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ARTICLE INFO ABSTRACT

Received: 05 Nov 2024  Malware, short for malicious software, presents a substantial cybersecurity threat

within operational technology (OT) systems. It delineates the diverse array of malware

threats, encompassing, backdoors, trojans, viruses, worms, and trojan-droppers,

Accepted: 21Jan 2025 highlighting their potential to disrupt industrial operations and compromise sensitive
data. In this paper, realm of multi-class classification of malware within OT systems is
focused underscoring the pressing need for tailored malware detection techniques in
such environments. To effectively counter these threats, Signature-based Detection
(SD) method alongside machine learning algorithms are employed on labeled datasets.
Multiclass classification of malware is focused in which the intricate process of data
pre-processing is elucidated which involves extracting, cleaning, and transforming raw
PE file data to facilitate machine learning analysis. Moreover, it elucidates the
integration of H20 AutoML for optimizing models and evaluates the performance of
various machine learning algorithms using key metrics. The proposed approach
provides valuable insights into the sophisticated methodologies employed for multi-
class malware classification in OT systems, thereby enhancing cybersecurity measures
in critical infrastructure sectors. Results shows that the proposed approach has the
96.8% accuracy better than the state of the art techniques which focus only on two
classes such as malicious and benign.
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1. INTRODUCTION

Computer networks play a critical role in our daily lives, facilitating various activities, including the
operation of essential infrastructure such as operational technology (OT) systems [1]. In smart cities,
interconnected networks contribute significantly to urban efficiency and sustainability by optimizing
resource management and facilitating sustainable development. However, despite the seamless nature
of network interaction, there's a constant flow of data packets transmitted between destinations. If
these packets are not adequately secured, they can lead to severe issues such as breaches of personal
data, unauthorized access, financial fraud, or disruption of essential services. Moreover, the
integration of OT systems within these networks introduces additional complexities and security
challenges [2]. OT systems are used to monitor and control physical processes in critical
infrastructure sectors such as energy, transportation, and manufacturing. These systems often rely on
specialized hardware and software tailored to the specific needs of industrial operations. However, the
convergence of OT with information technology (IT) systems has expanded the attack surface and
increased the risk of cyber threats, including malware infections [3].
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Malware, a contraction of "malicious software," poses a significant cybersecurity risk in the realm of
OT systems. Malicious actors target OT environments with various types of malware, including
backdoors, trojans, viruses, worms, and other forms of malicious software. Ransomware, considered
one of the most notorious forms, encrypts user files and demands payment for decryption. Backdoors
provide unauthorized remote access to a computer, enabling attackers to control it without detection.
Spyware operates covertly, surreptitiously collecting user data such as activity logs and browsing
history for remote monitoring. Trojans, disguised as legitimate software, execute malicious actions
upon activation, often facilitating the installation of additional harmful software. Worms exploit
system vulnerabilities to autonomously spread and replicate across networks without human
intervention. Lastly, viruses infect and replicate within host systems, spreading through human
actions like file sharing or opening infected files. These malware variants can exploit vulnerabilities in
OT software and hardware, disrupt industrial processes, steal sensitive data, or cause physical damage
to equipment [4-5].

To combat these threats effectively, organizations employ advanced malware detection techniques
tailored to the unique characteristics of OT environments. One common approach involves analysing
Portable Executable (PE) headers[6], which provide essential information about executable files
commonly found in OT systems. By examining the PE header, security systems can identify potential
threats and classify them based on known characteristics of malicious activities. Additionally,
organizations leverage sophisticated detection methods such as Signature-based Detection (SD) and
Anomaly-based Detection (AD) to identify and mitigate malware threats in OT environments.
Signature detection involves analysing network traffic or executable files to identify patterns that
match known characteristics of malicious activities, including specific signatures within the PE
header. Meanwhile, anomaly-based detection establishes rules for "normal" behaviour and detects
unusual activity that deviates from this norm, potentially indicating a malware infection [7].

