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Malaria remains a major cause of morbidity and mortality among children under 5 years old in 

Senegal. To alleviate this burden, Seasonal Malaria Chemoprevention (SMC) administers 

antimalarial drugs during the high transmission season. Currently, in Senegal, SMC targets 

children aged 3 months to under 10 years. This study, based on a mathematical SIR-SI model, 

evaluates the effectiveness of this intervention, focusing specifically on children under 5 years 

old. We developed a coupled SIR-SI model that integrates the transmission dynamics between 

humans and mosquitoes, incorporating the SMC treatment rate (η) into the differential 

equations to model the chemoprevention effect. The Jacobian matrix was calculated for both 

disease-free and endemic equilibria, and eigenvalues were analyzed to assess their stability. Our 

results show that the basic reproduction number R₀, calculated using the next-generation matrix 

method, depends on key parameters such as transmission rates, recovery rates, mosquito 

mortality rates, and particularly the SMC treatment rate (η). Increasing this rate significantly 

reduces R₀, thereby stabilizing the disease-free equilibrium. Numerical simulations, based on 

biologically realistic parameters, confirm that SMC effectively reduces R₀ and limits malaria 

transmission. While our findings suggest that targeting children under 5 years old could be 

sufficient to significantly reduce transmission, a comparative analysis including the 0-5 and 0-

10 age groups would be necessary to further validate this assertion, considering local dynamics 

and recent shifts in malaria burden toward older age groups. This study highlights the critical 

role of SMC in malaria control and provides a scientific basis for refining and optimizing 

intervention strategies in Senegal. 

Keywords: Malaria transmission dynamics - Seasonal malaria chemoprevention (SMC) - SIR-

SI Mathematical model - Basic reproduction number (R₀) - Children under 5 Years. 

 

1. INTRODUCTION 

Malaria remains one of the leading causes of morbidity and mortality in many tropical regions, particularly in sub-

Saharan Africa. Among the most vulnerable groups, children under the age of 5 account for a significant proportion 

of malaria-related deaths. In Senegal, where malaria is endemic in certain areas and its transmission highly seasonal, 

combating this disease remains a major public health priority. 

To address this challenge, various interventions have been implemented, including the use of insecticide-treated nets, 

indoor residual spraying, and artemisinin-based combination therapies (ACTs). Among these strategies, Seasonal 

Malaria Chemoprevention (SMC) has emerged as a key intervention. Recommended by the WHO since 2012, SMC 

involves administering antimalarial drugs to healthy children during the high transmission season to reduce their 

risk of infection. Currently, in Senegal, this intervention targets children aged 3 months to under 10 years. 
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However, extending SMC coverage to children under 10 raises questions regarding cost, logistics, and effectiveness. 

The hypothesis that limiting coverage to children under 5 years old could suffice to effectively control transmission 

deserves further investigation. 

To this end, we developed a coupled SIR-SI mathematical model that incorporates both human and vector dynamics 

to analyze the impact of SMC on malaria transmission. This model not only evaluates the effects of the intervention 

but also explores the optimization of coverage strategies. This study aims to provide evidence-based 

recommendations to improve resource allocation and maximize the effectiveness of SMC in Senegal. 

2. STATE OF THE ART  

Malaria remains one of the leading causes of morbidity and mortality in tropical regions, particularly in sub-Saharan 

Africa, where it persists as an endemic disease despite significant efforts to control and eliminate it. This persistence 

is attributed to environmental, social, and biological factors that facilitate the transmission of the Plasmodium 

falciparum parasite. Several strategies have been implemented to combat malaria, including the use of insecticide-

treated nets (ITNs), indoor residual spraying (IRS), artemisinin-based combination therapies (ACTs), and seasonal 

malaria chemoprevention (SMC). Among these interventions, ACTs play a key role in reducing the infectiousness of 

malaria patients. Flegg et al. (2011) proposed standardized methods for measuring parasite clearance, demonstrating 

that ACTs reduce transmission, although their effectiveness varies by endemicity levels [1]. For instance, Okell et al. 

(2008) reported a 53% reduction in prevalence in low-transmission areas (initial prevalence of 3.7%), while the 

reduction was only 11% in high-transmission areas (initial prevalence of 57.1%) [2]. Additionally, Bretscher et al. 

(2017) showed that adding prolonged protection (≥30 days) and effective transmission blocking (ACT + primaquine) 

maximizes efficacy, particularly in moderate-to-high transmission areas [3]. In this context, SMC, introduced by the 

WHO in 2012, has become a key intervention in areas with highly seasonal transmission. Cairns et al. (2012) 

estimated that SMC could prevent millions of cases and thousands of child deaths annually [4]. In Senegal, Cissé et 

al. (2016) reported a 60% reduction in confirmed cases, a 69% decrease in antimalarial treatments, and a 45% drop 

in severe cases among children targeted by SMC [5]. These findings are corroborated by De Cola et al. (2022), who 

observed a significant reduction in malaria risk in Burkina Faso and Nigeria, as measured by rapid diagnostic tests 

(RDTs) [6]. However, while the effectiveness of these interventions is well-documented, their implementation 

requires a deep understanding of transmission dynamics. Epidemiological models, such as the SIR framework 

introduced by Kermack and McKendrick, are essential for simulating intervention effects and guiding public health 

policies. For instance, Chitnis et al. (2012) demonstrated that combining ITNs and IRS effectively reduces 

transmission, though it quickly rebounds after interventions cease [7]. Such models also enable the exploration of 

interactions between different strategies to maximize their impact. In this regard, White et al. (2017) developed a 

mathematical model integrating data on drug resistance and SMC coverage, demonstrating that maintaining high 

coverage is crucial for maximizing the benefits of this intervention. This work underscores the importance of model-

based approaches in guiding prevention efforts [8]. 

