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Malware, short for malicious software, presents a substantial cybersecurity threat 

within operational technology (OT) systems. It delineates the diverse array of malware 

threats, encompassing, backdoors, trojans, viruses, worms, and trojan-droppers, 

highlighting their potential to disrupt industrial operations and compromise sensitive 

data. In this paper, realm of multi-class classification of malware within OT systems is 

focused underscoring the pressing need for tailored malware detection techniques in 

such environments. To effectively counter these threats, Signature-based Detection 

(SD) method alongside machine learning algorithms are employed on labeled datasets. 

Multiclass classification of malware is focused in which the intricate process of data 

pre-processing is elucidated which involves extracting, cleaning, and transforming raw 

PE file data to facilitate machine learning analysis. Moreover, it elucidates the 

integration of H2O AutoML for optimizing models and evaluates the performance of 

various machine learning algorithms using key metrics. The proposed approach 

provides valuable insights into the sophisticated methodologies employed for multi-

class malware classification in OT systems, thereby enhancing cybersecurity measures 

in critical infrastructure sectors. Results shows that the proposed approach has the 

96.8% accuracy better than the state of the art techniques which focus only on two 

classes such as malicious and benign. 

Keywords: Multi-class classification, Malware detection, Operational technology 

(OT) systems, Signature-based Detection (SD), Machine learning algorithms, H2O 

AutoML. 

 

1. INTRODUCTION 

Computer networks play a critical role in our daily lives, facilitating various activities, including the 

operation of essential infrastructure such as operational technology (OT) systems [1]. In smart cities, 

interconnected networks contribute significantly to urban efficiency and sustainability by optimizing 

resource management and facilitating sustainable development. However, despite the seamless nature 

of network interaction, there's a constant flow of data packets transmitted between destinations. If 

these packets are not adequately secured, they can lead to severe issues such as breaches of personal 

data, unauthorized access, financial fraud, or disruption of essential services. Moreover, the 

integration of OT systems within these networks introduces additional complexities and security 

challenges [2]. OT systems are used to monitor and control physical processes in critical 

infrastructure sectors such as energy, transportation, and manufacturing. These systems often rely on 

specialized hardware and software tailored to the specific needs of industrial operations. However, the 

convergence of OT with information technology (IT) systems has expanded the attack surface and 

increased the risk of cyber threats, including malware infections [3]. 
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Malware, a contraction of "malicious software," poses a significant cybersecurity risk in the realm of 

OT systems. Malicious actors target OT environments with various types of malware, including 

backdoors, trojans, viruses, worms, and other forms of malicious software. Ransomware, considered 

one of the most notorious forms, encrypts user files and demands payment for decryption. Backdoors 

provide unauthorized remote access to a computer, enabling attackers to control it without detection. 

Spyware operates covertly, surreptitiously collecting user data such as activity logs and browsing 

history for remote monitoring. Trojans, disguised as legitimate software, execute malicious actions 

upon activation, often facilitating the installation of additional harmful software. Worms exploit 

system vulnerabilities to autonomously spread and replicate across networks without human 

intervention. Lastly, viruses infect and replicate within host systems, spreading through human 

actions like file sharing or opening infected files. These malware variants can exploit vulnerabilities in 

OT software and hardware, disrupt industrial processes, steal sensitive data, or cause physical damage 

to equipment [4-5]. 

To combat these threats effectively, organizations employ advanced malware detection techniques 

tailored to the unique characteristics of OT environments. One common approach involves analysing 

Portable Executable (PE) headers[6], which provide essential information about executable files 

commonly found in OT systems. By examining the PE header, security systems can identify potential 

threats and classify them based on known characteristics of malicious activities. Additionally, 

organizations leverage sophisticated detection methods such as Signature-based Detection (SD) and 

Anomaly-based Detection (AD) to identify and mitigate malware threats in OT environments. 

Signature detection involves analysing network traffic or executable files to identify patterns that 

match known characteristics of malicious activities, including specific signatures within the PE 

header. Meanwhile, anomaly-based detection establishes rules for "normal" behaviour and detects 

unusual activity that deviates from this norm, potentially indicating a malware infection [7]. 

