
Journal of Information Systems Engineering and Management
2025, 10(3)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Multiclass Malware Detection in Operational

Technology Systems Using Machine Learning on PE

Header Specifications

Ashwini Kumar Verma1* and Sanjay Kumar Sharma2
1,2Department of CSE, University School of ICT, Gautam Buddha University, Greater Noida, India

1cyberneticsjustice@gmail.com, https://orcid.org/0000-0001-7580-7392;
2sanjay.sharma@gbu.ac.in & https://orcid.org/0000-0001-7918-4938

ARTICLE INFO ABSTRACT

Received: 05 Nov 2024

Revised: 27 Dec 2024

Accepted: 21 Jan 2025

Malware, short for malicious software, presents a substantial cybersecurity threat

within operational technology (OT) systems. It delineates the diverse array of malware

threats, encompassing, backdoors, trojans, viruses, worms, and trojan-droppers,

highlighting their potential to disrupt industrial operations and compromise sensitive

data. In this paper, realm of multi-class classification of malware within OT systems is

focused underscoring the pressing need for tailored malware detection techniques in

such environments. To effectively counter these threats, Signature-based Detection

(SD) method alongside machine learning algorithms are employed on labeled datasets.

Multiclass classification of malware is focused in which the intricate process of data

pre-processing is elucidated which involves extracting, cleaning, and transforming raw

PE file data to facilitate machine learning analysis. Moreover, it elucidates the

integration of H2O AutoML for optimizing models and evaluates the performance of

various machine learning algorithms using key metrics. The proposed approach

provides valuable insights into the sophisticated methodologies employed for multi-

class malware classification in OT systems, thereby enhancing cybersecurity measures

in critical infrastructure sectors. Results shows that the proposed approach has the

96.8% accuracy better than the state of the art techniques which focus only on two

classes such as malicious and benign.

Keywords: Multi-class classification, Malware detection, Operational technology

(OT) systems, Signature-based Detection (SD), Machine learning algorithms, H2O

AutoML.

1. INTRODUCTION

Computer networks play a critical role in our daily lives, facilitating various activities, including the

operation of essential infrastructure such as operational technology (OT) systems [1]. In smart cities,

interconnected networks contribute significantly to urban efficiency and sustainability by optimizing

resource management and facilitating sustainable development. However, despite the seamless nature

of network interaction, there's a constant flow of data packets transmitted between destinations. If

these packets are not adequately secured, they can lead to severe issues such as breaches of personal

data, unauthorized access, financial fraud, or disruption of essential services. Moreover, the

integration of OT systems within these networks introduces additional complexities and security

challenges [2]. OT systems are used to monitor and control physical processes in critical

infrastructure sectors such as energy, transportation, and manufacturing. These systems often rely on

specialized hardware and software tailored to the specific needs of industrial operations. However, the

convergence of OT with information technology (IT) systems has expanded the attack surface and

increased the risk of cyber threats, including malware infections [3].

293

J INFORM SYSTEMS ENG, 10(3)

Malware, a contraction of "malicious software," poses a significant cybersecurity risk in the realm of

OT systems. Malicious actors target OT environments with various types of malware, including

backdoors, trojans, viruses, worms, and other forms of malicious software. Ransomware, considered

one of the most notorious forms, encrypts user files and demands payment for decryption. Backdoors

provide unauthorized remote access to a computer, enabling attackers to control it without detection.

Spyware operates covertly, surreptitiously collecting user data such as activity logs and browsing

history for remote monitoring. Trojans, disguised as legitimate software, execute malicious actions

upon activation, often facilitating the installation of additional harmful software. Worms exploit

system vulnerabilities to autonomously spread and replicate across networks without human

intervention. Lastly, viruses infect and replicate within host systems, spreading through human

actions like file sharing or opening infected files. These malware variants can exploit vulnerabilities in

OT software and hardware, disrupt industrial processes, steal sensitive data, or cause physical damage

to equipment [4-5].

To combat these threats effectively, organizations employ advanced malware detection techniques

tailored to the unique characteristics of OT environments. One common approach involves analysing

Portable Executable (PE) headers[6], which provide essential information about executable files

commonly found in OT systems. By examining the PE header, security systems can identify potential

threats and classify them based on known characteristics of malicious activities. Additionally,

organizations leverage sophisticated detection methods such as Signature-based Detection (SD) and

Anomaly-based Detection (AD) to identify and mitigate malware threats in OT environments.

Signature detection involves analysing network traffic or executable files to identify patterns that

match known characteristics of malicious activities, including specific signatures within the PE

header. Meanwhile, anomaly-based detection establishes rules for "normal" behaviour and detects

unusual activity that deviates from this norm, potentially indicating a malware infection [7].

