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Introduction: The measurement of muscle spasticity in clinical settings traditionally relies on 

therapists using established clinical tools. The predominant approach employed in conventional 

clinical assessments for assessing spasticity is the Modified Ashworth Scale (MAS), which 

depends on the subjective judgements of therapists. This method involves assessing spasticity by 

applying passive movements to joints and assigning grades based on the level of muscle 

resistance encountered. However, this approach often results in inconsistencies in evaluation, 

which may impact the overall efficiency of the rehabilitation process. Consequently, the 

development of the Quantitative Spasticity Assessment Technology (QSAT) Platform, which 

utilizes Mechanomyography (MMG) signals integrated with machine learning models to evaluate 

spasticity from the forearm muscles during both flexion and extension movements, can address 

the inconsistencies in spasticity measurement. Thirty subjects with neurological diseases 

participated in the data acquisition. The extracted data underwent a one-way MANOVA test to 

identify significant features with a p-value below 0.05, indicating statistically significant 

differences that were selected for the machine learning models for both movements. The KNN 

approach, utilising a 90/10 data split for both flexion and extension, demonstrates superior 

accuracy of 90.12% and 86.42% across all three datasets when compared to other algorithms. 

Reliability testing for both clinical assessments and QSAT measurements was conducted through 

inter-rater and intra-rater evaluations, revealing an exceptional Kappa value of 1.000 for the 

QSAT, while the clinical method exhibited poor agreement. These findings confirm the reliability 

of the QSAT machine learning model, highlighting strong inter-rater and intra-rater agreement. 

QSAT presents significant potential for improving physiotherapists' assessments of spasticity in 

affected limbs, providing a more reliable and objective alternative to conventional methods. 

Keywords: Spasticity, Modified Ashworth Scale, Mechanomyography, Machine Learning and 

Reliability. 

 

I. INTRODUCTION 

Spasticity is a neurological dysfunction characteristic of upper motor neuron syndrome. It can occur due to various 

pathologies, such as stroke, multiple sclerosis, amyotrophic lateral sclerosis (unstable), cerebral palsy, brain injury, 

and spinal cord injury [1]. In 1980, Lance introduced the term "spasticity" to describe a motor disorder known as the 

upper motor neuron syndrome which characterized by an increase in muscle tone and exaggerated tendon jerks, 

which are caused by the hyperexcitability of the stretch reflex and are dependent on the velocity of movement [2], 

[3]. This description focuses solely on the effects of spasticity upon involuntary movements, without considering its 

effects on intentional motor functions. Therapists utilize a variety of stretching techniques, including both passive 

and active methods, with static stretching being the most employed approach [4], [5]. This technique, widely used in 



701  
 

J INFORM SYSTEMS ENG, 10(27s) 

managing spasticity, aims to relieve discomfort, enhance functionality, maintain or improve soft tissue flexibility and 

joint range of motion (ROM), and regulate abnormal muscle tone.  

The most common methods used in conventional clinical assessment to access the spasticity include the Modified 

Tardieu Scale (MTS), the Modified Ashworth Scale (MAS), and the Australian Spasticity Assessment Scale (ASAS) 

which relies on therapists' subjective evaluations [6], [7], [8]. While practitioners generally highly skilled, variability 

in categorizing the severity of spasticity remains a concern. Among the available assessment tools, MAS and ASAS 

are considered highly reliable for clinical spasticity evaluation [9]. The MAS, a variation of the original Ashworth 

Scale (AS), is frequently employed to assess spasticity by categorizing the degree of muscle resistance experienced 

during passive stretching [10], [11], [12]. Similarly, the ASAS designed to evaluate muscle spasticity in children with 

cerebral palsy, builds upon the velocity-dependent features of the Tardieu Scale (TS) and Modified Tardieu Scale 

(MTS), incorporating a rating system aligned with the Modified Ashworth Scale (MAS) for clinical ease, with a focus 

on two key elements: the specific location of the "catch" and the intensity of resistance observed after the catch [13], 

[14], [15]. The Tardieu Scale (TS) and its modifications The Modified Tardieu Scale (MTS) quantitatively evaluates 

spasticity by measuring muscle resistance to stretching at two specific velocities, slow and fast, facilitating the 

identification of a discernible 'catch' and the assessment of spasticity's presence and severity [16]. Additionally, 

therapists assess these scales to evaluate the complete slow passive range of movement (R2) and the initial resistance 

angle encountered during rapid passive movements (R1) to elucidate the physiological and neurological mechanisms 

influencing resistance to passive movements, respectively [17]. 