Limitations of existing models (in Senegal) and Objectives of the Present Work 

Despite these advancements, significant gaps remain in understanding the combined impact of interventions, 

particularly in specific contexts such as Senegal. Existing models rarely comprehensively integrate the combined 

dynamics of human and vector transmission or the impact of seasonal interventions like SMC. To address these 

needs, this study aims to develop a coupled SIR-SI mathematical model capable of analyzing the impact of SMC on 

malaria transmission among children under 5 years old in Senegal. 

Although SMC in Senegal currently targets children aged 0 to 120 months, we focus on children under 5 years old 

(0–59 months) for two main reasons. First, this age group is particularly vulnerable to malaria due to their immature 

immune systems. Second, this choice ensures comparability with other studies focused on this specific age group. By 

narrowing the analysis to this cohort, this study provides relevant insights to optimize resource allocation and 

improve the effectiveness of interventions in Senegal.  

3. METHODOLOGY 

This study focuses on the modeling, analysis, and simulation of malaria dynamics, with a particular emphasis on the 

impact of the SMC intervention. Our model is structured into compartments. The human compartment includes 

individuals susceptible to infection, those who are infected, and those who have recovered. Similarly, the mosquito 

compartment includes mosquitoes susceptible to infection and those already infected. 
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The key parameters used in the model are as follows: 

• 𝛽ℎ: transmission rate from infected mosquitoes to humans 

• 𝛽𝑚: transmission rate from infected humans to mosquitoes 

• 𝛾: recovery rate in humans 

• 𝜇: mortality rate of mosquitoes 

• 𝜂: efficacy of SMC (seasonal malaria chemoprevention), which plays a crucial role in our model 

We analyzed our model by examining the Jacobian matrix at the disease-free equilibrium and endemic equilibrium 

points. Our objective was to determine the stability of these equilibrium points. To achieve this, we calculated the 

eigenvalues of the Jacobian matrix and studied its trace and determinant. Finally, we calculated the basic 

reproduction number, denoted as R₀. 

In parallel, we conducted numerical simulations using the R software to visualize infection dynamics over time and 

compare scenarios with and without the SMC intervention, thereby assessing the effectiveness of this control strategy. 

Prior to this, the STL decomposition (Seasonal and Trend decomposition using Loess) was applied to the time series 

data collected as part of the National Malaria Control Program (NMCP Senegal). This method decomposed malaria 

cases into three main components: trend, seasonality, and remainder. The analysis was conducted on global data 

concerning children under 5 years of age in Senegal for the period from 2016 to 2019.The resulting components were 

analyzed to highlight long-term trends, identify recurring seasonal cycles, and detect anomalies not explained by 

trend or seasonality. This approach provides a detailed view of the temporal dynamics of the disease, offering critical 

insights to refine malaria control strategies for this particularly vulnerable age group. 

3.1 How do malaria cases among children under 5 evolve over time? 

The graph below presents a heatmap illustrating the monthly distribution of malaria cases among children under 5 

years old, by region, in Senegal between 2016 and 2019. The color intensity reflects the number of cases, ranging 

from white (low or no cases) to dark red (a very high number of cases). 

 
Fig.1 Heatmap of Monthly Malaria Cases by Region in Children Under 5 

The heatmap highlights an alarming concentration of malaria cases in the regions of Kolda, Tambacounda, and 

Kédougou, particularly at the end of the rainy season. These areas should be prioritized for malaria control 

interventions in Senegal. The observed regional and seasonal variability underscores the need for a targeted and 

adaptable approach to optimize the effectiveness of prevention and control strategies. 
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The following figure shows the STL decomposition of malaria cases over time, applied to the NMCP database 

(monthly data) from 2016 to 2019. 

 

      Fig 2: STL decomposition of malaria cases in children under 5 in Senegal 

In summary, the data reveal an upward trend in malaria cases up to 2018, influenced by regular seasonal variations. 

Anomalies are limited, suggesting that the trend and seasonality adequately explain the fluctuations.  

The following graph shows the trend component of malaria cases over time, extracted from the STL decomposition 

we performed earlier.  

 

Fig.3: Trends in malaria cases in the under-5s 

This graph indicates a phase of significant increase in malaria cases followed by a phase of decline. The data suggest 

that after peaking in 2018, efforts to reduce malaria cases have been effective. However, it is important to study the 

underlying factors driving these changes to better understand the disease dynamics and anticipate future trends. 

The graph below, however, shows that malaria cases are strongly influenced by regular seasonal cycles, with 

predictable periods where cases increase significantly. 
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Fig.4 seasonal component of malaria cases in the under-5s 

This graph serves as a valuable tool for planning public health resources and interventions, particularly in the context 

of Seasonal Malaria Chemoprevention (SMC). By identifying periods of the year when malaria risk is highest, it 

enables better targeting of SMC campaigns, intensifying prevention efforts during seasons conducive to disease 

transmission, such as the rainy season. This ensures optimal resource utilization and enhanced effectiveness of 

interventions. 

These graphs (fig1, fig2, fig3, and fig4), by highlighting critical periods of malaria risk, also underscore the importance 

of robust analytical tools to guide control strategies. It is within this context that our SIR-SI model integrates 

seamlessly, offering a mathematical approach to simulate malaria transmission dynamics between humans and 

mosquitoes. 

By incorporating specific parameters, such as the SMC treatment rate, our model allows for the evaluation of the 

impact of this intervention in reducing infections. It also helps explore various scenarios to optimize SMC schedules 

and adapt strategies based on observed local dynamics, such as the seasonality highlighted in this graph. 

Thus, the SIR-SI model goes beyond descriptive analysis to serve as a predictive tool, enabling the maximization of 

intervention effectiveness and ensuring better allocation of resources in the fight against malaria. 