Machine learning algorithms, such as decision trees, support vector machines (SVMs), neural

networks, and ensemble methods, are trained on labelled datasets containing various types of network

traffic or PE headers, including normal and malicious instances. These algorithms learn to recognize

patterns indicative of different types of malware, enabling them to classify incoming traffic or

executable files into multiple categories, such as backdoor, trojan, benign, trojan-downloader, trojan-

dropper, virus, and worm. By identifying the specific type of threat, security teams can tailor their

response strategies accordingly, deploying appropriate countermeasures to mitigate the threat

effectively [2][5]. Once trained, the multi-class classification model continuously monitors incoming

traffic or executable files in real-time, analyzing data and assigning each instance to the most

appropriate class based on learned patterns. This proactive approach enables organizations to detect,

classify, and respond to malware threats effectively, reducing the impact of attacks and safeguarding

critical services and assets in OT systems.

In current research, authors address multi-class malware detection using various machine learning

models in OT systems. Initially, raw PE file data is parsed to extract important attributes such as file

size, header information, section characteristics, and import/export tables. This extracted data is then

cleaned and feature engineering techniques are applied to convert numerical data into categorical data

suitable for multiclass classification. The data is transformed into seven classes, enhancing its

usability for modelling. Subsequently, feature selection is performed which reduces dimensionality

and enhances the efficiency and accuracy of the classification model. After feature selection, the

approach integrates H2O AutoML, a powerful tool for hyperparameter tuning and model

optimization. This integration further improves classification efficiency by automating the selection of

the best machine learning algorithms and parameter settings.

Various machine learning algorithms, including decision trees, adaboost, gradient boosting machines,

support vector machines, and logistic regression, are then applied to the pre-processed data. These

algorithms are trained on the dataset to learn the underlying patterns and relationships between the

features and the target variable, enabling effective malware classification. Once the models are

trained, model evaluation is performed using appropriate evaluation metrics such as accuracy,

294

J INFORM SYSTEMS ENG, 10(3)

precision, recall, and F1-score. This comprehensive evaluation ensures that the models effectively

classify malware and meet the desired performance criteria and achieved an accuracy of 96.8% by

applying Random forest with H2O.

Major contributions in this work are:

• This research addresses cybersecurity challenges arising from the constant flow of data

packets in computer networks. Inadequate security measures can lead to severe

consequences, including data breaches, unauthorized access, financial fraud, or service

disruptions. Integration of OT systems in networks further complicates these challenges.

• The study examines the risks posed by malware, including various types such as backdoor,

trojan, benign, trojan-downloader, trojan-dropper, virus, and worm. It explores advanced

detection techniques like PE header analysis, Signature-based Detection (SD), and Anomaly-

based Detection (AD) to mitigate these risks effectively.

• This research highlights the role of machine learning algorithms in detecting and classifying

malware in OT systems. Various models, including decision trees, support vector machines

(SVMs), neural networks, and ensemble methods, are employed for multi-class malware

detection, contributing to enhanced security measures in OT environments.

• Further, H2O AutoML has been integrated to reduce the time complexity and enhances the

efficacy of the proposed approach.

2. RELATED WORK

In today's interconnected world, computer networks serve as the backbone of essential infrastructure,

facilitating various activities and enabling the operation of critical systems such as operational

technology (OT) systems. The integration of these networks into smart cities has been instrumental in

enhancing urban efficiency and sustainability by optimizing resource management and supporting

sustainable development initiatives [5]. However, the seamless flow of data within these networks also

poses significant security challenges, as any vulnerabilities could lead to severe consequences such as

breaches of personal data, unauthorized access, financial fraud, or disruption of essential services.

One of the key challenges in securing computer networks, particularly in the context of OT systems, is

the threat posed by malware. A comprehensive comparative analysis of the previous researches is

presented in Table 1.

Table 1. Comprehensive Comparative Analysis

Study/Method Year Techniques Used Dataset Size
Best

Accuracy

Kolter and Maloof
[8]

2004
Decision trees, Naive Bayes,
SVM

1971 benign, 1651
malware

99.6%

Karim et al. [9] 2005 N-perms, N-grams Not specified Not specified

Henchiri et al. [10] 2006
Iterative Dichotomiser-3, J48,
Naive Bayes, SVM

1512 viruses, 1488
benign

92.56%

Blair [11] 2007 Opcodes
67 malware, 20
benign

Not specified

Moskovitch et al.
[12]

2008 Text categorization
~30,000 malware,
benign

Up to 95%

Moskovitch et al.
[13]

2008 N-grams, Boosted DT Not specified 94.43%

Ye et al. [14] 2008
Windows API, Objective-
Oriented Association

636 malicious,
1207 benign

Not specified

Tian et al. [15] 2008 Function length Not specified Not specified

Siddiqui et al. [16] 2008 Data mining
2774 (1330
benign, 1444
worms)

95.6%

Tabish et al. [17] 2009
Statistical, Information-
theoretic features

37,420 malware,
1800 benign

90%

295

J INFORM SYSTEMS ENG, 10(3)

Mehdi et al. [18] 2009
In-Execution Malware
Analysis and Detection
(IMAD)

Not specified 90%

Mehdi et al. [19] 2009
Hyper-grams, Variable-length
system calls

72 benign,
malware files

Not specified

Santos et al. [20] 2011
Single-class learning based on
opcode occurrence

1000 benign, 1000
malware
executables

~85%

Ravi et al. [21] 2012

Association mining based
classification, API call
sequence modeled by third-
order Markov chain