Despite the advantages of traditional clinical measurements, these methods have proven to be inadequate in 

reliability and validity for clinical setting, underscoring the necessity for advanced, sophisticated and objective 

assessment approaches [18], [19]. Conventional tone assessment methods frequently depend on subjective 

evaluations and manual analysis, resulting in variations in both inter-rater and intra-rater dependability [20]. While 

the MAS and TS offer a partially quantitative evaluation of muscular resistance during passive movement, the 

assessment remains insufficient in fully capturing the intricate variations in muscle tone [21]. The application of 

electromyography (EMG) in standard therapeutic practices signifies a modern and innovative method for 

neurorehabilitation in stroke recovery patients. [22]. Despite its therapeutic benefits, EMG faces significant 

limitations in broader applications, particularly due to its high susceptibility to external noise and resistance 

fluctuations, which can compromise its reliability, especially in varied environments or throughout extended data 

acquisition sessions, for instance when the subject is perspiring [23], [24]. Various types of transducers, including 

piezoelectric contact sensors, microphones, accelerometers, and laser distance sensors serve to evaluate muscle 

vibrations, also known as mechanical activity, as an alternative to EMG, a technique referred to as 

Mechanomyography (MMG) [25], [26], [27], [28]. Mechanomyography (MMG) captures the vibrations generated by 

muscle contractions and stretching as they travel through tissue, detectable on the skin's surface, making it a non-

invasive, painless technique that healthcare professionals can use to assess spasticity and support a range of clinical 

objectives [29], [30]. A platform namely Quantitative Spasticity Assessment Technology (QSAT) system was designed 

incorporating the MMG technique which comprises two main sensors: an accelerometer, that quantifies muscle 

vibration (acceleration) in the biceps and triceps, and a potentiometer, that capture the upper limb's angular position 

through both flexion and extension movements. 

The primarily objective of this study to assess the reliability of the developed QSAT model for assessing muscle 

spasticity, utilising Mechanomyography (MMG) signals in conjunction with Modified Ashworth Scale (MAS) levels 

as reference. The paper comprises four sections. Section two delineates the technique utilised, encompassing subject 

recruiting, conventional clinical assessment processes, the QSAT approach, and the statistical analyses applied in this 

study. The next section displays and analyses the results of machine learning performance and the evaluation of inter- 

and intra-rater reliability tests. The final section elucidates the conclusions drawn from the study's findings. 

II. METHODS 

A. Subjects 

Thirty subjects with neurological disorders affecting the upper limb were selected for this study based on predefined 

criteria from the National Stroke Association of Malaysia (NASAM) and Sultan Ahmad Shah Medical Centre 

(SASMEC), both located in Kuantan, Pahang. Eligible subjects, aged between 18 and 80, had neurological 

impairments and had undergone evaluation and therapy by certified therapists. The subjects' demographic 
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characteristics, summarized in Table 1, indicate that participants were selected among MAS levels 0, 1, 1+, 2, and 3, 

whereas MAS level 4 was excluded due to the lack of observable flexion and extension movements during assessment. 

Each subject's MAS level was measured separately for flexion and extension, as illustrated in Figure 1. This study was 

approved by the IIUM Research Ethics Committee (IREC 2023-025), with informed consent obtained from all 

subjects before participation. 