3.2 Mathematical analysis of the model 

The model we will study is as follows (see Fig.5): 

 

Fig.5: Diagram of malaria transmission dynamics with the integration of SMC as an intervention 
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This model, illustrated in Fig.5, represents the dynamics of malaria transmission with the integration of Seasonal 

Malaria Chemoprevention (SMC) as an intervention. Below is a detailed explanation of the components and 

interactions in the model: 

Model Components: 

▪ 𝑆ℎ (Susceptible Humans): Represents human individuals susceptible to malaria infection. 

▪ 𝐼ℎ (Infected Humans): Represents humans currently infected with the malaria parasite. 

▪ 𝑅ℎ (Recovered Humans): Represents humans who have recovered from the infection and have temporary 

immunity. 

▪ SMC (Chemoprevention): An intervention aimed at protecting susceptible humans (Sh) from infection by 

administering preventive treatment. 

▪ 𝑆𝑚 (Susceptible Mosquitoes): Represents mosquitoes susceptible to infection from infected humans. 

▪ 𝐼𝑚 (Infected Mosquitoes): Represents mosquitoes that are infected and capable of transmitting the parasite 

to humans. 

Interactions and Dynamics: 

• Transmission Between Humans and Mosquitoes: 

o Susceptible mosquitoes (𝑆𝑚) become infected (𝐼𝑚) when they bite infected humans (𝐼ℎ). 

o Susceptible humans (𝑆ℎ) become infected (𝐼ℎ) after being bitten by infected mosquitoes (𝐼𝑚). 

• SMC Intervention: 

o Susceptible humans (𝑆ℎ) can receive preventive treatment (SMC) at a rate 𝜂, reducing their risk of 

infection. 

o Chemoprevention protects susceptible humans, moving them directly to the recovered state (𝑅ℎ), 

where they benefit from temporary immunity. 

• Immunity and Recovery (𝜸): 

o Infected humans (𝐼ℎ) can recover and transition to the recovered state (𝑅ℎ) at a rate 𝛾, gaining 

temporary immunity before becoming susceptible again (𝑆ℎ). 

• Mosquito Dynamics: 

o Infected mosquitoes (𝐼𝑚) can transmit the parasite to susceptible humans (𝑆ℎ). 

o Susceptible mosquitoes (𝑆𝑚) can become infected through contact with infected humans (𝐼ℎ). 

Key Model Parameters: 

▪ 𝜷𝒉: Transmission rate of malaria from infected mosquitoes (𝐼𝑚) to susceptible humans (𝑆ℎ). 

▪ 𝜷𝒎: Transmission rate of malaria from infected humans (𝐼ℎ) to susceptible mosquitoes (𝑆𝑚). 

▪ 𝜼: Rate at which susceptible individuals (𝑆ℎ) receive chemoprevention. 

▪ 𝜸: Recovery rate of infected humans (𝐼ℎ) to the recovered state (𝑅ℎ). 

 

The SIR model for humans with SMC and the SI model for mosquitoes (Fig.5) is defined by the following differential 

equations: 

 

 

 



449  
 

J INFORM SYSTEMS ENG, 10(27s) 

 

𝑑𝑆ℎ

𝑑𝑡
= −𝛽ℎ𝑆ℎ𝐼𝑚 − 𝜂𝑆ℎ 

𝑑𝐼ℎ
𝑑𝑡

= 𝛽ℎ𝑆ℎ𝐼𝑚 − 𝛾𝐼ℎ 

𝑑𝑅ℎ

𝑑𝑡
= 𝛾𝐼ℎ + 𝜂𝑆ℎ 

𝑑𝑆𝑚

𝑑𝑡
= −𝛽𝑚𝑆𝑚𝐼ℎ 

𝑑𝐼𝑚
𝑑𝑡

= 𝛽𝑚𝑆𝑚𝐼ℎ − 𝜇𝐼𝑚 

 

Equilibrium Analysis 

    Disease-Free Equilibrium (DFE) 

𝑆ℎ = 1,      𝐼ℎ = 0,      𝑅ℎ = 0,         𝑆𝑚 = 1      𝐼𝑚 = 0 

In the DFE, all rates of change of the variables are zero.  

𝑑𝑆ℎ

𝑑𝑡
= 

𝑑𝐼ℎ

𝑑𝑡
=

𝑑𝑅ℎ

𝑑𝑡
=

𝑑𝑆𝑚

𝑑𝑡
=

𝑑𝐼𝑚

𝑑𝑡
= 0 

Substituting these conditions into the differential equations 

𝑑𝑆ℎ

𝑑𝑡
= −𝛽ℎ𝑆ℎ𝐼𝑚 − 𝜂𝑆ℎ = 0 

𝑑𝐼ℎ
𝑑𝑡

= 𝛽ℎ𝑆ℎ𝐼𝑚 − 𝛾𝐼ℎ = 0 

𝑑𝑅ℎ

𝑑𝑡
= 𝛾𝐼ℎ + 𝜂𝑆ℎ = 0 

𝑑𝑆𝑚

𝑑𝑡
= −𝛽𝑚𝑆𝑚𝐼ℎ = 0 

𝑑𝐼𝑚
𝑑𝑡

= 𝛽𝑚𝑆𝑚𝐼ℎ − 𝜇𝐼𝑚 = 0 

Let's solve these equations in the DFE (Deterministic Finite Environment) 

𝑑𝑆ℎ

𝑑𝑡
= 0:      − 𝛽ℎ𝑆ℎ𝐼𝑚 − 𝜂𝑆ℎ = 0 ⟹ 𝑆ℎ(𝜂 + 𝛽ℎ𝐼𝑚) = 0 

                                                               𝑆ℎ = 1 et 𝐼𝑚 = 0 (because 𝜂 + 𝛽ℎ ∙ 0 ≠ 0) 