Machine learning algorithms, such as decision trees, support vector machines (SVMs), neural 

networks, and ensemble methods, are trained on labelled datasets containing various types of network 

traffic or PE headers, including normal and malicious instances. These algorithms learn to recognize 

patterns indicative of different types of malware, enabling them to classify incoming traffic or 

executable files into multiple categories, such as backdoor, trojan, benign, trojan-downloader, trojan-

dropper, virus, and worm. By identifying the specific type of threat, security teams can tailor their 

response strategies accordingly, deploying appropriate countermeasures to mitigate the threat 

effectively [2][5]. Once trained, the multi-class classification model continuously monitors incoming 

traffic or executable files in real-time, analyzing data and assigning each instance to the most 

appropriate class based on learned patterns. This proactive approach enables organizations to detect, 

classify, and respond to malware threats effectively, reducing the impact of attacks and safeguarding 

critical services and assets in OT systems. 

In current research, authors address multi-class malware detection using various machine learning 

models in OT systems.  Initially, raw PE file data is parsed to extract important attributes such as file 

size, header information, section characteristics, and import/export tables. This extracted data is then 

cleaned and feature engineering techniques are applied to convert numerical data into categorical data 

suitable for multiclass classification. The data is transformed into seven classes, enhancing its 

usability for modelling. Subsequently, feature selection is performed which reduces dimensionality 

and enhances the efficiency and accuracy of the classification model. After feature selection, the 

approach integrates H2O AutoML, a powerful tool for hyperparameter tuning and model 

optimization. This integration further improves classification efficiency by automating the selection of 

the best machine learning algorithms and parameter settings. 

Various machine learning algorithms, including decision trees, adaboost, gradient boosting machines, 

support vector machines, and logistic regression, are then applied to the pre-processed data. These 

algorithms are trained on the dataset to learn the underlying patterns and relationships between the 

features and the target variable, enabling effective malware classification. Once the models are 

trained, model evaluation is performed using appropriate evaluation metrics such as accuracy, 
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precision, recall, and F1-score. This comprehensive evaluation ensures that the models effectively 

classify malware and meet the desired performance criteria and achieved an accuracy of 96.8% by 

applying Random forest with H2O. 

Major contributions in this work are: 

• This research addresses cybersecurity challenges arising from the constant flow of data 

packets in computer networks. Inadequate security measures can lead to severe 

consequences, including data breaches, unauthorized access, financial fraud, or service 

disruptions. Integration of OT systems in networks further complicates these challenges. 

• The study examines the risks posed by malware, including various types such as backdoor, 

trojan, benign, trojan-downloader, trojan-dropper, virus, and worm. It explores advanced 

detection techniques like PE header analysis, Signature-based Detection (SD), and Anomaly-

based Detection (AD) to mitigate these risks effectively. 

• This research highlights the role of machine learning algorithms in detecting and classifying 

malware in OT systems. Various models, including decision trees, support vector machines 

(SVMs), neural networks, and ensemble methods, are employed for multi-class malware 

detection, contributing to enhanced security measures in OT environments. 

• Further, H2O AutoML has been integrated to reduce the time complexity and enhances the 

efficacy of the proposed approach. 

2. RELATED WORK 

In today's interconnected world, computer networks serve as the backbone of essential infrastructure, 

facilitating various activities and enabling the operation of critical systems such as operational 

technology (OT) systems. The integration of these networks into smart cities has been instrumental in 

enhancing urban efficiency and sustainability by optimizing resource management and supporting 

sustainable development initiatives [5]. However, the seamless flow of data within these networks also 

poses significant security challenges, as any vulnerabilities could lead to severe consequences such as 

breaches of personal data, unauthorized access, financial fraud, or disruption of essential services. 

One of the key challenges in securing computer networks, particularly in the context of OT systems, is 

the threat posed by malware. A comprehensive comparative analysis of the previous researches is 

presented in Table 1. 