Table 1: Demographic Characteristics of Subjects with Neurological Disorder Patients (N=30) 

Age Distribution (Mean±SD) 59.33±12.41 

Male 22 

Female 08 

Impacted Hand:  

Right 16 

Left 14 

Neurological Condition:  

Strokes 29 

Cerebral Palsy 1 

 

 

Figure 1: MAS Level Distribution 

B. Conventional Clinical Assessment 

Two experienced physiotherapists, familiar with the MAS procedure, were enlisted to independently assess the 

spasticity level of each subject. The MAS rating scale used in this study ranges from 0, 1, 1+, 2, 3, to 4 which is shown 

in Table 2. Scale 0 indicates the absence of increased muscle tone, categorising the individual as healthy. Scale 1 

represents a slight increase in muscle tone, characterised by a catch and release with minimal resistance at the end 

of the range of motion. In contrast, Scale 1+ describes a similar event, but the resistance persists throughout the 

entire range of motion. On Scale 2, there is a more pronounced increase in muscle tone throughout most of the range 

of motion, although the affected limb remains mobile. Scale 3 indicates a considerable rise in muscle tone, resulting 

in limited movement of the afflicted limb across the range of motion. Finally, Scale 4 represents complete rigidity of 

the affected limb in both flexion and extension movements. The experimental procedure began with each subject 

positioned in a supine posture, with their arm resting beside the torso. The therapist then performed passive 

movements, encompassing full extension to complete flexion, evaluating the spasticity present in the corresponding 

joints which shown in Figure 2. Spasticity levels were assigned according to the level of muscle resistance encountered 
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throughout passive stretching, with each therapist executed each movement three times. Subsequently, the 

physiotherapists assessed the subjects' spasticity levels in accordance with the Modified Ashworth Scale (MAS). The 

second physiotherapist then repeated these assessments, with a five-minute interval allowed between evaluations. 

To ensure the integrity of the results, no discussions between assessors were permitted, and all experiments were 

conducted independently to maintain complete blinding. All outcomes were meticulously documented and organized 

in a datasheet. 

 

Figure 2: Conventional Clinical Spasticity Assessment 

C. Conventional Clinical Assessment Quantitative Spasticity Assessment Technology (QSAT) 

In this study, a Raspberry Pi Pico was employed as a data acquisition unit to record biological signals from both ACC-

MMG sensor and potentiometer at a sampling frequency of 166.7 Hz. The biceps and triceps muscles were fitted with 

a tri-axial ACC-MMG accelerometer, while the upper limb was equipped with an elbow brace, which housed a 

potentiometer positioned at the elbow joint to ensure stability and accurate capture of angular position during the 

data acquisition process. This setup allowed for the simultaneous recording of single-stream potentiometer data and 

two-stream ACC-MMG signals, with the ACC-MMG signal recorded in three dimensions using accelerometers as 

MMG transducers, generating sub-signals that consists of the x, y, and z axes corresponding to the muscle fibers' 

longitudinal, lateral, and transverse orientations.  

The experimental protocol was initiated by conducting a methodical assessment of the spasticity levels in the muscles 

that control the bending and straightening of the elbow joints [31]. The evaluation of muscle spasticity was conducted 

using the Modified Ashworth Scale (MAS), a widely recognized clinical tool for assessing muscle tone. Following the 

assessment, MMG signals were recorded from the biceps and triceps muscles. To ensure accurate signal acquisition, 

the sensors were firmly attached to the skin with double-sided adhesive tape. "Sensor 1" was positioned over the belly 

of the biceps muscle, while "Sensor 2" was placed on the belly of the triceps. Simultaneously, a potentiometer 

integrated into an elbow brace, was concurrently positioned at the joint to monitor movement. The QSAT platform 

was employed to conduct passive motion assessments of the elbow joint, as illustrated in Figure 3. Depending on the 

spasticity of the muscle group under evaluation, either flexion or extension movements were performed. Data 

obtained from the QSAT platform were plotted and analyzed utilizing MATLAB R2023a software (MathWorks Inc.). 