Machine learning algorithms, such as decision trees, support vector machines (SVMs), neural
networks, and ensemble methods, are trained on labelled datasets containing various types of network
traffic or PE headers, including normal and malicious instances. These algorithms learn to recognize
patterns indicative of different types of malware, enabling them to classify incoming traffic or
executable files into multiple categories, such as backdoor, trojan, benign, trojan-downloader, trojan-
dropper, virus, and worm. By identifying the specific type of threat, security teams can tailor their
response strategies accordingly, deploying appropriate countermeasures to mitigate the threat
effectively [2][5]. Once trained, the multi-class classification model continuously monitors incoming
traffic or executable files in real-time, analyzing data and assigning each instance to the most
appropriate class based on learned patterns. This proactive approach enables organizations to detect,
classify, and respond to malware threats effectively, reducing the impact of attacks and safeguarding
critical services and assets in OT systems.

In current research, authors address multi-class malware detection using various machine learning
models in OT systems. Initially, raw PE file data is parsed to extract important attributes such as file
size, header information, section characteristics, and import/export tables. This extracted data is then
cleaned and feature engineering techniques are applied to convert numerical data into categorical data
suitable for multiclass classification. The data is transformed into seven classes, enhancing its
usability for modelling. Subsequently, feature selection is performed which reduces dimensionality
and enhances the efficiency and accuracy of the classification model. After feature selection, the
approach integrates H20 AutoML, a powerful tool for hyperparameter tuning and model
optimization. This integration further improves classification efficiency by automating the selection of
the best machine learning algorithms and parameter settings.

Various machine learning algorithms, including decision trees, adaboost, gradient boosting machines,
support vector machines, and logistic regression, are then applied to the pre-processed data. These
algorithms are trained on the dataset to learn the underlying patterns and relationships between the
features and the target variable, enabling effective malware classification. Once the models are
trained, model evaluation is performed using appropriate evaluation metrics such as accuracy,
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precision, recall, and Fi-score. This comprehensive evaluation ensures that the models effectively
classify malware and meet the desired performance criteria and achieved an accuracy of 96.8% by
applying Random forest with H20.

Major contributions in this work are:

e This research addresses cybersecurity challenges arising from the constant flow of data
packets in computer networks. Inadequate security measures can lead to severe
consequences, including data breaches, unauthorized access, financial fraud, or service
disruptions. Integration of OT systems in networks further complicates these challenges.

e The study examines the risks posed by malware, including various types such as backdoor,
trojan, benign, trojan-downloader, trojan-dropper, virus, and worm. It explores advanced
detection techniques like PE header analysis, Signature-based Detection (SD), and Anomaly-
based Detection (AD) to mitigate these risks effectively.

e This research highlights the role of machine learning algorithms in detecting and classifying
malware in OT systems. Various models, including decision trees, support vector machines
(SVMs), neural networks, and ensemble methods, are employed for multi-class malware
detection, contributing to enhanced security measures in OT environments.

e Further, H20 AutoML has been integrated to reduce the time complexity and enhances the
efficacy of the proposed approach.

2. RELATED WORK

In today's interconnected world, computer networks serve as the backbone of essential infrastructure,
facilitating various activities and enabling the operation of critical systems such as operational
technology (OT) systems. The integration of these networks into smart cities has been instrumental in
enhancing urban efficiency and sustainability by optimizing resource management and supporting
sustainable development initiatives [5]. However, the seamless flow of data within these networks also
poses significant security challenges, as any vulnerabilities could lead to severe consequences such as
breaches of personal data, unauthorized access, financial fraud, or disruption of essential services.
One of the key challenges in securing computer networks, particularly in the context of OT systems, is
the threat posed by malware. A comprehensive comparative analysis of the previous researches is
presented in Table 1.