Not specified 90%

Liangboonprakong
et al. [22]

2013
N-grams sequential pattern
features, SVM, C4.5 DT, ANN

Not specified Up to 96.64%

Santos et al. [23] 2013 Opcode sequence occurrence
13,189 malware,
13,000 benign
executables

Up to 95.90%

Salehi et al. [24] 2014

Runtime behavior-based
feature sets, RF, J48,
Rotation RF, FT, NB
classifiers

385 benign, 826
malware files

Up to 98.1%

Jikku Kuriakose et
al.[25]

2015
Feature ranking methods (TF-
IDF, GSS, OR, CMFS, MOR)

Not specified 100%

Mansour Ahmadi
et al.[26]

2015
Learning-based system,
Portable executables features

Half terabytes of
data

99.8%

Ashu et al.[27] 2016

Malware generator kits
detection, Random forest,
NBT classifier, Optimal k-
means clustering

Malicia dataset Up to 99.11%

Zhixing Xu et
al.[28]

2017
Virtual memory access
patterns, Logistic regression,
Random forest

RIPE benchmark
suite

99%

Kotov et al[29] 2018
Static analysis, Hidden
Markov model, API calls

Not specified 87.6%

Burnap et al.[30] 2018
Malware Operational Plot
Review (MOPR) model, Self-
organizing feature maps

Not specified 93.76%

Li et al.[31] 2018
Virtual time control
mechanics-based method,
Modified Xen hypervisor

Not specified Not specified

Liu et.al.[32] 2020 Comprehensive review Not Specified Not Specified

Kouliaridis et.al.
[33]

2021 Comprehensive review Not specified Not specified

Tyagi et.al. [34] 2022 Static analysis technique Not Specified 96.7%

Akhtar et.al.[35] 2023 Dynamic malware detection
301 malicious and
72 benign

100%

2.1 Research Gaps

The following gaps have been identified after conduting the literature review.

• There is a lack of detailed studies focusing specifically on the types and behaviour of malware

targeting OT systems compared to IT systems.

• Existing research often focuses on individual detection methods (e.g., signature-based or

anomaly-based detection) rather than a comprehensive evaluation and integration of multiple

techniques for improved accuracy and robustness.

• Machine learning models in real-time scenarios within OT environments does not focus on

latency and detection accuracy.

296

J INFORM SYSTEMS ENG, 10(3)

• Advanced feature engineering methods were not explored that could potentially improve

detection accuracy.

• Multiclass malware detection is not performed till date to the best of our knowledge.

3. RESEARCH METHODOLOGY

This section provides an overview of malicious softwares, portable executable files, datasets and

feature selection methods used.

3.1 Malicious software

Malicious software, commonly referred to as malware, is designed with the intent to cause harm and

disrupt computer systems. Unlike regular programs, malware presents a significant threat due to its

destructive capabilities. With numerous releases annually, malware poses a continuous challenge to

the security of computer systems and the Internet. Traditional detection methods, like signature-

based approaches, rely on identifying specific sequences of bytes associated with known malware.

However, this method has limitations as malware creators employ obfuscation techniques to evade

detection, making signature-based methods less effective against new and disguised threats.

To overcome these limitations, machine learning-based techniques have emerged as promising

solutions. Unlike signature-based methods, machine learning models can learn and generalize

patterns from training data, enabling them to detect variations of malware even when their signatures

change. Moreover, as malware developers continually modify their code to create new variants,

machine learning models can adapt to these changes, offering a more robust approach to malware

detection that can keep pace with evolving threats.

In the current research, the authors focus on multi-class malware detection using various machine

learning models. While previous studies primarily concentrated on binary classification,

distinguishing between benign and malicious files, there is a recognized need to classify malicious files

into different categories such as viruses, worms, Trojan horses, spyware, adware, and ransomware.

This shift towards multi-class classification allows for a more nuanced analysis of malware behaviour,

thereby enhancing the effectiveness of detection strategies. These categories exemplify the diverse

nature and potential threat posed by malware, underscoring the importance of robust detection and

prevention measures to safeguard computer systems and data. In the context of multi-class

classification of malware, machine learning-based techniques offer a promising avenue for enhancing

detection capabilities and addressing the evolving landscape of threats.

3.2 PE file format

The Portable Executable (PE) file format, commonly used in Windows operating systems, plays a

crucial role in malware detection by offering a structured layout to analyse executable files. By

examining PE file structures, researchers can extract key features to differentiate between benign and

malicious programs. The PE file consists of a header followed by sections, with each section serving a

distinct purpose. The PE header includes the DOS header for file validation, the "PE \ 0 \ 0" signature

identifying it as a PE file, and crucial details like the compilation timestamp and the number of

sections. The Data_Directory structures within the Optional header point to important tables like the

Import, Export, and Resource tables, facilitating access to essential data. The section table provides

information about the program sections, and the actual file contains executable code, data, and

resources that define its functionality within the Windows environment. As depicted in Figure 1, the

PE file consists of a header followed by a sequence of sections, with each section serving a distinct

purpose.