Various MMG signal features, including Kurtosis, Mean Average Value (MAV), Median, Peak-to-Peak Amplitude 

(PTP), Root Mean Square (RMS), Standard Deviation (SD), and Skewness, were extracted from the x1, y1, z1 axes 

(biceps) and x2, y2, z2 axes (triceps) for both flexion and extension movements. The extracted MMG features were 

subsequently mapped to corresponding MAS levels for futher analysis. 
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Figure 3: Configuration of the QSAT Platform for Upper Limb Measurement 

D. Statistical Analysis 

SPSS version 27.0.1 (IBM Inc.) was used to perform all statistical analyses. Multivariate Analysis of Variance 

(MANOVA) was conducted to identify significant differences in MMG signal features across various levels of muscle 

spasticity [32]. Features with a p-value below 0.05, indicating statistically significant variations among the dependent 

variables, were selected for machine learning models, and these key features were extracted from the x1, y1, z1 axes of 

the biceps and the x2, y2, z2 axes of the triceps during both flexion and extension movements. Weighted Cohen’s Kappa 

test was employed to assess the reliability of the measurements [33]. Inter-rater reliability assessed the consistency 

of MAS level evaluations between two physiotherapists and the QSAT machine learning model (using the same model 

for comparison). Intra-rater reliability, on the other hand, was determined by having each physiotherapist and the 

QSAT model apply their assessments multiple times to the same dataset, ensuring the model's stability and 

consistency across repeated trials. Kappa values exceeding 0.80 signify excellent agreement, while those between 

0.61 and 0.80 indicate substantial agreement. Moderate agreement is suggested by values ranging from 0.41 to 0.60, 

and fair to poor agreement is implied by values below 0.40. 

III. RESULTS AND DISCUSSION 

A. Machine Learning Performance Results 

The study employed multiple machines learning algorithms, including Decision Tree (DT), Linear Discriminant 

Analysis (LDA), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN), to predict spasticity levels based 

on the Modified Ashworth Scale (MAS) for both flexion and extension movements. These algorithms utilized 25 

significant features, each with a p-value below 0.05, contributing to the x, y, and z axes of muscle movement. The 

results for flexion and extension predictions are detailed in Table 2, demonstrating the effectiveness of these features 

in assessing spasticity. The data set sample had been arranged with different percentage for the train and test to 

identify which algorithm have the highest accuracy result to be the selected as the model to be used in evaluation. 

The KNN approach, utilising a 90/10 data split for both flexion and extension, demonstrates superior accuracy of 

90.12% and 86.42% across all three datasets when compared to other algorithms. The KNN classifier is an effective 

approach for categorizing biomechanical parameter features, especially for cases with small datasets and low-

dimensional feature spaces [34], [35]. 
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Table 2: Dataset Distribution and Algorithm Accuracy Percentage 

Algorithm 

Classification Accuracy Across Different Training-Testing Splits 

Flexion Extension 

90-10 80-20 70-30 90-10 80-20 70-30 

DT 65.43 63.89 65.08 67.90 59.72 71.43 

LDA 76.54 70.83 66.67 60.49 59.72 55.56 

SVM 72.84 68.06 69.84 66.67 59.72 71.43 

KNN 90.12 86.11 84.13 86.42 83.33 74.60 

 

Figures 4 and 5 illustrate the True Positive Rate (TPR) and the False Negative Rate (FNR) as derived from the 

confusion matrix for the KNN algorithm, utilising a 90/10 data split for both flexion and extension. The TPR exceeds 

the FNR in identifying high positive instances for classes 0, 1, and 3 during flexion movement, and for classes 1, 2, 

and 3 during extension movement, illustrating the model's significant efficacy in classifying spasticity levels. The high 

TPR is notably significant in this context, as accurately identifying positive cases is critical due to the severe 

consequences of missed diagnoses. From the confusion matrix, it turns out evident that the majority of the 

predictions are accurate, as seen by the larger values on the diagonal. These findings indicate that the models are 

generally exhibiting strong performance in accurately predicting the correct classes. Although the FNR is relatively 

low, it still indicates a non-negligible number of missed positive cases. There could be several potential reasons for 

this, including an uneven distribution of classes, a lack of distinctive characteristics, or the presence of noise in the 

data. This shortfall poses challenges in accurately assessing the severity of spasticity, which is essential for 

appropriate management and treatment. The KNN model with 90/10 data split for both flexion and extension were 

selected for the subsequent reliability tests, which included both inter-rater and intra-rater assessments.  

