the region of interest (ROI) using provided body bounding box coordinates and Crop 

the ROI from the image 𝐼𝑖as shown in equation (3). Save the ROI into the appropriate category folder. 

𝑅𝑖
𝑝

=crop(𝐼𝑖 , 𝐵𝑖
𝑝

)                               (3) 

The input image data is loaded and preprocessed as necessary. It involves reshaping the images into vectors to 

transform the 2D image matrices into 1D arrays. Additionally, normalization is performed to scale down pixel values 

to the range [0, 1]. 
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Restricted Boltzmann Machine (RBM) 

For feature learning, one kind of unsupervised learning method is RBM. It is made up of weighted connections 

between visible and hidden components. The RBM gains the ability to identify more complex characteristics in the 

input data during training. Mini-batch stochastic gradient descent is used to train RBM over several epochs. 

Calculating the likelihood that hidden units will activate given the available data is the positive phase. Reconstructing 

visible units given the hidden activations is the negative phase's task. Reconstructed data differs from actual data, 

and this difference is used to update weights and biases. 

The RBM energy function is defined in equation (4) 

𝐸(𝑣, ℎ) = − ∑ ∑ 𝑊𝑖𝑗𝑣𝑖ℎ𝑗 −𝑁
𝑗=1

𝑀
𝑖=1 ∑ 𝑏𝑖𝑣𝑗

𝑀
𝑖=1 − ∑ 𝑐𝑗ℎ𝑗

𝑁
𝑗=1       (4) 

where 𝑣 is the visible unit state vector, ℎ is the hidden unit state vector, 𝑊 is the weight matrix, 𝑏 is the visible bias 

vector, and 𝑐 is the hidden bias vector. 

The probability of hidden unit 𝑗 being activated given visible unit 𝑣 is computed using the sigmoid activation function 

as show in equation (5): 

𝑃( ℎ𝑗 = 1 ∣∣ 𝑣 ) = σ(∑ 𝑊𝑖𝑗𝑣𝑖 +𝑀
𝑖=1 𝑐𝑗)                                (5) 

Where 𝜎(𝑥) =
1

1+𝑒−𝑥 

The probability of visible unit 𝑖 being activated given hidden unit ℎ is similarly computed in equation (6) 

𝑃( ℎ𝑗 = 1 ∣∣ ℎ ) = σ(∑ 𝑊 𝑖𝑗ℎ𝑗 +𝑀
𝑗=1 𝑏𝑖)                               (6) 

Hidden unit activations are computed as the probabilities of hidden units being activated given the visible data. These 

activations serve as features for subsequent classification. 

Deep Belief Networks (DBNs) go through supervised fine-tuning to modify their parameters for particular tasks like 

classification after the unsupervised pre-training phase. In supervised fine-tuning, a predetermined loss function is 

minimised by optimising the network parameters through the use of methods like as backpropagation. The goal of 

supervised fine-tuning is to minimize an appropriate loss function that measures the discrepancy between the labels 

that were predicted and those that were observed. The categorical cross-entropy loss function 𝐿𝐶𝐸  is frequently 

employed for classification problems. It calculates the difference between the actual distribution of class labels and 

the anticipated probability distribution. 

𝐿𝐶𝐸(𝑥𝑖 , 𝑦𝑖) = − ∑ 𝑦𝑖𝑗
𝐾
𝑗=1 log(𝑝𝑖𝑗)                           (7) 

Where 𝐾is the number of classes, 𝑦𝑖𝑗 is the indicator function indicating whether sample 𝑖 belongs to class 𝑗. 𝑝𝑖𝑗  is the 

predicted probability that sample 𝑖 belongs to class 𝑗. 

The network parameters (weights and biases) are updated using gradient-based optimization techniques such as 

stochastic gradient descent (SGD). The update rule for a parameter 𝜃 at iteration 𝑡 is given in the equation (8). 

𝜃(𝑡+1) = 𝜃𝑡 − 𝜂𝛻𝜃𝐿                         (8) 

where η is the learning rate, 𝛻𝜃𝐿 is the gradient of the loss function with respect to the parameter 𝜃. 

Backpropagation efficiently computes the gradients of the loss function with respect to the parameters of the network. 