297

J INFORM SYSTEMS ENG, 10(3)

Figure 1. Format of PE Header file

3.3 Dataset used

In this work, datasets used is of Operational Technology, gather from C3i Hub, Indian Institute of

Technology, Kanpur. The dataset comprises of 10K PE files. The PE files are further categorized as

Benign and Malicious (backdoor, trojan, benign, trojan-downloader, trojan-dropper, virus, and

worm). The distribution of the samples files is presented in Figure 2.

Figure 2. Category wise Samples

3.4 Feature Extraction

In machine learning-based systems designed for malware detection, a critical phase involves the

extraction of features. Within this domain, two primary categories of features are commonly

employed: Static Features and Dynamic Features. Static feature attributes are derived from a file

without the need for executing it, which provide valuable insights into the inherent characteristics and

attributes of the file itself. By analyzing such aspects namely; file size, metadata, and code structure,

static features enable the identification of potential indicators of malicious behavior. Despite their

effectiveness in revealing structural patterns, it suffers in capturing dynamic behaviors exhibited by

malware during execution. On the other hand, Dynamic Features are obtained by executing a file,

typically within a controlled environment conducive to monitoring and analysis which captures the

actual behaviors and actions of the program during runtime. By observing factors such as system calls,

memory usage, and network activity, dynamic features offer a more comprehensive understanding of

the program's behavior. However, extracting dynamic features often entails greater time and

computational resources compared to static analysis and are more susceptible to evasion tactics

employed by adversaries. For instance, attackers may introduce time delays or evasion techniques to

circumvent dynamic analysis, thereby challenging the efficacy of dynamic feature extraction methods.

298

J INFORM SYSTEMS ENG, 10(3)

In the work, both static and dynamic methods were employed for feature extraction, leveraging the

unique strengths of each approach to enhance the effectiveness of malware detection systems. These

features are utilized for the detection and classification of different classes of malware presented in

Table 2. Table 2 shows features name alongwith the desciptions. 54 features are presented out of 57 as

name and labels were not considered as features.

Table 2. PE Header File Features and its description

S. No. Feature Name Description

1. DebugSize Size of the debug information.

2. IATRVA Address of the Import Address Table (IAT).

3. SizeOfHeapCommit Size of the heap to commit.

4. FileSize Total size of the file.

5. DebugRVA Relative Virtual Address (RVA) of the debug section.

6. ResSize Size of the resources section.

7. SizeOfHeaders Size of the headers.

8. Machine Type of machine (e.g., Intel x86).

9. ImageVersion Version of the image.

10. LinkerVersion Version of the linker.

11. StackReserveSize Size of the stack to reserve.

12. TimeDateStamp Time and date when the file was created or modified.

13. OSVersion Version of the operating system.

14. VirtualSize2 Virtual size of the section.

15. SizeOfHeapReserve Size of the heap to reserve.

16. Characteristics Characteristics of the file.

17. ExportRVA RVA of the export section.

18. NumberOfSections Number of sections in the file.

19. SizeOfImage Size of the image.

20. SizeOfOptionalHeader Size of the optional header.

21. ExportSize Size of the export section.

22. SizeOfCode Size of the code section.

23. SizeOfInitializedData Size of the initialized data section.

24. SizeOfStackCommit Size of the stack to commit.

25. AddressOfEntryPoint Address of the entry point.

26. MajorImageVersion Major version of the image.

27. MajorSubsystemVersion Major version of the subsystem.

28. SizeOfUninitializedData Size of the uninitialized data section.

29. CheckSum Checksum of the file.

30. MinorImageVersion Minor version of the image.

31. MinorSubsystemVersion Minor version of the subsystem.

32. NumberOfRvaAndSizes Number of RVA and sizes.

33. SectionAlignment Alignment of the sections.

34. MajorLinkerVersion Major version of the linker.

35. SectionsLength Length of the sections.

36. LoaderFlags Flags used by the loader.

37. MajorOperatingSystemVersion Major version of the operating system.

38. MinorLinkerVersion Minor version of the linker.

39. SectionMinEntropy Minimum entropy of the sections.

40. SectionMaxEntropy Maximum entropy of the sections.

41. SectionMinVirtualSize Minimum virtual size of the sections.

42. SectionMinPhysical Minimum physical size of the sections.

299

J INFORM SYSTEMS ENG, 10(3)

43. SectionMaxChar Maximum characteristics of the sections.

44. SectionMinRawSize Minimum raw size of the sections.

45. SectionMaxVirtualSize Maximum virtual size of the sections.

46. SectionMaxPointerData Maximum pointer data of the sections.

47. Reserved1 Reserved field.

48. SectionMaxRawSize Maximum raw size of the sections.

49. SectionMaxPhysical Maximum physical size of the sections.

50. SectionMinPointerData Minimum pointer data of the sections.

51. Dll Indicates if the file is a Dynamic Link Library (DLL).

52. ImportFunctionCount Count of imported functions.

53. ImportFunctionMethodCount Count of methods used for importing functions.

54. MD5Hash MD5 hash of the file.

4. PROPOSED METHODOLOGY

In this work, a framework for multiclass classification of malwares using machine learning models is

proposed. The proposed approach involves several steps namely, data pre-processing, feature

selection, integration of h2o automl interfaces and training the machine learning models. The

framework of the proposed approach is depicted in Figure 3.