Table 1. Comprehensive Comparative Analysis 

Study/Method Year Techniques Used Dataset Size 
Best 

Accuracy 

Kolter and Maloof 
[8] 

2004 
Decision trees, Naive Bayes, 
SVM 

1971 benign, 1651 
malware 

99.6% 

Karim et al. [9] 2005 N-perms, N-grams Not specified Not specified 

Henchiri et al. [10] 2006 
Iterative Dichotomiser-3, J48, 
Naive Bayes, SVM 

1512 viruses, 1488 
benign 

92.56% 

Blair [11] 2007 Opcodes 
67 malware, 20 
benign 

Not specified 

Moskovitch et al. 
[12] 

2008 Text categorization 
~30,000 malware, 
benign 

Up to 95% 

Moskovitch et al. 
[13] 

2008 N-grams, Boosted DT Not specified 94.43% 

Ye et al. [14] 2008 
Windows API, Objective-
Oriented Association 

636 malicious, 
1207 benign 

Not specified 

Tian et al. [15] 2008 Function length Not specified Not specified 

Siddiqui et al. [16] 2008 Data mining 
2774 (1330 
benign, 1444 
worms) 

95.6% 

Tabish et al. [17] 2009 
Statistical, Information-
theoretic features 

37,420 malware, 
1800 benign 

90% 
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Mehdi et al. [18] 2009 
In-Execution Malware 
Analysis and Detection 
(IMAD) 

Not specified 90% 

Mehdi et al. [19] 2009 
Hyper-grams, Variable-length 
system calls 

72 benign, 
malware files 

Not specified 

Santos et al. [20] 2011 
Single-class learning based on 
opcode occurrence 

1000 benign, 1000 
malware 
executables 

~85% 

Ravi et al. [21] 2012 

Association mining based 
classification, API call 
sequence modeled by third-
order Markov chain 

Not specified 90% 

Liangboonprakong 
et al. [22] 

2013 
N-grams sequential pattern 
features, SVM, C4.5 DT, ANN 

Not specified Up to 96.64% 

Santos et al. [23] 2013 Opcode sequence occurrence 
13,189 malware, 
13,000 benign 
executables 

Up to 95.90% 

Salehi et al. [24] 2014 

Runtime behavior-based 
feature sets, RF, J48, 
Rotation RF, FT, NB 
classifiers 

385 benign, 826 
malware files 

Up to 98.1% 

Jikku Kuriakose et 
al.[25] 

2015 
Feature ranking methods (TF-
IDF, GSS, OR, CMFS, MOR) 

Not specified 100% 

Mansour Ahmadi 
et al.[26] 

2015 
Learning-based system, 
Portable executables features 

Half terabytes of 
data 

99.8% 

Ashu et al.[27] 2016 

Malware generator kits 
detection, Random forest, 
NBT classifier, Optimal k-
means clustering 

Malicia dataset Up to 99.11% 

Zhixing Xu et 
al.[28] 

2017 
Virtual memory access 
patterns, Logistic regression, 
Random forest 

RIPE benchmark 
suite 

99% 

Kotov et al[29] 2018 
Static analysis, Hidden 
Markov model, API calls 

Not specified 87.6% 

Burnap et al.[30] 2018 
Malware Operational Plot 
Review (MOPR) model, Self-
organizing feature maps 

Not specified 93.76% 

Li et al.[31] 2018 
Virtual time control 
mechanics-based method, 
Modified Xen hypervisor 

Not specified Not specified 

Liu et.al.[32] 2020 Comprehensive review Not Specified Not Specified 

Kouliaridis et.al. 
[33] 

2021 Comprehensive review Not specified Not specified 

Tyagi et.al. [34] 2022 Static analysis technique Not Specified 96.7% 

Akhtar et.al.[35] 2023 Dynamic malware detection 
301 malicious and 
72 benign 

100%  

 

2.1 Research Gaps 

The following gaps have been identified after conduting the literature review.  