Table 1. Comprehensive Comparative Analysis

Study/Method Year Techniques Used Dataset Size Best
Accuracy
Kolter and Maloof Decision trees, Naive Bayes, 1971 benign, 1651 o
[8] 2004 gym malware 99-6%
Karim et al. [9] 2005 N-perms, N-grams Not specified Not specified
.. Iterative Dichotomiser-3, J48, 1512 viruses, 1488 o
Henchiri et al. [10] 2006 Naive Bayes, SVM benign 92.56%

. 67 malware, 20 .
Blair [11] 2007 Opcodes benign Not specified
Moskovitch et al. 2008 Text categorization ~30,000 malware, Up to 95%
[12] benign
?i[;)]s kovitch et al. 2008 N-grams, Boosted DT Not specified 94.43%

Windows API, Objective- 636 malicious, -
Yeetal. [14] 2008 Oriented Association 1207 benign Not specified
Tian et al. [15] 2008 Function length Not specified Not specified
2774 (1330
Siddiqui et al. [16] 2008 Data mining benign, 1444 95.6%
worms)
Tabish et al. [17] 2009 Statistical, Information- 37,420 malware, 90%

theoretic features 1800 benign
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In-Execution Malware

Mehdi et al. [18] 2009 Analysis and Detection Not specified 90%
(IMAD)
Mehdi et al. [19] 2009 Hyper-grams, Variable-length 72 benign, Not specified
system calls malware files
Single-class learning based on 1000 benign, 1000
Santos et al. [20] 2011 malware ~85%
opcode occurrence
executables
Association mining based
. classification, API call . o
Ravi et al. [21] 2012 sequence modeled by third- Not specified 90%
order Markov chain
Liangboonprakong N-grams sequential pattern - o
et al. [22] 2013 features, SVM, C4.5 DT, ANN Not specified Up 10 96.64%
13,189 malware,
Santos et al. [23] 2013 Opcode sequence occurrence 13,000 benign Up t0 95.90%
executables
Runtime behavior-based
. feature sets, RF, J48, 385 benign, 826 o
Salehi et al. [24] 2014 Rotation RF, FT, NB malware files Upto98.1%
classifiers
Jikku Kuriakose et Feature ranking methods (TF- - o
al.[25] 2015 IpE, GSS, OR, CMFS, MOR) ot specified 100%
Mansour Ahmadi 501 Learning-based system, Half terabytes of 8%
et al.[26] 9 Portable executables features  data 99.67
Malware generator Kkits
Ashu et al.[27] 2016 detection,‘R_andom.forest, Malicia dataset Up t0 99.11%
) NBT classifier, Optimal k- )
means clustering
.. Virtual memory access
Zhixing Xu et 2017 patterns, Logistic regression, RIP E benchmark 99%
al.[28] suite
Random forest
Kotov et al[29] 2018 Static analysis, Hidden Not specified 87.6%

Markov model, API calls
Malware Operational Plot
Burnap et al.[30] 2018 Review (MOPR) model, Self-  Not specified 93.76%
organizing feature maps

Virtual time control

Lietal.[31] 2018 mechanics-based method, Not specified Not specified
Modified Xen hypervisor
Liu et.al.[32] 2020 Comprehensive review Not Specified Not Specified
é%lihandls et.al. 2021 Comprehensive review Not specified Not specified
Tyagi et.al. [34] 2022 Static analysis technique Not Specified 96.7%
. . 301 malicious and o
Akhtar et.al.[35] 2023 Dynamic malware detection 72 benign 100%

2.1 Research Gaps
The following gaps have been identified after conduting the literature review.

e There is a lack of detailed studies focusing specifically on the types and behaviour of malware
targeting OT systems compared to IT systems.

e Existing research often focuses on individual detection methods (e.g., signature-based or
anomaly-based detection) rather than a comprehensive evaluation and integration of multiple
techniques for improved accuracy and robustness.

e Machine learning models in real-time scenarios within OT environments does not focus on
latency and detection accuracy.
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e Advanced feature engineering methods were not explored that could potentially improve
detection accuracy.
e Multiclass malware detection is not performed till date to the best of our knowledge.