4.1 Data Pre-Processing

Data pre-processing on PE files is a critical step in preparing them for machine learning-based

analysis for multiclass classification of malware detection. This process involves several key steps

aimed at cleaning, transforming, and structuring the raw PE file data to make it suitable for modeling.

Initially, the PE files are parsed to extract essential attributes such as file size, header information,

section characteristics, import/export tables, and other relevant features. Next, data cleaning

techniques have been applied to handle missing values, outliers, or inconsistencies in the dataset.

Additionally, feature engineering techniques have been applied which converts the numerical data to

categorical data for multiclass classification. The data have been transformed into seven classes as

presented in figure 2. Finally, the pre-processed data is normalized to ensure that all features are on a

similar scale, preventing any single feature from dominating the modelling process. Overall, data pre-

processing plays a crucial role in optimizing the quality and usability of PE file data for subsequent

machine learning analysis.

4.2 Feature Selection

After data pre-processing, feature selection is performed based on correlation. It involves identifying

and selecting the most relevant features that exhibit a strong correlation with the target variable, i.e.

class of malware. By analyzing the correlation between each feature and the target variable, redundant

or irrelevant features has been eliminated, reducing dimensionality and improving the efficiency and

accuracy of the classification model. Features with high correlation values are retained, as they

provide valuable insights into the characteristics of malware and contribute significantly to the

predictive power of the model. This process ensures that only the most informative features are

included in the final dataset, enhancing the performance of the machine learning algorithm in

accurately detecting and classifying different types of malware.

300

J INFORM SYSTEMS ENG, 10(3)

Figure 3. Proposed approach

4.3 Integrating H2O autoML interface

After feature selection, the approach integrates H2O AutoML which further enhances the efficiency

and effectiveness of multiclass malware classification. H2O AutoML performs hyperparameter tuning

on multi-dimensional dataset which enhances the speed and accuracy of various machine learning

algorithms without human intervention.

4.4 Machine learning algorithms applied

Once the pre-processed data is ready and H2O is integrated, then these dataframe various machine

learning techniques are applied to train and evaluate the models. These techniques include decision

trees, adaboost, gradient boosting machines, support vector machines, and logistic regression. Each

301

J INFORM SYSTEMS ENG, 10(3)

algorithm is trained on the pre-processed dataset to learn the underlying patterns and relationships

between the features and the target variable.

4.5 Model Evaluation

The performance of each model is then assessed using appropriate evaluation metrics, such as

accuracy, precision, recall, and F1-score, to determine its effectiveness in classifying malware into

different categories.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (1)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2)

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛
 (3)

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

4.6 Pesudocode of the proposed approach

Algorithm: Multiclass Classification of Malwares Using Machine Learning Models

parsed_data = ParsePEFiles(PE_files)

cleaned_data = DataCleaning(parsed_data)

preprocessed_data = FeatureEngineering(cleaned_data)

transformed_data = TransformData(preprocessed_data)

normalized_data = NormalizeData(transformed_data)

 return normalized_data

// Analyze correlation between features and target variable

correlation_matrix = CalculateCorrelation(data)

 selected_features = SelectFeatures(correlation_matrix)

 return selected_features

// Integrate H2O AutoML for hyperparameter tuning

model = H2OAutoML(data)

 return model

// Train various machine learning techniques on pre-processed data

trained_models = TrainModels(data, model)

// Evaluate performance of each model

evaluation_results = EvaluateModels(trained_models)

 return evaluation_results

5. IMPLEMENTATION

Python language was used within a Google Colab environment for training our system across multiple

machine learning models. Data reading, conversion to data frames, model splitting, and training were

facilitated by key libraries like pandas, scikit-learn, seaborn, and plotly. Additionally, the H2O library

was utilized for fast computation and feature reduction, resulting in enhanced dimensionality

reduction and model efficacy. Computations were accelerated, and preprocessing time was minimized

302

J INFORM SYSTEMS ENG, 10(3)

by leveraging its scalable architecture. Model building was automated by its feature selection

techniques, ensuring faster insights.

Step 1: Data Pre-processing:

The samples file is shown in Figure 4, after being read through the Colab environment comprising of

10238 PE files with total 57 attributes presented in columns. Assigning the class labels as per the

different category, shown in Table 3.

Table 3. Category wise class labels and number of samples

Category Class Number of Samples

Benign 0 5125

Virus 1 566

Backdooor 2 717

Trojon 3 998

Trojan-dropper 4 1152

Worm 5 914

Trojan-downloader 6 766

Figure 4. Reading of Sample files using python language

Step 2: Feature Selection:

In the initial step, certain features were removed from consideration due to their lack of significant

variation across different samples. These features include "Name," “label", filesize," "Machine,"

"TimeDateStamp," "Reserved1," and "SizeOfOptionalHeader." As a result, the system was trained

using 50 remaining features. Figure 5 illustrates the selected features.