• There is a lack of detailed studies focusing specifically on the types and behaviour of malware 

targeting OT systems compared to IT systems.  

• Existing research often focuses on individual detection methods (e.g., signature-based or 

anomaly-based detection) rather than a comprehensive evaluation and integration of multiple 

techniques for improved accuracy and robustness. 

• Machine learning models in real-time scenarios within OT environments does not focus on 

latency and detection accuracy. 
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• Advanced feature engineering methods were not explored that could potentially improve 

detection accuracy. 

• Multiclass malware detection is not performed till date to the best of our knowledge. 

3. RESEARCH METHODOLOGY 

This section provides an overview of malicious softwares, portable executable files, datasets and 

feature selection methods used. 

3.1 Malicious software 

Malicious software, commonly referred to as malware, is designed with the intent to cause harm and 

disrupt computer systems. Unlike regular programs, malware presents a significant threat due to its 

destructive capabilities. With numerous releases annually, malware poses a continuous challenge to 

the security of computer systems and the Internet. Traditional detection methods, like signature-

based approaches, rely on identifying specific sequences of bytes associated with known malware. 

However, this method has limitations as malware creators employ obfuscation techniques to evade 

detection, making signature-based methods less effective against new and disguised threats. 

To overcome these limitations, machine learning-based techniques have emerged as promising 

solutions. Unlike signature-based methods, machine learning models can learn and generalize 

patterns from training data, enabling them to detect variations of malware even when their signatures 

change. Moreover, as malware developers continually modify their code to create new variants, 

machine learning models can adapt to these changes, offering a more robust approach to malware 

detection that can keep pace with evolving threats. 

In the current research, the authors focus on multi-class malware detection using various machine 

learning models. While previous studies primarily concentrated on binary classification, 

distinguishing between benign and malicious files, there is a recognized need to classify malicious files 

into different categories such as viruses, worms, Trojan horses, spyware, adware, and ransomware. 

This shift towards multi-class classification allows for a more nuanced analysis of malware behaviour, 

thereby enhancing the effectiveness of detection strategies. These categories exemplify the diverse 

nature and potential threat posed by malware, underscoring the importance of robust detection and 

prevention measures to safeguard computer systems and data. In the context of multi-class 

classification of malware, machine learning-based techniques offer a promising avenue for enhancing 

detection capabilities and addressing the evolving landscape of threats. 

3.2 PE file format 

The Portable Executable (PE) file format, commonly used in Windows operating systems, plays a 

crucial role in malware detection by offering a structured layout to analyse executable files. By 

examining PE file structures, researchers can extract key features to differentiate between benign and 

malicious programs. The PE file consists of a header followed by sections, with each section serving a 

distinct purpose. The PE header includes the DOS header for file validation, the "PE \ 0 \ 0" signature 

identifying it as a PE file, and crucial details like the compilation timestamp and the number of 

sections. The Data_Directory structures within the Optional header point to important tables like the 

Import, Export, and Resource tables, facilitating access to essential data. The section table provides 

information about the program sections, and the actual file contains executable code, data, and 

resources that define its functionality within the Windows environment.  As depicted in Figure 1, the 

PE file consists of a header followed by a sequence of sections, with each section serving a distinct 

purpose. 
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Figure 1. Format of PE Header file 

3.3 Dataset used 

In this work, datasets used is of Operational Technology, gather from C3i Hub, Indian Institute of 

Technology, Kanpur. The dataset comprises of 10K PE files. The PE files are further categorized as 

Benign and Malicious (backdoor, trojan, benign, trojan-downloader, trojan-dropper, virus, and 

worm). The distribution of the samples files is presented in Figure 2. 