 

𝑑𝐼ℎ

𝑑𝑡
= 0:      𝛽ℎ𝑆ℎ𝐼𝑚 − 𝛾𝐼ℎ = 0 ⟹ 𝛾𝐼ℎ = 0 ⟹ 𝐼ℎ = 0 

 

𝑑𝑅ℎ

𝑑𝑡
= 0:      𝛾𝐼ℎ + 𝜂𝑆ℎ = 0   ⟹ 𝜂 ∙ 1 = 0 

 

𝑑𝑆𝑚

𝑑𝑡
= 0:     − 𝛽𝑚𝑆𝑚𝐼ℎ = 0   ⟹ 𝐼𝑚 = 0 

                                                    𝑆𝑚 = 1 
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𝑑𝐼𝑚

𝑑𝑡
= 0:      𝛽𝑚𝑆𝑚𝐼ℎ − 𝜇𝐼𝑚 = 0  ⟹  𝐼𝑚 = 0                                      

The equilibrium point without disease is: 

                                                          (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚)= (1, 0, 0, 1, 0) 

The Jacobian matrix 𝐽  is the matrix of partial derivatives of the differential equations with respect to the state 

variables 

                       𝐽𝐷𝐹𝐸 =

(

 
 

−𝜂
0
𝜂
0
0

  

0
−𝛾
𝛾

−𝛽𝑚

𝛽𝑚

  

0
0
0
0
0

  

0
0
0
0
0

  

−𝛽ℎ

𝛽ℎ

0
0

−𝜇

  

)

 
 

 

𝑇𝑟(𝐽𝐷𝐹𝐸) = −( 𝜂 +  𝛾 + 𝜇) 

we calculate the determinant using Laplace's method 

 

                             𝐽𝐷𝐹𝐸 =

(

 
 

−𝜂
0
𝜂
0
0

  

0
−𝛾
𝛾

−𝛽𝑚

𝛽𝑚

  

0
0
0
0
0

  

0
0
0
0
0

  

−𝛽ℎ

𝛽ℎ

0
0

−𝜇

  

)

 
 

 

det(𝐽𝐷𝐹𝐸) = ∑(−1)1+𝑗𝑎𝑖𝑗𝑀1𝑗

5

𝑗=1

 

where 𝑀𝑖𝑗is the minor of the element 𝛼𝑖𝑗 that is, the determinant of the matrix obtained by removing the 𝑗 − 𝑡ℎ column 

Step 1: Laplace expansion along the first row 

det(𝐽𝐷𝐹𝐸) = (−1)1+1(−𝜂)𝑀11 + (−1)1+5(−𝛽ℎ)𝑀15 

Let's simplify this expression: 

det(𝐽𝐷𝐹𝐸) = −𝜂𝑀11 − (−𝛽ℎ)𝑀15  ⟹  det(𝐽𝐷𝐹𝐸) = −𝜂𝑀11 + 𝛽ℎ𝑀15 

Let's calculate the minors M11and M15 

Calculation 𝐌𝟏𝟏: It is the matrix obtained by removing the first row and the first column from JDFE 

|

−𝛾 0   0 𝛽ℎ

𝛾 0 0  0
−𝛽𝑚

𝛽𝑚

0
0

   
0
0

0
−𝜇

| 

 

This matrix is triangular (all elements below the main diagonal are zero), so its determinant is the product of the 

diagonal elements:            𝑀11 = (− 𝛾) ∙ 0 ∙ 0 ∙ (−𝜇) = 0 

Calculation 𝐌𝟏𝟓 : It is the matrix obtained by removing the first row and the fifth column from JDFE     

|

0 −𝛾  0 0
𝜂 𝛾    0 0

0
0

−𝛽𝑚

𝛽𝑚

  0
  0

0
0

| 

 

This matrix is also triangular (all elements to the right of the main diagonal are zero), so its determinant is also the 

product of the diagonal elements:  𝑀15 = 0 ∙ 𝛾 ∙ 0 ∙ 0 = 0 



451  
 

J INFORM SYSTEMS ENG, 10(27s) 

Finally 

                 det(𝐽𝐷𝐹𝐸) = − 𝜂 ∙ 0 + 𝛽ℎ ∙ 0 = 0 

 

The determinant of the Jacobian matrix JDFE at the disease-free equilibrium point is zero. 

This result indicates that the disease-free equilibrium is at the boundary between stability and instability. In other 

words, this equilibrium is neutral in terms of linear stability. An equilibrium is considered neutral when, after a slight 

disturbance, the system does not return to its initial state but also does not diverge exponentially. Trajectories near 

this equilibrium may remain close without necessarily converging to it. 

For a more in-depth analysis, it is necessary to examine the eigenvalues of the Jacobian matrix. If one or more 

eigenvalues have zero real parts, it is difficult to conclude local stability solely from linear analysis. Conversely, 

positive real parts of the eigenvalues would indicate instability, while negative real parts would indicate asymptotic 

stability. However, if all the eigenvalues have negative real parts except one that is zero, this suggests marginal or 

conditional stability. 

In epidemiology, for a model like the SIR-SI with SMC, this means two things: first, without additional interventions 

or parameter changes, the system can remain in a disease-free equilibrium, but it is vulnerable to disturbances. Small 

disturbances could potentially push the system in an unstable direction, thereby triggering an epidemic. Second, this 

equilibrium is fragile and might require continuous interventions to maintain the absence of disease. 

Eigenvalue Analysis of the Jacobian Matrix 

To gain a better understanding of the stability of the disease-free equilibrium, we need to analyze the eigenvalues of 

the Jacobian matrix. 