Step 3: Integration of H2O interface

Following the removal of these features, we proceeded to employ the H2O Python library for

additional feature reduction and expedited computation.

import h20 (5)

h20init() (6)

Some of the features of h2o is shown in Figure 6 as;

Index (['Characteristics', 'DebugSize', 'DebugRVA', 'ImageVersion', 'OSVersion',
'ExportRVA', 'ExportSize', 'IATRVA', 'ResSize', 'LinkerVersion','VirtualSize2',
'NumberOfSections', 'SizeOfCode', 'SizeOfHeapCommit', 'SizeOfHeaders',
'StackReserveSize', 'SizeOfHeapReserve', 'SizeOfImage',SizeOfInitializedData',
'SizeOfStackCommit', 'SizeOfUninitializedData', 'NumberOfRvaAndSizes',
'LoaderFlags', 'AddressOfEntryPoint', 'CheckSum', 'SectionAlignment',
'MajorOperatingSystemVersion',
'MinorOperatingSystemVersion', 'MajorImageVersion', 'MinorImageVersion',
'MajorLinkerVersion', 'MinorLinkerVersion', 'MajorSubsystemVersion',
'MinorSubsystemVersion', 'sections_length', 'section_min_entropy',

303

J INFORM SYSTEMS ENG, 10(3)

'section_max_entropy', 'section_min_rawsize', 'section_max_rawsize',
'section_min_virtualsize', 'section_max_virtualsize',
'section_max_physical', 'section_min_physical',
'section_max_pointer_data', 'section_min_pointer_data',
'section_max_char', 'Dll', 'ImportFunctionCount',
'ImportFunctionMethodCount', 'md5hash', 'label'],
dtype='object')

Figure 5. Selected Features after the dimension Reduction

Figure 6. H2O Features Set

Step 4: Machine learning models applied

The system was trained using the H2O-based data frame generation. Various machine learning

algorithms were utilized for this purpose, including logistic regression, decision trees, random forests,

gradient boosting, and Adaboost. The dataset was divided into training and testing samples at a ratio

of 70:30, respectively. Subsequently, the system underwent training with the machine learning model,

followed by testing to evaluate its performance.

6. RESULTS AND DISCUSSION

The authors works on multi-class malware detection through the utilization of diverse machine

learning models. Unlike previous studies that predominantly targeted binary classification,

distinguishing solely between benign and malicious files, there exists a recognized necessity to

categorize malicious files into various classes such as viruses, worms, Trojan horses, spyware, adware,

and ransomware. This transition towards multi-class classification facilitates a more intricate

examination of malware behaviour, consequently bolstering the efficacy of detection approaches. As

discussed above authors has classified the data into 7 different labels and the different machine

learning models are trained on 70:30 ratio. The models are trained on 7167 samples of different

classes and tested on 3071 samples. The models are evaluated on the basic of evaluation metrics such

as precision, recall accuracy and F1 score. Here show the results before applying h2o, table 4 shows

the evaluation metrics of different machine learning models.

Table 4. Evaluation metrics over the various ML models without h2o

Model Applied Accuracy F1 Score Precision Recall

Logistic Regression 0.78 0.77 0.77 0.783

Decision Tree 0.9456 0.945 0.9465 0.9456

Random Forest 0.9528 0.9524 0.9533 0.9528

Gradient Boost 0.9504 0.9504 0.9517 0.9504

Ada boost 0.3603 0.2364 0.1817 0.3603

However, after applying the H2O the overall accuracy is increased. Table 5 shows the different

evaluation parameters after applying h2o.

304

J INFORM SYSTEMS ENG, 10(3)

Table 5. Evaluation metrics over the various ML models with h2o

Model Applied Accuracy F1 Score Precision Recall

Logistic Regression 0.8031 0.7938 0.7945 0.8031

Decision Tree 0.949 0.9386 0.9386 0.939

Random Forest 0.9682 0.969 0.9691 0.96495

Gradient Boost 0.9586 0.9576 0.9566 0.9556

Ada boost 0.3104 0.187 0.1408 0.3104

Figure 7 shows the confusion matrix of the LR, DTC, RF, GB and Ada Boost. Random forest has the

maximum accuracy of 96.8% however Ada boost has the lowest as 31%.

Figure 8 shows the Overall comparison of accuracy, precision, recall and F1 score with h2o and

without h2o, results depict in all the model’s performance is increased after applying h2o and also

reduces the model building time. The results indicate that the proposed approach, utilizing H2O with

a random forest model, achieved the highest accuracy of 96.8% compared to other machine learning

models. Notably, this is the first application of this approach to multiclass classification; previous

research primarily focused on binary classification. In two-class classification, the proposed approach

attained 100% accuracy with selected features. Hence, it is better than the existing state-of-the-art

techniques.