 

Figure 2. Category wise Samples 

3.4 Feature Extraction 

In machine learning-based systems designed for malware detection, a critical phase involves the 

extraction of features. Within this domain, two primary categories of features are commonly 

employed: Static Features and Dynamic Features. Static feature attributes are derived from a file 

without the need for executing it, which provide valuable insights into the inherent characteristics and 

attributes of the file itself. By analyzing such aspects namely; file size, metadata, and code structure, 

static features enable the identification of potential indicators of malicious behavior. Despite their 

effectiveness in revealing structural patterns, it suffers in capturing dynamic behaviors exhibited by 

malware during execution. On the other hand, Dynamic Features are obtained by executing a file, 

typically within a controlled environment conducive to monitoring and analysis which captures the 

actual behaviors and actions of the program during runtime. By observing factors such as system calls, 

memory usage, and network activity, dynamic features offer a more comprehensive understanding of 

the program's behavior. However, extracting dynamic features often entails greater time and 

computational resources compared to static analysis and are more susceptible to evasion tactics 

employed by adversaries. For instance, attackers may introduce time delays or evasion techniques to 

circumvent dynamic analysis, thereby challenging the efficacy of dynamic feature extraction methods. 
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In the work, both static and dynamic methods were employed for feature extraction, leveraging the 

unique strengths of each approach to enhance the effectiveness of malware detection systems. These 

features are utilized for the detection and classification of different classes of malware presented in 

Table 2. Table 2 shows features name alongwith the desciptions. 54 features are presented out of 57 as 

name and labels were not considered as features. 

Table 2. PE Header File Features and its description 

S. No. Feature Name  Description 

1.  DebugSize Size of the debug information. 

2.  IATRVA Address of the Import Address Table (IAT). 

3.  SizeOfHeapCommit Size of the heap to commit. 

4.  FileSize Total size of the file. 

5.  DebugRVA Relative Virtual Address (RVA) of the debug section. 

6.  ResSize Size of the resources section. 

7.  SizeOfHeaders Size of the headers. 

8.  Machine Type of machine (e.g., Intel x86). 

9.  ImageVersion Version of the image. 

10.  LinkerVersion Version of the linker. 

11.  StackReserveSize Size of the stack to reserve. 

12.  TimeDateStamp Time and date when the file was created or modified. 

13.  OSVersion Version of the operating system. 

14.  VirtualSize2 Virtual size of the section. 

15.  SizeOfHeapReserve Size of the heap to reserve. 

16.  Characteristics Characteristics of the file. 

17.  ExportRVA RVA of the export section. 

18.  NumberOfSections Number of sections in the file. 

19.  SizeOfImage Size of the image. 

20.  SizeOfOptionalHeader Size of the optional header. 

21.  ExportSize Size of the export section. 

22.  SizeOfCode Size of the code section. 

23.  SizeOfInitializedData Size of the initialized data section. 

24.  SizeOfStackCommit Size of the stack to commit. 

25.  AddressOfEntryPoint Address of the entry point. 

26.  MajorImageVersion Major version of the image. 

27.  MajorSubsystemVersion Major version of the subsystem. 

28.  SizeOfUninitializedData Size of the uninitialized data section. 

29.  CheckSum Checksum of the file. 

30.  MinorImageVersion Minor version of the image. 

31.  MinorSubsystemVersion Minor version of the subsystem. 

32.  NumberOfRvaAndSizes Number of RVA and sizes. 

33.  SectionAlignment Alignment of the sections. 

34.  MajorLinkerVersion Major version of the linker. 

35.  SectionsLength Length of the sections. 

36.  LoaderFlags Flags used by the loader. 

37.  MajorOperatingSystemVersion Major version of the operating system. 

38.  MinorLinkerVersion Minor version of the linker. 

39.  SectionMinEntropy Minimum entropy of the sections. 

40.  SectionMaxEntropy Maximum entropy of the sections. 

41.  SectionMinVirtualSize Minimum virtual size of the sections. 

42.  SectionMinPhysical Minimum physical size of the sections. 
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43.  SectionMaxChar Maximum characteristics of the sections. 