3. RESEARCH METHODOLOGY

This section provides an overview of malicious softwares, portable executable files, datasets and
feature selection methods used.

3.1 Malicious software

Malicious software, commonly referred to as malware, is designed with the intent to cause harm and
disrupt computer systems. Unlike regular programs, malware presents a significant threat due to its
destructive capabilities. With numerous releases annually, malware poses a continuous challenge to
the security of computer systems and the Internet. Traditional detection methods, like signature-
based approaches, rely on identifying specific sequences of bytes associated with known malware.
However, this method has limitations as malware creators employ obfuscation techniques to evade
detection, making signature-based methods less effective against new and disguised threats.

To overcome these limitations, machine learning-based techniques have emerged as promising
solutions. Unlike signature-based methods, machine learning models can learn and generalize
patterns from training data, enabling them to detect variations of malware even when their signatures
change. Moreover, as malware developers continually modify their code to create new variants,
machine learning models can adapt to these changes, offering a more robust approach to malware
detection that can keep pace with evolving threats.

In the current research, the authors focus on multi-class malware detection using various machine
learning models. While previous studies primarily concentrated on binary -classification,
distinguishing between benign and malicious files, there is a recognized need to classify malicious files
into different categories such as viruses, worms, Trojan horses, spyware, adware, and ransomware.
This shift towards multi-class classification allows for a more nuanced analysis of malware behaviour,
thereby enhancing the effectiveness of detection strategies. These categories exemplify the diverse
nature and potential threat posed by malware, underscoring the importance of robust detection and
prevention measures to safeguard computer systems and data. In the context of multi-class
classification of malware, machine learning-based techniques offer a promising avenue for enhancing
detection capabilities and addressing the evolving landscape of threats.

3.2 PE file format

The Portable Executable (PE) file format, commonly used in Windows operating systems, plays a
crucial role in malware detection by offering a structured layout to analyse executable files. By
examining PE file structures, researchers can extract key features to differentiate between benign and
malicious programs. The PE file consists of a header followed by sections, with each section serving a
distinct purpose. The PE header includes the DOS header for file validation, the "PE \ o0 \ 0" signature
identifying it as a PE file, and crucial details like the compilation timestamp and the number of
sections. The Data_ Directory structures within the Optional header point to important tables like the
Import, Export, and Resource tables, facilitating access to essential data. The section table provides
information about the program sections, and the actual file contains executable code, data, and
resources that define its functionality within the Windows environment. As depicted in Figure 1, the
PE file consists of a header followed by a sequence of sections, with each section serving a distinct

purpose.
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. PE Signature
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Data Directories
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Figure 1. Format of PE Header file
3.3 Dataset used

In this work, datasets used is of Operational Technology, gather from C3i Hub, Indian Institute of
Technology, Kanpur. The dataset comprises of 10K PE files. The PE files are further categorized as
Benign and Malicious (backdoor, trojan, benign, trojan-downloader, trojan-dropper, virus, and
worm). The distribution of the samples files is presented in Figure 2.