                                                        𝐽𝐷𝐹𝐸 =

(

 
 

−𝜂
0
𝜂
0
0

  

0
−𝛾
𝛾

−𝛽𝑚

𝛽𝑚

  

0
0
0
0
0

  

0
0
0
0
0

  

−𝛽ℎ

𝛽ℎ

0
0

−𝜇

  

)

 
 

 

To find the eigenvalues, we need to solve the characteristic equation:    𝑑𝑒𝑡(𝐽𝐷𝐹𝐸 − 𝜆𝐼) = 0 

where 𝐼 is the identity matrix and 𝜆 represents the eigenvalues  

𝐽𝐷𝐹𝐸 − 𝜆𝐼 =

(

 
 

−𝜂 − 𝛾
0
𝜂
0
0

  

0
−𝛾 − 𝜆

𝛾
−𝛽𝑚

𝛽𝑚

  

0
0

−𝜆
0
0

  

0
0
0

−𝜆
0

  

−𝛽ℎ

𝛽ℎ

0
0

−𝜇 − 𝜆

  

)

 
 

 

The determinant of this matrix is: 

|
|

−𝜂 − 𝛾
0
𝜂
0
0

  

0
−𝛾 − 𝜆

𝛾
−𝛽𝑚

𝛽𝑚

  

0
0

−𝜆
0
0

  

0
0
0

−𝜆
0

  

−𝛽ℎ

𝛽ℎ

0
0

−𝜇 − 𝜆

  |
|
 

 

To simplify, note that some blocks of this matrix are independent of the others: 

For block 1:   (
−𝜂 − 𝛾 −𝛽ℎ

0 −𝜇 − 𝜆
) 

 

The eigenvalues are the solutions of:      (𝜂 + 𝜆)(𝜇 + 𝜆) = 0           𝜆 = −𝜂   or  𝜆 = −𝜇 
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For block 2:   (
−𝛾 − 𝜆 𝛽ℎ

𝛾 −𝜆
) 

The eigenvalues are the solutions of:        𝑑𝑒𝑡 (
−𝛾 − 𝜆 𝛽ℎ

𝛾 −𝜆
) = 0 

That gives:          (𝛾 + 𝜆)𝜆 + 𝛾𝛽ℎ = 0 ,       𝜆2 + 𝛾𝜆 +  𝛾𝛽ℎ = 0 

The solutions to this quadratic equation are: 

                                                                         𝜆 =
−(𝛾)±√𝛾2−4𝛾𝛽ℎ

2
 

The eigenvalues will depend on the parameters 𝛾 and  𝛽ℎ 

Missing Eigenvalue, that is, the eigenvalue corresponding to the off-diagonal part (i.e., to the element 𝛽𝑚and 0) is 

𝜆 = 0 

The eigenvalues are therefore: 

𝜆1 = −𝜂 

𝜆2 = −𝜇 

                                                                              𝜆3, 𝜆4 =
−(𝛾)±√𝛾2−4𝛾𝛽ℎ

2
 

𝜆5 = 0 

To conclude on stability: 

• If all eigenvalues except one have negative real parts, the equilibrium may be stable, but the zero eigenvalue 

indicates neutrality or marginal stability. 

• If any eigenvalue has a positive real part, the equilibrium is unstable. 

In our case:  𝜆1 and 𝜆2 are negative if 𝜂 > 0 and 𝜇 > 0 . 

The values of 𝜆3 and 𝜆4 depend on 𝛾 and 𝛽ℎ. 

The presence of the zero eigenvalue 𝜆5 indicates marginal stability. Perturbations can push the system away from 

equilibrium, but without clear indications of convergence towards equilibrium or rapid divergence, a more in-depth 

analysis, such as a nonlinear analysis, would be necessary. 

Endemic equilibrium, EE 

To study the endemic equilibrium of our system of differential equations, we need to find the constant values of the 

variables 𝑆ℎ, 𝐼ℎ , 𝑅ℎ, 𝑆𝑚 and 𝐼𝑚  for which the time derivatives are zero. This means we need to solve the system of 

equations by setting each derivative equal to zero.  

Our system of differential equations is as follows: 

 
𝑑𝑆ℎ

𝑑𝑡
= −𝛽ℎ𝑆ℎ𝐼𝑚 − 𝜂𝑆ℎ 

 
𝑑𝐼ℎ
𝑑𝑡

= 𝛽ℎ𝑆ℎ𝐼𝑚 − 𝛾𝐼ℎ 

 
𝑑𝑅ℎ

𝑑𝑡
= 𝛾𝐼ℎ + 𝜂𝑆ℎ 

 
𝑑𝑆𝑚

𝑑𝑡
= −𝛽𝑚𝑆𝑚𝐼ℎ 

 
𝑑𝐼𝑚
𝑑𝑡

= 𝛽𝑚𝑆𝑚𝐼ℎ − 𝜇𝐼𝑚 
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For the endemic equilibrium, we need to set each derivative to zero: 

 −𝛽ℎ𝑆ℎ𝐼𝑚 − 𝜂𝑆ℎ = 0 

 𝛽ℎ𝑆ℎ𝐼𝑚 − 𝛾𝐼ℎ = 0 

 𝛾𝐼ℎ + 𝜂𝑆ℎ = 0 

 −𝛽𝑚𝑆𝑚𝐼ℎ = 0 

 𝛽𝑚𝑆𝑚𝐼ℎ − 𝜇𝐼𝑚 = 0 

We will solve this system to find the equilibrium values 𝑆ℎ
∗, Iℎ

∗ , 𝑅ℎ
∗ , 𝑆𝑚

∗ , 𝐼𝑚
∗  

In the first equation,  −𝛽ℎ𝑆ℎ𝐼𝑚 − 𝜂𝑆ℎ = 0  ⟹  (−𝛽ℎ𝐼𝑚 − 𝜂)𝑆ℎ = 0   

Thus, 𝑆ℎ ≠ 0 since there is at least one infected individual, which implies 𝐼𝑚 = −
𝜂

𝛽ℎ
 

Since 𝐼𝑚 must be positive, this solution is not physically realistic. We seek non-trivial solutions. 