44.  SectionMinRawSize Minimum raw size of the sections. 

45.  SectionMaxVirtualSize Maximum virtual size of the sections. 

46.  SectionMaxPointerData Maximum pointer data of the sections. 

47.  Reserved1 Reserved field. 

48.  SectionMaxRawSize Maximum raw size of the sections. 

49.  SectionMaxPhysical Maximum physical size of the sections. 

50.  SectionMinPointerData Minimum pointer data of the sections. 

51.  Dll Indicates if the file is a Dynamic Link Library (DLL). 

52.  ImportFunctionCount Count of imported functions. 

53.  ImportFunctionMethodCount Count of methods used for importing functions. 

54.  MD5Hash MD5 hash of the file. 

 

4. PROPOSED METHODOLOGY 

In this work, a framework for multiclass classification of malwares using machine learning models is 

proposed. The proposed approach involves several steps namely, data pre-processing, feature 

selection, integration of h2o automl interfaces and training the machine learning models. The 

framework of the proposed approach is depicted in Figure 3. 

4.1 Data Pre-Processing 

Data pre-processing on PE files is a critical step in preparing them for machine learning-based 

analysis for multiclass classification of malware detection. This process involves several key steps 

aimed at cleaning, transforming, and structuring the raw PE file data to make it suitable for modeling. 

Initially, the PE files are parsed to extract essential attributes such as file size, header information, 

section characteristics, import/export tables, and other relevant features. Next, data cleaning 

techniques have been applied to handle missing values, outliers, or inconsistencies in the dataset. 

Additionally, feature engineering techniques have been applied which converts the numerical data to 

categorical data for multiclass classification. The data have been transformed into seven classes as 

presented in figure 2. Finally, the pre-processed data is normalized to ensure that all features are on a 

similar scale, preventing any single feature from dominating the modelling process. Overall, data pre-

processing plays a crucial role in optimizing the quality and usability of PE file data for subsequent 

machine learning analysis. 

4.2 Feature Selection 

After data pre-processing, feature selection is performed based on correlation. It involves identifying 

and selecting the most relevant features that exhibit a strong correlation with the target variable, i.e. 

class of malware. By analyzing the correlation between each feature and the target variable, redundant 

or irrelevant features has been eliminated, reducing dimensionality and improving the efficiency and 

accuracy of the classification model. Features with high correlation values are retained, as they 

provide valuable insights into the characteristics of malware and contribute significantly to the 

predictive power of the model. This process ensures that only the most informative features are 

included in the final dataset, enhancing the performance of the machine learning algorithm in 

accurately detecting and classifying different types of malware. 
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Figure 3. Proposed approach 

4.3 Integrating H2O autoML interface 

After feature selection, the approach integrates H2O AutoML which further enhances the efficiency 

and effectiveness of multiclass malware classification. H2O AutoML performs hyperparameter tuning 

on multi-dimensional dataset which enhances the speed and accuracy of various machine learning 

algorithms without human intervention. 

4.4 Machine learning algorithms applied 

Once the pre-processed data is ready and H2O is integrated, then these dataframe various machine 

learning techniques are applied to train and evaluate the models. These techniques include decision 

trees, adaboost, gradient boosting machines, support vector machines, and logistic regression. Each 
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algorithm is trained on the pre-processed dataset to learn the underlying patterns and relationships 

between the features and the target variable. 

4.5 Model Evaluation 

The performance of each model is then assessed using appropriate evaluation metrics, such as 

accuracy, precision, recall, and F1-score, to determine its effectiveness in classifying malware into 

different categories. 

         𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
         (1)                                                                             

         𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  
             (2)                          

        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛  
       (3) 

        𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙  
                         (4) 

4.6 Pesudocode of the proposed approach 

 

Algorithm: Multiclass Classification of Malwares Using Machine    Learning Models 

parsed_data = ParsePEFiles(PE_files) 

cleaned_data = DataCleaning(parsed_data) 

preprocessed_data = FeatureEngineering(cleaned_data) 

transformed_data = TransformData(preprocessed_data) 

normalized_data = NormalizeData(transformed_data) 

   return normalized_data 

// Analyze correlation between features and target variable 

correlation_matrix = CalculateCorrelation(data) 

 selected_features = SelectFeatures(correlation_matrix) 

   return selected_features 

// Integrate H2O AutoML for hyperparameter tuning 

model = H2OAutoML(data) 

   return model 

// Train various machine learning techniques on pre-processed data 

trained_models = TrainModels(data, model) 