Category wise Samples

6000
5125

5000
4000
3000
2000

998 1152 914
566

1000 717 766 ’—\
0 | |

Number of Samples

[ Benign Backdoor Trojan Trojan-Downloader [ETrojan-Dropper [OVirus BWorm

Figure 2. Category wise Samples
3.4 Feature Extraction

In machine learning-based systems designed for malware detection, a critical phase involves the
extraction of features. Within this domain, two primary categories of features are commonly
employed: Static Features and Dynamic Features. Static feature attributes are derived from a file
without the need for executing it, which provide valuable insights into the inherent characteristics and
attributes of the file itself. By analyzing such aspects namely; file size, metadata, and code structure,
static features enable the identification of potential indicators of malicious behavior. Despite their
effectiveness in revealing structural patterns, it suffers in capturing dynamic behaviors exhibited by
malware during execution. On the other hand, Dynamic Features are obtained by executing a file,
typically within a controlled environment conducive to monitoring and analysis which captures the
actual behaviors and actions of the program during runtime. By observing factors such as system calls,
memory usage, and network activity, dynamic features offer a more comprehensive understanding of
the program's behavior. However, extracting dynamic features often entails greater time and
computational resources compared to static analysis and are more susceptible to evasion tactics
employed by adversaries. For instance, attackers may introduce time delays or evasion techniques to
circumvent dynamic analysis, thereby challenging the efficacy of dynamic feature extraction methods.
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In the work, both static and dynamic methods were employed for feature extraction, leveraging the
unique strengths of each approach to enhance the effectiveness of malware detection systems. These
features are utilized for the detection and classification of different classes of malware presented in
Table 2. Table 2 shows features name alongwith the desciptions. 54 features are presented out of 57 as

name and labels were not considered as features.

Table 2. PE Header File Features and its description

S.No. Feature Name

Description

1. DebugSize

2. IATRVA

3. SizeOfHeapCommit

4. FileSize

5. DebugRVA

6. ResSize

7. SizeOfHeaders

8. Machine

9. ImageVersion

10. LinkerVersion

11. StackReserveSize

12. TimeDateStamp

13. OSVersion

14. VirtualSize2

15. SizeOfHeapReserve

16. Characteristics

17. ExportRVA

18. NumberOfSections

19. SizeOflmage

20. SizeOfOptionalHeader
21. ExportSize

22, SizeOfCode

23. SizeOfInitializedData
24. SizeOfStackCommit

25. AddressOfEntryPoint
26. MajorImageVersion

27. MajorSubsystemVersion
28. SizeOfUninitializedData
20. CheckSum

30. MinorImageVersion

31. MinorSubsystemVersion
32. NumberOfRvaAndSizes
33. SectionAlignment

34. MajorLinkerVersion
35. SectionsLength

36. LoaderFlags

37. MajorOperatingSystemVersion
38. MinorLinkerVersion
39. SectionMinEntropy

40. SectionMaxEntropy

41. SectionMinVirtualSize
42. SectionMinPhysical

Size of the debug information.

Address of the Import Address Table (IAT).

Size of the heap to commit.
Total size of the file.

Relative Virtual Address (RVA) of the debug section.

Size of the resources section.
Size of the headers.

Type of machine (e.g., Intel x86).
Version of the image.

Version of the linker.

Size of the stack to reserve.

Time and date when the file was created or modified.

Version of the operating system.
Virtual size of the section.

Size of the heap to reserve.
Characteristics of the file.

RVA of the export section.

Number of sections in the file.

Size of the image.

Size of the optional header.

Size of the export section.

Size of the code section.

Size of the initialized data section.
Size of the stack to commit.

Address of the entry point.

Major version of the image.

Major version of the subsystem.

Size of the uninitialized data section.
Checksum of the file.

Minor version of the image.

Minor version of the subsystem.
Number of RVA and sizes.
Alignment of the sections.

Major version of the linker.

Length of the sections.

Flags used by the loader.

Major version of the operating system.
Minor version of the linker.
Minimum entropy of the sections.
Maximum entropy of the sections.
Minimum virtual size of the sections.
Minimum physical size of the sections.
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43. SectionMaxChar Maximum characteristics of the sections.
44. SectionMinRawSize Minimum raw size of the sections.
45. SectionMaxVirtualSize Maximum virtual size of the sections.
46. SectionMaxPointerData Maximum pointer data of the sections.
47. Reserved1 Reserved field.
48. SectionMaxRawSize Maximum raw size of the sections.
49. SectionMaxPhysical Maximum physical size of the sections.
50. SectionMinPointerData Minimum pointer data of the sections.
51. DIl Indicates if the file is a Dynamic Link Library (DLL).
52. ImportFunctionCount Count of imported functions.
53. ImportFunctionMethodCount  Count of methods used for importing functions.
54. MDs5Hash MDs5 hash of the file.
4. PROPOSED METHODOLOGY

In this work, a framework for multiclass classification of malwares using machine learning models is
proposed. The proposed approach involves several steps namely, data pre-processing, feature
selection, integration of h2o automl interfaces and training the machine learning models. The
framework of the proposed approach is depicted in Figure 3.