 

Figure 4: Confusion Matrix and Performance Metrics of KNN Model for Flexion Movement 
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Figure 5: Confusion Matrix and Performance Metrics of KNN Model for Extension Movement 

B. Evaluation of Inter and Intra Rater Reliability Results 

Both physiotherapists conducted the assessment using two distinct approaches. Initially, one physiotherapist 

evaluated each patient by performing passive joint movements and determining the spasticity level based on the 

muscle resistance encountered during stretching. Subsequently, the subject's arm was secured to the QSAT platform, 

with one therapist positioning a hand beneath the lower arm near the wrist while the other supported the upper arm 

close to the shoulder. This QSAT technique was designed to be completed in under five minutes. To ensure reliability, 

the evaluation was conducted three times per session for both approaches. Table 3 presents the muscle spasticity 

scores for flexion movement, while Table 5 outlines the corresponding scores for extension movement across both 

assessment methods. Additionally, the inter-rater and intra-rater reliability outcomes for spasticity evaluation, 

comparing the clinical method with the QSAT platform, are shown in Table 4 for flexion and Table 6 for extension 

movements.  

Table 3: Kappa Results for MAS Measurements Across Raters and Flexion QSAT Model 

Reliability 

Types 
Rater 

Kappa 

(K) 

Standard 

Error 

T 

Value 

P 

Value 

Inter-Rater 
Therapist 1 vs. Therapist 2 0.391 0.073 6.894 <0.001 

QSAT Machine Learning Model 1.000 0.000 16.426 <0.001 

Intra-Rater 

Therapist 1 (Trial 1 vs. Trial 2) 1.000 0.000 16.146 <0.001 

Therapist 2 (Trial 1 vs. Trial 2) 1.000 0.000 16.441 <0.001 

QSAT Machine Learning Model (Trial 1 

vs. Trial 2) 
1.000 0.000 16.426 <0.001 
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Table 4: Distribution of Average MAS Scores for Clinical and Flexion QSAT Model Methods 

MAS 

Level 

Clinical QSAT 

First Test 

(Therapist 

1) 

Repeat 

Test 

(Therapist 

1) 

First Test 

(Therapist 

2) 

Repeat 

Test 

(Therapist 

2) 

First 

Test 

(Model 

1) 

Repeat 

Test 

(Model 

1) 

First 

Test 

(Model 

2) 

Repeat 

Test 

(Model 

2) 

0 7 7 6 6 8 8 8 8 

1 13 13 15 15 12 12 12 12 

1+ 4 4 3 3 6 6 6 6 

2 2 2 4 4 1 1 1 1 

3 4 4 2 2 3 3 3 3 

 

Table 5: Kappa Results for MAS Measurements Across Raters and Extension QSAT Model 

Reliability 

Types 
Rater 

Kappa 

(K) 

Standard 

Error 

T 

Value 

P 

Value 

Inter-Rater 
Therapist 1 vs. Therapist 2 0.057 0.054 1.038 0.299 

QSAT Machine Learning Model 1.000 0.000 17.091 <0.001 

Intra-Rater 

Therapist 1 (Trial 1 vs. Trial 2) 1.000 0.000 17.108 <0.001 

Therapist 2 (Trial 1 vs. Trial 2) 1.000 0.000 12.996 <0.001 

QSAT Machine Learning Model (Trial 1 

vs. Trial 2) 
1.000 0.000 17.091 <0.001 

 

Table 6: Distribution of Average MAS Scores for Clinical and Extension QSAT Model Methods 