// Evaluate performance of each model 

evaluation_results = EvaluateModels(trained_models) 

    return evaluation_results 

 

5. IMPLEMENTATION 

Python language was used within a Google Colab environment for training our system across multiple 

machine learning models. Data reading, conversion to data frames, model splitting, and training were 

facilitated by key libraries like pandas, scikit-learn, seaborn, and plotly. Additionally, the H2O library 

was utilized for fast computation and feature reduction, resulting in enhanced dimensionality 

reduction and model efficacy. Computations were accelerated, and preprocessing time was minimized 
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by leveraging its scalable architecture. Model building was automated by its feature selection 

techniques, ensuring faster insights. 

Step 1: Data Pre-processing: 

The samples file is shown in Figure 4, after being read through the Colab environment comprising of 

10238 PE files with total 57 attributes presented in columns. Assigning the class labels as per the 

different category, shown in Table 3. 

Table 3. Category wise class labels and number of samples 

Category Class Number of Samples 

Benign 0 5125 

Virus 1 566 

Backdooor 2 717 

Trojon 3 998 

Trojan-dropper 4 1152 

Worm 5 914 

Trojan-downloader 6 766 

 

 

Figure 4. Reading of Sample files using python language 

Step 2: Feature Selection: 

In the initial step, certain features were removed from consideration due to their lack of significant 

variation across different samples. These features include "Name," “label", filesize," "Machine," 

"TimeDateStamp," "Reserved1," and "SizeOfOptionalHeader." As a result, the system was trained 

using 50 remaining features. Figure 5 illustrates the selected features. 

Step 3: Integration of H2O interface 

Following the removal of these features, we proceeded to employ the H2O Python library for 

additional feature reduction and expedited computation. 

import h20     (5) 

h20init()    (6) 

Some of the features of h2o is shown in Figure 6 as; 

 

Index (['Characteristics', 'DebugSize', 'DebugRVA', 'ImageVersion', 'OSVersion', 
'ExportRVA', 'ExportSize', 'IATRVA', 'ResSize', 'LinkerVersion','VirtualSize2', 
'NumberOfSections', 'SizeOfCode', 'SizeOfHeapCommit',  'SizeOfHeaders', 
'StackReserveSize', 'SizeOfHeapReserve', 'SizeOfImage',SizeOfInitializedData', 
'SizeOfStackCommit', 'SizeOfUninitializedData',     'NumberOfRvaAndSizes', 
'LoaderFlags', 'AddressOfEntryPoint', 'CheckSum', 'SectionAlignment', 
'MajorOperatingSystemVersion', 
'MinorOperatingSystemVersion', 'MajorImageVersion', 'MinorImageVersion',    
'MajorLinkerVersion', 'MinorLinkerVersion', 'MajorSubsystemVersion', 
'MinorSubsystemVersion', 'sections_length', 'section_min_entropy', 
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'section_max_entropy', 'section_min_rawsize', 'section_max_rawsize', 
'section_min_virtualsize', 'section_max_virtualsize', 
'section_max_physical', 'section_min_physical', 
'section_max_pointer_data', 'section_min_pointer_data', 
'section_max_char', 'Dll', 'ImportFunctionCount', 
'ImportFunctionMethodCount', 'md5hash', 'label'], 
dtype='object') 

Figure 5. Selected Features after the dimension Reduction 

 

 

Figure 6. H2O Features Set 

Step 4: Machine learning models applied 

The system was trained using the H2O-based data frame generation. Various machine learning 

algorithms were utilized for this purpose, including logistic regression, decision trees, random forests, 

gradient boosting, and Adaboost. The dataset was divided into training and testing samples at a ratio 

of 70:30, respectively. Subsequently, the system underwent training with the machine learning model, 

followed by testing to evaluate its performance. 