4.1 Data Pre-Processing

Data pre-processing on PE files is a critical step in preparing them for machine learning-based
analysis for multiclass classification of malware detection. This process involves several key steps
aimed at cleaning, transforming, and structuring the raw PE file data to make it suitable for modeling.
Initially, the PE files are parsed to extract essential attributes such as file size, header information,
section characteristics, import/export tables, and other relevant features. Next, data cleaning
techniques have been applied to handle missing values, outliers, or inconsistencies in the dataset.
Additionally, feature engineering techniques have been applied which converts the numerical data to
categorical data for multiclass classification. The data have been transformed into seven classes as
presented in figure 2. Finally, the pre-processed data is normalized to ensure that all features are on a
similar scale, preventing any single feature from dominating the modelling process. Overall, data pre-
processing plays a crucial role in optimizing the quality and usability of PE file data for subsequent
machine learning analysis.

4.2 Feature Selection

After data pre-processing, feature selection is performed based on correlation. It involves identifying
and selecting the most relevant features that exhibit a strong correlation with the target variable, i.e.
class of malware. By analyzing the correlation between each feature and the target variable, redundant
or irrelevant features has been eliminated, reducing dimensionality and improving the efficiency and
accuracy of the classification model. Features with high correlation values are retained, as they
provide valuable insights into the characteristics of malware and contribute significantly to the
predictive power of the model. This process ensures that only the most informative features are
included in the final dataset, enhancing the performance of the machine learning algorithm in
accurately detecting and classifying different types of malware.
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Figure 3. Proposed approach
4.3 Integrating H20 autoML interface

After feature selection, the approach integrates H20 AutoML which further enhances the efficiency
and effectiveness of multiclass malware classification. H20 AutoML performs hyperparameter tuning
on multi-dimensional dataset which enhances the speed and accuracy of various machine learning
algorithms without human intervention.

4.4 Machine learning algorithms applied

Once the pre-processed data is ready and H20 is integrated, then these dataframe various machine
learning techniques are applied to train and evaluate the models. These techniques include decision
trees, adaboost, gradient boosting machines, support vector machines, and logistic regression. Each
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algorithm is trained on the pre-processed dataset to learn the underlying patterns and relationships
between the features and the target variable.

4.5 Model Evaluation

The performance of each model is then assessed using appropriate evaluation metrics, such as
accuracy, precision, recall, and Fi-score, to determine its effectiveness in classifying malware into
different categories.

True Positive

Precision = — — (1)
True Positive+False Positive
True Positive
Recall = — - (2)
True Positive+False Negative
Number of Correct predication
Accuracy = ! — 3)
Total Number of predication
2+Precision*Recall
F1Score = —— 4)

Precision+Recall

4.6 Pesudocode of the proposed approach

Algorithm: Multiclass Classification of Malwares Using Machine Learning Models
parsed_data = ParsePEFiles(PE_files)
cleaned_data = DataCleaning(parsed_data)
preprocessed_data = FeatureEngineering(cleaned_data)
transformed_ data = TransformData(preprocessed_data)
normalized_data = NormalizeData(transformed_ data)
return normalized_ data
// Analyze correlation between features and target variable
correlation__matrix = CalculateCorrelation(data)
selected_features = SelectFeatures(correlation_matrix)
return selected_ features
// Integrate H20 AutoML for hyperparameter tuning
model = H20AutoML(data)
return model
// Train various machine learning techniques on pre-processed data
trained_models = TrainModels(data, model)
// Evaluate performance of each model
evaluation_results = EvaluateModels(trained__models)

return evaluation_ results

5. IMPLEMENTATION

Python language was used within a Google Colab environment for training our system across multiple
machine learning models. Data reading, conversion to data frames, model splitting, and training were
facilitated by key libraries like pandas, scikit-learn, seaborn, and plotly. Additionally, the H20 library
was utilized for fast computation and feature reduction, resulting in enhanced dimensionality
reduction and model efficacy. Computations were accelerated, and preprocessing time was minimized
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by leveraging its scalable architecture. Model building was automated by its feature selection
techniques, ensuring faster insights.