𝑆ℎ ≠ 0, 𝐼ℎ ≠ 0, 𝑆𝑚 ≠ 0 and 𝐼𝑚 ≠ 0 . 

Linearization of the System 

To linearize the system around the equilibrium points, we need to calculate the Jacobian matrix of the system. 

𝐽 =

(

 
 

−𝛽ℎ𝐼𝑚 − 𝜂
𝛽ℎ𝐼𝑚

𝜂
0
0

  

0
−𝛾
𝛾

−𝛽𝑚𝑆𝑚

𝛽𝑚𝑆𝑚

  

0
0
0
0
0

  

0
0
0

−𝛽𝑚𝐼ℎ
𝛽𝑚𝐼ℎ

  

−𝛽ℎ𝑆ℎ

 𝛽ℎ𝑆ℎ

0
0

−𝜇

  

)

 
 

 

 

To study the stability, we need to evaluate this matrix at the endemic equilibrium and analyze the eigenvalues of the 

Jacobian matrix. 

𝑇𝑟(𝐽) = −𝛽ℎ𝐼𝑚 − 𝜂 − 𝛾 − 𝛽𝑚𝐼ℎ − 𝜇     ⇔   𝑇𝑟(𝐽) < 0  (Trace of 𝐽 is negative) 

Calculation of the Determinant 

Let's determine the determinant: 

|
|

−𝛽ℎ𝐼𝑚 − 𝜂
𝛽ℎ𝐼𝑚

𝜂
0
0

  

0
−𝛾
𝛾

−𝛽𝑚𝑆𝑚

𝛽𝑚𝑆𝑚

  

0
0
0
0
0

    

0
0
0

−𝛽𝑚𝐼ℎ
𝛽𝑚𝐼ℎ

  

−𝛽ℎ𝑆ℎ

 𝛽ℎ𝑆ℎ

0
0

−𝜇

  |
|
 

 

For a 5𝑥5 Jacobian matrix, traditional methods of solving, such as Laplace's expansion or cofactors, remain 

cumbersome. Additionally, for a thorough analysis, it is necessary to evaluate the eigenvalues of the Jacobian matrix 

at the endemic equilibrium. To achieve greater accuracy, we will use numerical tools like R to compute the eigenvalues 

and assess stability by simulating the model with biologically realistic parameters (see R code). This will allow us to 

analyze the stability of the endemic equilibrium for the given parameters. 

Summary of Results Obtained with R 

After defining the mathematical model and calculating the Jacobian matrix at the endemic equilibrium, we used R to 

determine the eigenvalues of this matrix in order to analyze the stability of the equilibrium. 

Parameter Values Used 

• Human-to-mosquito transmission rate 𝛽ℎ = 0.3 

• Mosquito-to-human transmission rate 𝛽𝑚 = 0.2 



454  
 

J INFORM SYSTEMS ENG, 10(27s) 

• Treatment rate by SMC 𝜂 = 0.1 

• Recovery rate 𝛾 = 0.1 

• Mosquito mortality rate 𝜇 = 0.1 

• Number of infected humans at endemic equilibrium 𝐼ℎ = 0.1 

• Number of infected mosquitoes at endemic equilibrium 𝐼𝑚 = 0.1 

Calculations at Endemic Equilibrium 

• Number of susceptible humans (𝑆ℎ) : −
𝛾

𝜂
𝐼ℎ = −

0.1

0.1
× 0.1 = −0.1 

• Number of susceptible mosquitos  (𝑆𝑚) : −
𝜇𝜂

𝛽𝑚𝛽ℎ𝐼ℎ
= −

0.1×0.1

0.2×0.3×0.1
= −1.6667 

Jacobian Matrix: 

The Jacobian matrix at the endemic equilibrium is: 

𝐽 =

[
 
 
 
 
−0.03 0 0
0.03 −0.1 0
0.1
0
0

0.1
0.3333

−0.3333

0
0
0

0 −0.03
0 −0.03
0

−0.2
0.2

0
0

−0.1 ]
 
 
 
 

 

Eigenvalues 

The eigenvalues calculated with R are: 

𝜆1 = −0.23427 + 0.26198𝑖 

𝜆2 = −0.23427 + 0.26198𝑖 

𝜆3 = −0.1, 

𝜆4 = 0, 

𝜆5 = −0.03007. 

Stability Analysis 

• The eigenvalues 𝜆1, 𝜆2, 𝜆3 et 𝜆5 have negative real parts 

• The eigenvalue 𝜆4 is zero, indicating the need for a more in-depth analysis for this value. 

The analysis shows that most eigenvalues have negative real parts, suggesting that the endemic equilibrium is locally 

stable. The presence of a zero eigenvalue (𝜆4 = 0) requires further investigation to determine its contribution to the 

system's stability. A nonlinear analysis or more detailed numerical simulations may be necessary for a definitive 

conclusion. 

Calculation of 𝑹𝟎 

To calculate 𝑅0 (the basic reproduction number) for the SIR-SI model with SMC intervention, the Next Generation 

Matrix (NGM) method will be used. 

New infections for humans and mosquitoes are: 

• New human infections: 𝛽ℎ𝑆ℎ𝐼𝑚 

• New mosquito infections: 𝛽𝑚𝑆𝑚𝐼ℎ 

The transitions for each compartment are: 

• Transition for humans: −𝜂𝑆ℎ, 𝛽ℎ𝑆ℎ𝐼𝑚 − 𝛾𝐼ℎ ,   𝛾𝐼ℎ + 𝜂𝑆ℎ 

• Transition for mosquitoes: −𝛽𝑚𝑆𝑚𝐼ℎ , 𝛽𝑚𝑆𝑚𝐼ℎ − 𝜇𝐼𝑚 

The matrix 𝐹 contains the terms for new infections, and the matrix 𝑉 contains the terms for transitions. 