MAS 

Level 

Clinical QSAT 

First Test 

(Therapist 

1) 

Repeat 

Test 

(Therapist 

1) 

First Test 

(Therapist 

2) 

Repeat 

Test 

(Therapist 

2) 

First 

Test 

(Model 

1) 

Repeat 

Test 

(Model 

1) 

First 

Test 

(Model 

2) 

Repeat 

Test 

(Model 

2) 

0 7 7 16 16 7 7 7 7 

1 11 11 8 8 12 12 12 12 

1+ 4 4 6 6 4 4 4 4 

2 5 5 0 0 5 5 5 5 

3 2 2 0 0 2 2 2 2 

 

The clinical approach for the flexion movement exhibited a range of agreement from low to excellent, indicated by a 

Kappa value (ƙ) of 0.391. Conversely, the QSAT approach demonstrated complete concordance across raters, with a 

Kappa value (ƙ) of 1.00, signifying exceptional consistency. The intra-rater test exhibited exceptional consistency for 

both approaches. The Kappa values for the clinical assessment approach, derived from measurements by both 

Therapist 1 and Therapist 2, as well as for the QSAT method, were both 1.000. The p-values corresponding to these 

Kappa values were statistically significant, indicating that the assessors' level of agreement is not attributed to 
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random chance. For the extension movement, the clinical method showed a range of agreement from low to excellent, 

with a Kappa value (ƙ) of 0.057 and a non-significant p-value of 0.299. In contrast, the QSAT method exhibited 

perfect agreement between raters, reflected by a Kappa value (ƙ) of 1.00 and a highly significant p-value of <0.001, 

indicating excellent consistency. The intra-rater reliability test also demonstrated outstanding consistency for both 

methods. The Kappa values for the clinical assessments by Therapist 1 and Therapist 2, as well as for the QSAT 

method, were all 1.000, with significant p-values, confirming that the agreement was not due to random chance. 

A key obstacle in neurorehabilitation is the development of inconsistent recovery plans due to the lack of agreement 

among physiotherapists when assessing the affected upper limb. The findings from this study indicate that the inter-

rater reliability of the QSAT approach for both flexion and extension motions markedly exceed that of traditional 

clinical assessments. This is due to QSAT's objective approach, as it quantifies muscle vibration, which is an indicator 

of muscular activation, using MMG sensors. The MAS ratings acquired are exceptionally dependable and accurate. 

Conversely, conventional clinical evaluations rely significantly on the subjective interpretations of physiotherapists, 

resulting in increased variability in assessments. The repeated evaluations performed by a single physiotherapist 

exhibit a significant degree of intra-rater reliability, signifying that the outcomes are dependable and uniform. To 

improve the validity and generalisability of the findings, it is advisable to schedule a follow-up appointment within 

three days following the original evaluation. This will facilitate the assessment of any alterations that may have 

happened during the period, offering further insights into the stability and dependability of the measures.  

IV. CONCLUSION 

In summary, this study aimed to assess the reliability of the developed QSAT model for assessing muscle spasticity, 

utilising Mechanomyography (MMG) signals in conjunction with Modified Ashworth Scale (MAS) scores as 

reference. The primary goal was to create a new, standardized, and objective model for spasticity assessment, with 

the K-Nearest Neighbors (KNN) algorithm demonstrating the highest accuracy across different datasets for both 

flexion and extension movements. This underscores the algorithm’s effectiveness in classifying biomechanical 

parameters, particularly in conditions where data is limited, and dimensionality is low. The findings confirm the 

reliability of the QSAT machine learning model, showing strong inter-rater and intra-rater agreement. Consequently, 

QSAT holds promise for future use in enhancing physiotherapists' evaluation of spasticity in affected limbs, offering 

more reliable and objective assessments. This advancement holds promise for enhancing rehabilitation outcomes by 

minimizing time and costs while improving the quality of care for patients. Future research should focus on validating 

this model through larger clinical trials and exploring its integration into routine clinical practice. 
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