Step 1: Data Pre-processing:

The samples file is shown in Figure 4, after being read through the Colab environment comprising of
10238 PE files with total 57 attributes presented in columns. Assigning the class labels as per the
different category, shown in Table 3.

Table 3. Category wise class labels and number of samples

Category Class Number of Samples

Benign 0] 5125

Virus 1 566

Backdooor 2 717

Trojon 3 998

Trojan-dropper 4 1152

Worm 5 914

Trojan-downloader 6 766
filesize Machine TimeDateStamp Characteristics SizeOfOptionalHeader DebugSize DebugRVA ImageVersion OSVersion ... section_min_physical
15360  Ox14¢ 998081615 271 224 28 4272 B 5 . 68
16384  Ox14c 998081342 271 224 28 4384 5 5 . 3080
77824 Oxl4c 997261829 271 224 28 29264 4 4 . 7
118834  Ox14c 993603227 271 224 28 66240 0 4 . 1240
13312 Ox14c 998081627 271 224 28 4416 @ 5 . 92

Figure 4. Reading of Sample files using python language
Step 2: Feature Selection:

In the initial step, certain features were removed from consideration due to their lack of significant
variation across different samples. These features include "Name," “label", filesize," "Machine,"
"TimeDateStamp," "Reserved1," and "SizeOfOptionalHeader." As a result, the system was trained
using 50 remaining features. Figure 5 illustrates the selected features.

Step 3: Integration of H20 interface

Following the removal of these features, we proceeded to employ the H20 Python library for
additional feature reduction and expedited computation.

import h20 (5)
h20init() (6)

Some of the features of h2o is shown in Figure 6 as;

Index (['Characteristics', 'DebugSize', 'DebugRVA', 'TmageVersion', 'OSVersion',
'ExportRVA', 'ExportSize', TATRVA', 'ResSize', 'LinkerVersion','VirtualSize2',
"NumberOfSections', 'SizeOfCode', 'SizeOfHeapCommit', 'SizeOfHeaders',
'StackReserveSize', 'SizeOfHeapReserve', 'SizeOfImage',SizeOflInitializedData’,
'SizeOfStackCommit', 'SizeOfUninitializedData', 'NumberOfRvaAndSizes',
'LoaderFlags', 'AddressOfEntryPoint’, 'CheckSum’, 'SectionAlignment',
'MajorOperatingSystemVersion',

'MinorOperatingSystemVersion', 'MajorImageVersion', 'MinorImageVersion',
'MajorLinkerVersion', 'MinorLinkerVersion', 'MajorSubsystemVersion',
'MinorSubsystemVersion', 'sections_length', 'section_min_ entropy’,
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'section_max_ entropy', 'section_min_rawsize', 'section_max_rawsize',
'section_min_ virtualsize', 'section_max_ virtualsize',

'section_max_ physical', 'section_min_ physical’,
'section_max_pointer_data', 'section_min_pointer_data’,
'section_max_ char', 'DII', TmportFunctionCount',
'ITmportFunctionMethodCount', 'mdshash’, 'label'],

dtype="object")

Figure 5. Selected Features after the dimension Reduction

H20 cluster uptime 07 secs

H20 cluster timezone: Etc/UTC

H20 data parsing_timezone UTC
H20 cluster version 3.46.0.1

H20 _cluster_version_age: 26 days
H20 cluster name H20 from_ python unknownUser pxibi9

H20 cluster total nodes 1
H20_cluster_free_memory 3170 Gb

Figure 6. H20 Features Set
Step 4: Machine learning models applied

The system was trained using the H20-based data frame generation. Various machine learning
algorithms were utilized for this purpose, including logistic regression, decision trees, random forests,
gradient boosting, and Adaboost. The dataset was divided into training and testing samples at a ratio
of 70:30, respectively. Subsequently, the system underwent training with the machine learning model,
followed by testing to evaluate its performance.