Compute the output of the network for a given input 𝑥𝑖 and calculate the loss function. Compute the gradients of the 

loss function with respect to each parameter of the network using the chain rule. Propagate these gradients backward 

through the network layers. The supervised fine-tuning of a DBN involves forward pass and backward pass. Pass the 

input data 𝑥𝑖  through the DBN to compute the output probabilities for each class using the softmax layer. 

Let 𝑧𝐿  denote the input to the softmax layer, and 𝑎𝐿 denote the output of the softmax layer after applying the softmax 

activation function. The output of softmax layer the for class 𝑗 is calculated as: 

𝑎𝑖
𝐿 =

𝑒
𝑧𝑗

𝐿

∑ 𝑒
𝑧𝑘

𝐿
𝐾
𝑘=1

                     (9) 
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where K is the number of classes. Calculate the categorical cross-entropy loss between the predicted probabilities and 

the true labels 𝑦
𝑖
.  

In the backward pass, we compute the gradients of the loss function with respect to each parameter of the DBN using 

backpropagation. Let θ represent the parameters of the DBN. The gradient of the loss function with respect to the 

output of the softmax layer 𝑎𝐿 is calculated as: 

∂L

∂a𝑗
𝐿 =

1

𝑛
∑ (a𝑗

𝐿 − 𝑦𝑖𝑗)𝑛
𝑖=1                                 (10) 

where 𝑦𝑖𝑗  is the indicator function indicating whether sample 𝑖 belongs to class 𝑗. 

Using the chain rule, the gradient of the loss function with respect to the input to the softmax layer 𝑧𝐿 is computed 

as: 
∂L

∂a𝑗
𝐿 =

∂L

∂a𝑗
𝐿  ° 

∂a𝑗
𝐿

∂z𝑗
𝐿  (11). The gradient of the loss function with respect to the parameters θ of the DBN is then obtained 

by backpropagating the gradients through the network layers. 

The supervised fine-tuning of a DBN involves forward pass and backwardpass. During the forward pass, the input 

data 𝑥𝑖 is propagated through the DBN. Let 𝑧𝑙 denote the input to layer 𝑙 of the DBN, and 𝑎𝑙 denote the output of 

layer 𝑙 after applying the activation function. For each layer 𝑙 in the DBN, the output 𝑎𝑙 is calculated as: 𝑎𝑙 = 𝜎(𝑧𝑙)                                              

(12). where 𝜎(∙) is the activation function.  In the backward pass, the gradients of the loss function with respect to 

each parameter of the DBN are computed using backpropagation. Let 𝜃𝑙  represent the parameters of layer 𝑙 of the 

DBN. The gradient of the loss function with respect to the output of layer 𝑙, denoted as 𝛿𝑙 is calculated as: 

𝛿𝑙 =
∂L

∂𝑧𝑙                            (13) 

where 
∂L

∂𝑧𝑙 is obtained using the chain rule. The gradients of the loss function with respect to the parameters 𝜃𝑙 of layer 

𝑙 are then computed as  

𝜕𝐿

∂𝜃𝑙 = 𝛿𝑙  ∙  
∂𝑧𝑙

∂𝜃𝑙                             (14) 

These gradients are used to update the parameters of the DBN using Adam optimizer. By iteratively performing 

forward and backward passes and updating the parameters accordingly, the DBN learns task-specific representations 

and improves its performance on the classification task. 

RESULTS 

Ablation Experiments 

Context 1: Multiple Modalities - This context embraces a variety of techniques, which include three modalities (voice, 

body, and face) to detect emotions. It states a preference for combining cues from different modalities as they can 

increase the emotion recognition accuracy. 

Context 2: Situational/Background Context - In this context, it sends guided message to the brain to differentiate the 

focus on semantics of the context instead of primary character. This endeavors to determine physical objects, spatial 

extent, keywords, and activities in the scene that trigger the specific emotions. 

Context 3: Inter-Agent Interactions/SocioDynamic Context- Through this framework, we review how inter-visor 

interactions and socio-dynamic factors alter the level of perceived emotions among individuals. It shows how 

nearness, the ways of behaving, and the interpersonal relations of the other agents that surround the primary one 

can influence the mood of the latter. 