The next generation matrix is given by 𝐾 =  𝐹𝑉−1  and 𝑅0 is the largest eigenvalue of the matrix 𝐾 



455  
 

J INFORM SYSTEMS ENG, 10(27s) 

𝐹 = [
𝛽ℎ𝑆ℎ 0

0 𝛽𝑚𝑆𝑚
]            𝑉 =  [

𝛾 + 𝜂 0
0 𝜇

]      𝑉−1 = [

1

𝛾+𝜂
0

0
1

𝜇

] 

We can then write:  𝑅0 = 𝜌(𝐹 ∙ 𝑉−1) 

𝐾 =  𝐹 ∙ 𝑉−1 = [
𝛽ℎ𝑆ℎ 0

0 𝛽𝑚𝑆𝑚
] ∙

[
 
 
 

1

𝛾 + 𝜂
0

0
1

𝜇]
 
 
 

=

[
 
 
 
𝛽ℎ𝑆ℎ

𝛾 + 𝜂
0

0
𝛽𝑚𝑆𝑚

𝜇 ]
 
 
 

 

𝑅0 is given by the spectral radius of the matrix 𝐾, which is the largest eigenvalue of 𝐾. 

The eigenvalues of 𝐾 are:  

                                           𝜆1 =
𝛽ℎ𝑆ℎ

𝛾+𝜂
                      𝜆2 =

𝛽𝑚𝑆𝑚

𝜇
                                             

Thus, 𝑅0 is:  

𝑅0 = max (
𝛽ℎ𝑆ℎ

𝛾 + 𝜂
,
𝛽𝑚𝑆𝑚

𝜇
) 

For the human component, if  𝜂 increases, then the denominator 𝛾 + 𝜂 increases.  

Consequently  
𝛽ℎ𝑆ℎ

𝛾+𝜂
 decreases. 

The mosquito component 
𝛽𝑚𝑆𝑚

𝜇
 is not directly affected by 𝜂 

In summary, increasing 𝜂 tends to reduce 𝑅0 if the human infection ((represented by 
𝛽ℎ𝑆ℎ

𝛾+𝜂
) is the dominant 

component. This means that seasonal malaria chemoprevention (SMC) can effectively reduce the spread of the 

disease by decreasing the human infection contribution to 𝑅0 . 

3.3  SIMULATIONS 

The simulations in Fig. 6, Fig. 7, and Fig. 8 were performed using the R software. 

Before SMC 

 

Fig.6: results before SMC 
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After intervention by SMC 

 

Fig.7: results after intervention by SMC 

Before the SMC (Fig.6 left): 

• Susceptible (𝑺𝒉 - blue curve): A large proportion of the human population is initially susceptible to 

infection. This proportion rapidly decreases at the beginning of the epidemic, indicating a fast transmission 

of the disease in the population. 

• Infected (𝑰𝒉 - red curve): The number of infected individuals quickly rises at first, reaching a peak before 

gradually decreasing. This suggests that, without intervention, malaria spreads rapidly among humans. 

• Recovered (𝑹𝒉 - green curve): The proportion of recovered individuals gradually increases, eventually 

dominating the population, which means that many people recover or become immune, but only after a large 

number of individuals have been infected. 

After SMC (Fig.7 left): 

• Susceptible (𝑺𝒉 - blue curve): The proportion of susceptible individuals decreases much more slowly. 

This indicates that SMC (Seasonal Malaria Chemoprevention) is protecting a large portion of the human 

population from infection. 

• Infected (𝑰𝒉 - red curve): The infection peak is much lower and fades quickly. This shows that the SMC 

intervention significantly reduces the number of people infected by malaria. 

• Recovered (𝑹𝒉 - green curve): The number of recoveries continues to rise, but with a much lower rate of 

initial infections. This demonstrates the protective effect of SMC, reducing the need for recovery by 

preventing infection in the first place. 

Conclusion for Humans: 

• Before SMC, the infection spreads rapidly, with a large number of individuals infected in a short time. 

• After SMC, the infection is well controlled, with a marked reduction in new infection cases and a much 

slower spread. 

SI Model for Mosquitoes (Before SMC Fig.6 vs After SMC Fig7) 

Before SMC (Fig.6 right): 

• Susceptible (𝑺𝒎 - blue curve): Susceptible mosquitoes decrease rapidly, as they become infected once 

malaria spreads. 

• Infected (𝑰𝒎 - red curve): The peak of infected mosquitoes is relatively high, and although it decreases 

after some time, a significant number of mosquitoes remain infected, promoting continued transmission of 

malaria to humans. 
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After SMC (Fig.7 right): 

• Susceptible (𝑺𝒎 - blue curve): The proportion of susceptible mosquitoes decreases more slowly, and 

fewer mosquitoes become infected. 

• Infected (𝑰𝒎 - red curve): The peak of infected mosquitoes is much lower than in the first case, and the 

proportion of infected mosquitoes remains low throughout. This demonstrates that SMC, by reducing human 

infections, also reduces mosquito infections, thereby decreasing overall transmission. 

Conclusion for Mosquitoes: 

• Before SMC, mosquitoes become rapidly infected, contributing to maintaining high transmission levels of 

malaria. 

• After SMC, there is a significant reduction in infected mosquitoes, indicating that the intervention also 

impacts the mosquito transmission reservoir. 

Regular interventions by SMC 

The regular interventions of Seasonal Malaria Chemoprevention (SMC), illustrated in Fig. 8, play a crucial role in 

reducing malaria transmission. 