6. RESULTS AND DISCUSSION

The authors works on multi-class malware detection through the utilization of diverse machine
learning models. Unlike previous studies that predominantly targeted binary classification,
distinguishing solely between benign and malicious files, there exists a recognized necessity to
categorize malicious files into various classes such as viruses, worms, Trojan horses, spyware, adware,
and ransomware. This transition towards multi-class classification facilitates a more intricate
examination of malware behaviour, consequently bolstering the efficacy of detection approaches. As
discussed above authors has classified the data into 7 different labels and the different machine
learning models are trained on 70:30 ratio. The models are trained on 7167 samples of different
classes and tested on 3071 samples. The models are evaluated on the basic of evaluation metrics such
as precision, recall accuracy and F1 score. Here show the results before applying h2o, table 4 shows
the evaluation metrics of different machine learning models.

Table 4. Evaluation metrics over the various ML models without h2o

Model Applied Accuracy F1 Score Precision Recall
Logistic Regression 0.78 0.77 0.77 0.783
Decision Tree 0.9456 0.945 0.9465 0.9456
Random Forest 0.9528 0.9524 0.9533 0.9528
Gradient Boost 0.9504 0.9504 0.9517 0.9504
Ada boost 0.3603 0.2364 0.1817 0.3603

However, after applying the H20 the overall accuracy is increased. Table 5 shows the different
evaluation parameters after applying h2o.
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Table 5. Evaluation metrics over the various ML models with h2o

Model Applied Accuracy F1 Score Precision Recall
Logistic Regression 0.8031 0.7938 0.7945 0.8031
Decision Tree 0.949 0.9386 0.9386 0.939

Random Forest 0.9682 0.969 0.96901 0.96495
Gradient Boost 0.9586 0.9576 0.9566 0.9556
Ada boost 0.3104 0.187 0.1408 0.3104

Figure 7 shows the confusion matrix of the LR, DTC, RF, GB and Ada Boost. Random forest has the
maximum accuracy of 96.8% however Ada boost has the lowest as 31%.

Figure 8 shows the Overall comparison of accuracy, precision, recall and F1 score with h2o and
without h2o, results depict in all the model’s performance is increased after applying h2o and also
reduces the model building time. The results indicate that the proposed approach, utilizing H20 with
a random forest model, achieved the highest accuracy of 96.8% compared to other machine learning
models. Notably, this is the first application of this approach to multiclass classification; previous
research primarily focused on binary classification. In two-class classification, the proposed approach
attained 100% accuracy with selected features. Hence, it is better than the existing state-of-the-art

techniques.
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Figure 8. Comparison of Different ML models without H20 and with H20
7. CONCLUSION

In the proposed research a comprehensive approach to multi-class malware detection in OT systems,
employing various machine learning techniques is presented. Through the parsing and extraction of
crucial attributes from raw PE file data, followed by feature engineering and selection processes, the
dataset is optimized for multiclass classification. Integration of H20 AutoML further enhances model
efficiency by hyperparameter tuning. By applying a range of machine learning algorithms and
evaluating their performance using appropriate metrics, this study demonstrates the effectiveness of
the proposed approach in accurately classifying malware. Random forest models explicit the
maximum accuracy of 96.8 % as compared to other applied methods. Earlier research has maximum
accuracy of 99 % having only two class labels however the proposed approach has 100% accuracy in
two class labelled dataset, which is better than the state-of the art methods. These findings contributes
to the advancement of cybersecurity measures in OT environments, ensuring enhanced protection
against malicious threats.
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