Confusion Matrix of Logistic Regression (LR) Confusion Matrix of Decision Tree (DTC)

Confusion Matrix of Random Forest (RF) Confusion Matrix of Gradient Boost (GB)

Confusion Matrix of Ada Boost

305

J INFORM SYSTEMS ENG, 10(3)

Figure 6. Confusion matrix of ML Algorithms

0.78

0.95 0.95 0.95

0.36

0.80

0.95 0.97 0.96

0.31

0.00

0.20

0.40

0.60

0.80

1.00

1.20

LR DTC RF GB Ada boost

Accuracy Comparsion of different Model with H2O
and without H2O

Accuracy Without H20 Accuracy With H20

Precision(without H2O)
Precision(with H2O)

0
0.2
0.4
0.6
0.8

1

Logistic
Regressi

on

Decision
Tree

Random
Forest

Gradien
t Boost

Ada
boost

Precision(without H2O) 0.77 0.9465 0.9533 0.9517 0.1817

Precision(with H2O) 0.7945 0.9386 0.9691 0.9566 0.1408

Precision Comparsion of different Model with H2O and
without H2O

Precision(without H2O) Precision(with H2O)

306

J INFORM SYSTEMS ENG, 10(3)

Figure 8. Comparison of Different ML models without H2O and with H2O

7. CONCLUSION

In the proposed research a comprehensive approach to multi-class malware detection in OT systems,

employing various machine learning techniques is presented. Through the parsing and extraction of

crucial attributes from raw PE file data, followed by feature engineering and selection processes, the

dataset is optimized for multiclass classification. Integration of H2O AutoML further enhances model

efficiency by hyperparameter tuning. By applying a range of machine learning algorithms and

evaluating their performance using appropriate metrics, this study demonstrates the effectiveness of

the proposed approach in accurately classifying malware. Random forest models explicit the

maximum accuracy of 96.8 % as compared to other applied methods. Earlier research has maximum

accuracy of 99 % having only two class labels however the proposed approach has 100% accuracy in

two class labelled dataset, which is better than the state-of the art methods. These findings contributes

to the advancement of cybersecurity measures in OT environments, ensuring enhanced protection

against malicious threats.

Logistic
Regression

Decision Tree Random Forest Gradient Boost Ada boost

Recall(without H2O) 0.783 0.9456 0.9528 0.9504 0.3603

Recall(with H2O) 0.8031 0.939 0.96495 0.9556 0.3104

0

0.2

0.4

0.6

0.8

1

1.2

Recall Comparsion of different Model with H2O and
without H2O

Recall(without H2O) Recall(with H2O)

0

0.5

1

Logisti
c

Regres
sion

Decisio
n Tree

Rando
m

Forest

Gradie
nt

Boost

Ada
boost

F1 Score(without H2O) 0.77 0.945 0.9524 0.9504 0.2364

F1 Score(with H2O) 0.7938 0.9386 0.969 0.9576 0.187

F1 score Comparsion of different Model with H2O and
without H2O

F1 Score(without H2O) F1 Score(with H2O)

307

J INFORM SYSTEMS ENG, 10(3)

REFRENCES

[1] Stouffer, K., Stouffer, K., Pease, M., Tang, C., Zimmerman, T., Pillitteri, V., ... & Thompson, M.

(2023). Guide to operational technology (ot) security (p. 9). US Department of Commerce,

National Institute of Standards and Technology.

[2] Murray, G., Peacock, M., Rabadia, P., & Kerai, P. (2018). Detection techniques in operational

technology infrastructure.

[3] Khadpe, M., Binnar, P., & Kazi, F. (2020, July). Malware injection in operational technology

networks. In 2020 11th International Conference on Computing, Communication and Networking

Technologies (ICCCNT) (pp. 1-6). IEEE.

[4] Cherdantseva, Y., Burnap, P., Blyth, A., Eden, P., Jones, K., Soulsby, H., & Stoddart, K. (2016). A

review of cyber security risk assessment methods for SCADA systems. Computers & security, 56,

1-27.

[5] Mansfield-Devine, S. (2019). The state of operational technology security. Network security,

2019(10), 9-13.

[6] Schultz, M. G., Eskin, E., Zadok, F., & Stolfo, S. J. (2000, May). Data mining methods for

detection of new malicious executables. In Proceedings 2001 IEEE Symposium on Security and

Privacy. S&P 2001 (pp. 38-49). IEEE.

[7] Fürnkranz, J., Gamberger, D., Lavrač, N., Fürnkranz, J., Gamberger, D., & Lavrač, N. (2012). Rule

learning in a nutshell. Foundations of Rule Learning, 19-55.

[8] Kolter, J. Z., & Maloof, M. A. (2004, August). Learning to detect malicious executables in the wild.

In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and

data mining (pp. 470-478).

[9] Karim, M. E., Walenstein, A., Lakhotia, A., & Parida, L. (2005). Malware phylogeny generation

using permutations of code. Journal in Computer Virology, 1(1-2), 13-23.

[10] Henchiri, O., & Japkowicz, N. (2006, December). A feature selection and evaluation scheme for

computer virus detection. In Sixth International Conference on Data Mining (ICDM'06) (pp. 891-

895). IEEE.

[11] Bilar, D. (2007). Opcodes as predictor for malware. International journal of electronic security

and digital forensics, 1(2), 156-168.

[12] Moskovitch, R., Elovici, Y., & Rokach, L. (2008). Detection of unknown computer worms based on

behavioral classification of the host. Computational Statistics & Data Analysis, 52(9), 4544-4566.