 

Fig.8: results after regular intervention by SMC 

• Susceptible population (𝑺𝒉 - Blue Curve): 

o The proportion of susceptible individuals (those at risk of being infected) decreases rapidly at the beginning, 

but it doesn’t reach zero. 

o After the initial drop, the curve follows a regular oscillation pattern, showing a cyclical nature. This suggests 

that despite regular SMC interventions, a portion of the population remains susceptible. The periodic rise 

and fall might indicate periods when SMC is administered, and its effect wanes over time until the next 

intervention. 

•  Recovered population (Rh - Green Curve): 

o The recovered proportion increases sharply at the beginning, indicating that the intervention is effective in 

either preventing or mitigating the severity of infections, leading to recovery. 
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o Similar to the susceptible group, the recovered population shows a cyclical behavior, fluctuating over time. 

The oscillation reflects the temporary protection offered by the SMC, which wears off, requiring regular re-

administration to maintain the level of protection in the population. 

• Infected population (𝑰𝒉- Red Curve): 

o The proportion of infected individuals remains very low throughout the time period. This indicates that the 

regular SMC interventions are highly effective in keeping infection levels under control. 

o The small rise and fall in infection rates also follow the oscillation pattern, but at a much lower scale 

compared to the susceptible and recovered populations. This fluctuation likely corresponds to brief periods 

when the effect of SMC diminishes, allowing minor increases in infections before the next round of 

intervention brings them back down. 

Key Takeaways: 

• Cyclical nature of SMC protection: The oscillations in the susceptible and recovered populations reflect 

the fact that SMC interventions need to be administered regularly. The protection it offers decreases over 

time, and thus without continued intervention, the population would become more susceptible again. 

• Low infection levels: The infected population remains extremely low due to the regular application of 

SMC, suggesting that it is successful in preventing widespread transmission of malaria. 

• Intervention success: Despite the cyclic increase in the susceptible population, the overall effect of regular 

SMC administration is to maintain a high level of recovery and immunity in the population, preventing large-

scale outbreaks of malaria. 

This graph demonstrates that while SMC is not a one-time solution, its regular application effectively controls the 

infection rate, even though a portion of the population cycles through susceptibility and recovery. 

4. DISCUSSION 

The results of this study confirm the proven effectiveness of Seasonal Malaria Chemoprevention (SMC) in reducing 

malaria transmission among children under 5 years old. Our simulations demonstrate that regular and meticulously 

planned administration of SMC keeps infection levels at extremely low thresholds, significantly reducing the risk of 

major epidemic outbreaks. These findings highlight the importance of focusing this intervention on children under 5 

years old, who represent the most vulnerable age group due to their immature immune systems and increased 

susceptibility to the disease. 

The results of our modeling suggest that targeting children under 5 years old could be sufficient to significantly reduce 

malaria transmission. This strategic choice would allow for a more efficient and rational use of available resources 

while maintaining a substantial impact on case reduction. Furthermore, this approach aligns with other international 

studies that also focus on this key population, further strengthening the scientific validity and operational relevance 

of this strategy. 

Additionally, the analysis reveals that the effectiveness of SMC could be further enhanced through a combination 

with complementary interventions, such as the use of insecticide-treated nets or indoor residual spraying (thereby 

increasing the parameter μ, representing the mosquito mortality rate). This integrated approach would 

simultaneously target the human and vector components of the basic reproduction number (R0), both of which play 

critical roles in transmission dynamics. Coordinated management of these components could accelerate and sustain 

the reduction of the malaria burden. 

In conclusion, focusing specifically on children under 5 years old, integrated into a combined approach and based on 

rigorous planning, could maximize the effectiveness of SMC, optimize resource allocation, and strengthen malaria 

control efforts in endemic regions. 

Limitation of this study 

This study is strictly based on numerical simulations using a deterministic SIR-SI model. While these simulations 

provide valuable insights, they rely on theoretical assumptions and do not incorporate real-world variability or 

observed field data, which could influence the applicability of the results. 
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CONCLUSION 

This study highlights the effectiveness of Seasonal Malaria Chemoprevention (SMC) in reducing malaria 

transmission among children under 5 years old in Senegal. Using an SIR-SI mathematical model, we demonstrated 

that targeting this age group maintains infection levels at very low thresholds. Our results suggest that, under certain 

conditions, focusing SMC coverage on children under 5 could be sufficient to significantly reduce transmission. 

However, the current decision to extend SMC to children up to 10 years old is supported by previous studies that have 

identified a shift in the distribution of malaria cases toward older age groups in Senegal. These findings, backed by 

field data, emphasize the need to consider local dynamics and epidemiological specificities. While our model 

demonstrates notable effectiveness for children under 5, an explicit comparative modeling between the 0-5 and 0-10 

age groups would be essential to confirm and deepen this assertion. 

Moreover, the success of SMC depends on regular and meticulously planned administration, particularly during high-

transmission periods such as the rainy season. The cyclical nature of infections observed in our simulations 

underscores the importance of repeated interventions to ensure sustained disease control. These results provide a 

strong scientific basis for refining prevention strategies and highlight the critical importance of integrating local data 

into public health decision-making processes. 

Perspectives: 

• Explicit Comparison Between Age Groups (0-5 years and 0-10 years): 

Developing a comparative modeling study between the age groups targeted by SMC (0-5 years and 0-10 years) 

is essential. This would provide a better understanding of the impact of extending coverage on transmission 

dynamics and help confirm or refute the relevance of this strategy. 

• Cost-Effectiveness Analysis: 

Assess the economic impact of focusing coverage on children under 5 years compared to extending it to 

children under 10 years. This analysis would optimize the allocation of resources available for malaria control. 

• Simulation of Policy Changes in Administration: 

Evaluate the effects of different administration strategies, such as adjusting the timing or frequency of 

treatments, based on seasonal specificities and local transmission dynamics. 
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