The ablation study results shown in table 1 demonstrate that incorporating multiple contextual factors significantly 

enhances emotion recognition accuracy. Engagement, which had an accuracy of 77.08% with only one context, 

improved to 91.12% when all three contexts were included. Similarly, Excitement increased from 71.59% to 83.26%, 

and Confidence improved from 50.32% to 68.85%, highlighting the substantial impact of a multi-context approach. 

Anticipation showed a remarkable rise from 44.63% to 72.12%, while Affection improved from 28.27% to 45.23%, 

indicating that these emotions are heavily influenced by environmental and interaction-based cues. Moderate 

improvements were observed for Sadness (from 18.34% to 23.41%) and Anger (from 6.92% to 15.46%), suggesting 
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that their recognition still relies significantly on facial expressions rather than contextual elements. These results 

reinforce the necessity of integrating contextual information for accurate emotion recognition, particularly in 

complex emotional states where multiple factors influence perception. 

Table 1: Summary of Ablation Experiment Results 

Emotion Context 1 Context 1 & 2 Context 1 & 3 Context 2 & 3 All Contexts 

Affection 28.27 40.23 28.55 43.63 45.23 

Anger 6.92 9.81 6.76 13.86 15.46 

Anticipation 44.63 65.99 58.93 70.52 72.12 

Confidence 50.32 63.67 58.03 67.25 68.85 

Engagement 77.08 83.02 79.91 89.52 91.12 

Excitement 71.59 78.94 74.54 81.66 83.26 

Pleasure 56.66 60.29 58.21 63.93 65.53 

Sadness 18.34 18.14 20.67 21.81 23.41 

Suffering 13.78 19.32 11.23 24.79 26.39 

. 

  

(a)                                                                                                                             (b) 

 

(c) 

Figure 2 (a) Performance Metrics for Classification of Emotional States. (b) Comparison of Emotion Recognition 

Methodologies Across Multiple Emotion Categories. (c) Effect of Different Context Combinations on Emotion 

Recognition Performance 

Figure 2a illustrates the performance metrics (Precision, Recall, F1 Score, Specificity, K-S, and Gini) across different 

emotional states, highlighting the variability in recognition accuracy. Notably, Engagement (0.91 F1 Score) and 

Excitement (0.83 F1 Score) exhibit high classification performance, while emotions like Annoyance (0.15 F1 Score) 

and Pain (0.13 F1 Score) show lower recognition effectiveness. Figure 2b compares multiple emotion recognition 

methodologies, where the Proposed RBM-based model outperforms existing approaches across most emotions, 
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achieving the highest mAP of 38.6, with notable improvements in Anticipation (75.2%), Excitement (85.5%), and 

Engagement (93.2%). This demonstrates the strength of RBM in handling contextual and multimodal features. 

Figure 2c presents the effect of different context combinations, showing that integrating all three contexts 

significantly improves recognition accuracy, particularly for Engagement (from 77.08% to 91.12%), Confidence 

(50.32% to 68.85%), and Anticipation (44.63% to 72.12%), emphasizing the importance of contextual integration in 

ASD emotion recognition. 

DISCUSSION 

The research findings underscore the effectiveness of context-based recognition technologies in enhancing emotional 

IQ and social skills among individuals with ASD. By integrating cutting-edge technical solutions with insights from 

psychology, education, and neuroscience, this study highlights the potential of interdisciplinary collaboration in ASD 

intervention. Notably, classifiers like "Engagement," "Excitement," and "Happiness" demonstrated high precision 

(0.91), recall (0.91), and F1 Score (0.91), indicating strong reliability in detecting positive emotions. However, 

challenges remain in accurately classifying nuanced emotions like "Sensitivity" (precision: 0.08, specificity: 0.547), 

suggesting the need for refined training approaches. Moving forward, collaboration among researchers, practitioners, 

and developers is essential for advancing adaptive and individualized interventions. Future studies should focus on 

longitudinal assessments, AI-driven multimodal emotion recognition, and NLP techniques to enhance the contextual 

understanding of social interactions. By fostering interdisciplinary innovation, this research lays the groundwork for 

more effective ASD treatments, ultimately improving social integration and emotional well-being for individuals with 

ASD and their support networks. 
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