[13] Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev, S., & Elovici, Y. (2008).

Unknown malcode detection using opcode representation. In Intelligence and Security

Informatics: First European Conference, EuroISI 2008, Esbjerg, Denmark, December 3-5, 2008.

Proceedings (pp. 204-215). Springer Berlin Heidelberg.

[14] Ye, Y., Wang, D., Li, T., Ye, D., & Jiang, Q. (2008). An intelligent PE-malware detection system

based on association mining. Journal in computer virology, 4, 323-334.

[15] Tian, R., Batten, L. M., & Versteeg, S. C. (2008, October). Function length as a tool for malware

classification. In 2008 3rd international conference on malicious and unwanted software

(MALWARE) (pp. 69-76). IEEE.

[16] Siddiqui, M., Wang, M. C., & Lee, J. (2009). Detecting internet worms using data mining

techniques. Journal of Systemics, Cybernetics and Informatics, 6(6), 48-53.

[17] Tabish, S. M., Shafiq, M. Z., & Farooq, M. (2009, June). Malware detection using statistical

analysis of byte-level file content. In Proceedings of the ACM SIGKDD Workshop on

CyberSecurity and Intelligence Informatics (pp. 23-31).

[18] Mehdi, S. B., Tanwani, A. K., & Farooq, M. (2009, July). Imad: in-execution malware analysis and

detection. In Proceedings of the 11th Annual conference on Genetic and evolutionary computation

(pp. 1553-1560).

[19] Mehdi, B., Ahmed, F., Khayyam, S. A., & Farooq, M. (2010, May). Towards a theory of

generalizing system call representation for in-execution malware detection. In 2010 IEEE

international conference on communications (pp. 1-5). IEEE.

308

J INFORM SYSTEMS ENG, 10(3)

[20] Santos, I., Nieves, J., & Bringas, P. G. (2011). Semi-supervised learning for unknown malware

detection. In International Symposium on Distributed Computing and Artificial Intelligence (pp.

415-422). Springer Berlin Heidelberg.

[21] webmaster@vxheaven.org. Viruses don’t harm, ignorance does. http://vx.netlux.org (2017)

[22] Liangboonprakong, C., & Sornil, O. (2013, June). Classification of malware families based on

n-grams sequential pattern features. In 2013 IEEE 8th Conference on Industrial Electronics and

Applications (ICIEA) (pp. 777-782). IEEE.

[23] Santos, I., Brezo, F., Ugarte-Pedrero, X., & Bringas, P. G. (2013). Opcode sequences as

representation of executables for data-mining-based unknown malware detection. information

Sciences, 231, 64-82.

[24] Salehi, Z., Sami, A., & Ghiasi, M. (2014). Using feature generation from API calls for malware

detection. Computer Fraud & Security, 2014(9), 9-18.

[25] Kuriakose, J., & Vinod, P. (2015). Unknown metamorphic malware detection: Modelling with

fewer relevant features and robust feature selection techniques. IAENG International Journal of

Computer Science, 42(2), 139-151.

[26] Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov, M., & Giacinto, G. (2016, March). Novel

feature extraction, selection and fusion for effective malware family classification. In Proceedings

of the sixth ACM conference on data and application security and privacy (pp. 183-194).

[27] Sharma, A., & Sahay, S. K. (2018). An investigation of the classifiers to detect android

malicious apps. In Information and Communication Technology: Proceedings of ICICT 2016 (pp.

207-217). Springer Singapore.

[28] Xu, Z., Ray, S., Subramanyan, P., & Malik, S. (2017, March). Malware detection using machine

learning based analysis of virtual memory access patterns. In Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2017 (pp. 169-174). IEEE.

[29] Kotov, V., & Wojnowicz, M. (2018). Towards generic deobfuscation of windows API calls.

arXiv preprint arXiv:1802.04466.

[30] Burnap, P., French, R., Turner, F., & Jones, K. (2018). Malware classification using self

organising feature maps and machine activity data. computers & security, 73, 399-410.

[31] Li, Z. Q., Qiao, Y. C., Hasan, T., & Jiang, Q. S. (2018, January). A similar module extraction

approach for android malware. In Proceedings of the 2018 International Conference on Modeling,

Simulation and Optimization (MSO 2018), Shenzhen, China (pp. 21-22).

[32] Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., & Liu, H. (2020). A review of android malware

detection approaches based on machine learning. IEEE access, 8, 124579-124607.

[33] Kouliaridis, V., & Kambourakis, G. (2021). A comprehensive survey on machine learning

techniques for android malware detection. Information, 12(5), 185.

[34] Tyagi, S., Baghela, A., Dar, K. M., Patel, A., Kothari, S., & Bhosale, S. (2023, February).

Malware Detection in PE files using Machine Learning. In 2022 OPJU International Technology

Conference on Emerging Technologies for Sustainable Development (OTCON) (pp. 1-6). IEEE.

[35] Akhtar, M. S., & Feng, T. (2023). Evaluation of machine learning algorithms for malware

detection. Sensors, 23(2), 946.