6. RESULTS AND DISCUSSION  

The authors works on multi-class malware detection through the utilization of diverse machine 

learning models. Unlike previous studies that predominantly targeted binary classification, 

distinguishing solely between benign and malicious files, there exists a recognized necessity to 

categorize malicious files into various classes such as viruses, worms, Trojan horses, spyware, adware, 

and ransomware. This transition towards multi-class classification facilitates a more intricate 

examination of malware behaviour, consequently bolstering the efficacy of detection approaches. As 

discussed above authors has classified the data into 7 different labels and the different machine 

learning models are trained on 70:30 ratio. The models are trained on 7167 samples of different 

classes and tested on 3071 samples. The models are evaluated on the basic of evaluation metrics such 

as precision, recall accuracy and F1 score. Here show the results before applying h2o, table 4 shows 

the evaluation metrics of different machine learning models. 

Table 4. Evaluation metrics over the various ML models without h2o 

Model Applied Accuracy  F1 Score Precision Recall 

Logistic Regression 0.78 0.77 0.77 0.783 

Decision Tree 0.9456 0.945 0.9465 0.9456 

Random Forest 0.9528 0.9524 0.9533 0.9528 

Gradient Boost 0.9504 0.9504 0.9517 0.9504 

Ada boost 0.3603 0.2364 0.1817 0.3603 

 

However, after applying the H2O the overall accuracy is increased. Table 5 shows the different 

evaluation parameters after applying h2o. 
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Table 5. Evaluation metrics over the various ML models with h2o 

Model Applied Accuracy  F1 Score Precision Recall 

Logistic Regression 0.8031 0.7938 0.7945 0.8031 

Decision Tree 0.949 0.9386 0.9386 0.939 

Random Forest 0.9682 0.969 0.9691 0.96495 

Gradient Boost 0.9586 0.9576 0.9566 0.9556 

Ada boost 0.3104 0.187 0.1408 0.3104 

 

Figure 7 shows the confusion matrix of the LR, DTC, RF, GB and Ada Boost. Random forest has the 

maximum accuracy of 96.8% however Ada boost has the lowest as 31%. 

Figure 8 shows the Overall comparison of accuracy, precision, recall and F1 score with h2o and 

without h2o, results depict in all the model’s performance is increased after applying h2o and also 

reduces the model building time. The results indicate that the proposed approach, utilizing H2O with 

a random forest model, achieved the highest accuracy of 96.8% compared to other machine learning 

models. Notably, this is the first application of this approach to multiclass classification; previous 

research primarily focused on binary classification. In two-class classification, the proposed approach 

attained 100% accuracy with selected features. Hence, it is better than the existing state-of-the-art 

techniques. 

Confusion Matrix of Logistic Regression (LR) Confusion Matrix of  Decision Tree (DTC) 

  
Confusion Matrix of  Random Forest (RF) Confusion Matrix of  Gradient Boost (GB) 

  
Confusion Matrix of Ada Boost 
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Figure 6.   Confusion matrix of ML Algorithms 
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Figure 8.  Comparison of Different ML models without H2O and with H2O 

7. CONCLUSION 

In the proposed research a comprehensive approach to multi-class malware detection in OT systems, 

employing various machine learning techniques is presented. Through the parsing and extraction of 

crucial attributes from raw PE file data, followed by feature engineering and selection processes, the 

dataset is optimized for multiclass classification. Integration of H2O AutoML further enhances model 

efficiency by hyperparameter tuning. By applying a range of machine learning algorithms and 

evaluating their performance using appropriate metrics, this study demonstrates the effectiveness of 

the proposed approach in accurately classifying malware. Random forest models explicit the 

maximum accuracy of 96.8 % as compared to other applied methods. Earlier research has maximum 

accuracy of 99 % having only two class labels however the proposed approach has 100% accuracy in 

two class labelled dataset, which is better than the state-of the art methods. These findings contributes 

to the advancement of cybersecurity measures in OT environments, ensuring enhanced protection 

against malicious threats. 
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