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The growing risk of food scarcity, along with climate change induced shifts in 

agriculture, demands precise crop yield predictions (CYP). Most existing 

machine learning (ML) and deep learning (DL) methods face challenges of 

integrating complex models from diverse data sources and accommodating 

different agro-ecological regions.  Existing solutions do not offer a fully 

automated and explainable ensemble approach at this scale. This research 

proposes an automated and explainable ensemble learning framework, using 

Optuna for hyper-parameter optimization to tune eight regressor models, 

Gradient Boosting, XGBoost, LightGBM, CatBoost, Random Forest, Bagging 

Regressor, and KNN, for improved accuracy and generalization. Through the 

use of multi-source agricultural data and Explainable AI (XAI), our approach 

seeks to achieve high performance while retaining interpretability. The 

traditional Gradient Boosting model outperformed other classical ML models 

achieving 𝑅2 = 0.999 and RMSE=3298.326. Other traditional ML models 

could not match the performance of the ptoposed optimized models in this 

study. Important explanatory factors such as amount of pesticide applied, 

Temperature, and Rainfall were identified through SHAP analyses to 

underpin yield variability, enabling precise farming. By integrating 

automation, optimization, and advanced algorithms, the work enables more 

intelligent agricultural forecasting that allows farmers to make better data 

driven decisions. 

 

Keywords: Crop Yield Prediction (CYP),   Gradient Boosting (Gbst), Xgboost 

(Xbst), Random Forest (RF) Optuna, Explainable AI (XAI), SHAP Values, 

Precision Agriculture, Ensemble Learning, Sustainable Agriculture, Smart 

Farming, Data-Driven Decision Making. 

 

 

 

 



784  
 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

J INFORM SYSTEMS ENG, 10(27s) 

INTRODUCTION 

 

Precise CYP is the intersection of global food security and effective agricultural management [1, 2]. 

Traditional statistical models very often do not include all the subtle relations among yield-affecting 

factors especially when the climate is changing unpredictably [3]. On the other hand, the recent leaps 

in ML and DL make use of piles of data such as remote sensing, meteorological data, and soil 

characteristics in the development of substantially more precise and robust predictive models [4, 5]. 

These computerized data tools are the key to the present-day agriculture, making proactive techniques 

of decision-making possible that are focused on productivity optimization [6]. 

Meanwhile, there are also many very serious difficulties that still need to be resolved. Despite being able 

to reach high prediction accuracy, DL models are difficult to understand due to their black-box 

characteristics and thus very hard actionable insights to be extracted for agricultural decision makers 

[7, 8]. The connection of multi-modal data and the adaption of models to diverse agro-ecological 

settings are areas of future inquiry [9, 10]. Closing these gaps demands not only highly accurate models 

but also watertight and adaptable ones. 

To address these issues, this study presents a fully automated, explainable ensemble learning (EL) 

framework that can be used to improve accuracy and interpretability. 

 

The major contributions of this study are: 

• Systematic hyperparameter tuning using Optuna across eight ensemble classifiers to enhance 

prediction performance and generalization. 

• Utilization of multi-source agricultural data that combines remote sensing, climate conditions, and 

soil characteristics to seize intricate yield-controlling factors.  

• Use of XAI techniques, especially Shapley Additive Explanations (SHAP) values, to increase 

transparency and provide useful explanations of the model outcomes. 

• Creation of an ML-based agricultural forecasting model that is accurate and easy to modify for 

different agro-ecological regions, which is a primary limitation of most existing models.  

• Facilitation of as well as the provision of an automated CYP model that is clear and easy to interpret 

in order to stimulate agricultural policies based on data. 

Integrating Optuna-based hyperparameter tuning and XAI in this model, enables maintenance of 

explainability and adaptibility while improving accuracy, modifying it for widespread usability, and 

enhancing the quality of yield prediction models to foster intelligent agronomy. 

 

RELATED WORK 

 

The CYP is one of the primary activities of precision agriculture aimed at safeguarding food production 

and improving the use of resources. There is more than sufficient evidence that predictive accuracy can 

be enhanced with the use of ML and DL techniques, but there are still important predictive challenges 

of building accurate models that are interpretable and generalizable to other agro-ecological regions. 

Feature selection, EL, automated DL architectures, and even Automated ML have been investigated by 

existing studies. Yet, there still remains a wide gap towards effective integration of multiple data 

sources, model explainability, and Real World application context adjustability. The process of feature 

selection is one of the most critical tasks in ML as filters. Any predictor that does not contribute useful 

information can be removed, and as a result, it becomes easier to enhance model generalization. Lan et 

al. [10] incorporated mutual information and genetic algorithms with gradient boosting regression, 

thereby establishing the requirement for strong feature selection in addressing high-dimensional 

agriculture datasets. Abdel-Salam [11] similarly outlined a hybrid scheme integrating K-means 

clustering with correlation based filtering and subsequent FMIG-RFE feature selection. An enhanced 

Crayfish Optimization Algorithm used Support Vector Regression hyperparameter optimization to 

increase accuracy and improve computational efficiency.  Tree models have consistently exhibited 

strong predictive ability in agricultural prediction. According to Jhajharia et al. [12], RF was identified 

(R² = 0.963, RMSE = 0.035, MAE = 0.0251) as the most accurate model which outperformed other ML 



785  
 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

J INFORM SYSTEMS ENG, 10(27s) 

methods. In the same way, Burdett et al. [13] compared the performance of different ML models in 

precision agriculture, and found the R2 score for corn and soybeans as 0.85, and 0.94 respectively, 

using RF. The seasonal information is necessary, Filippi et al. [14] argued along with other models trying 

to estimate wheat, barley and canola yields. The implementation of DL frameworks has also been done 

in the recent past.  Oliveira et al. [15] studied transformer-based models capable of capturing long-term 

dependencies in time series data related to crops and achieved remarkable results. With the increasing 

application of sophisticated black-box DL algorithms, however, the issue of their interpretability 

becomes very problematic which is the strong argument for using XAI technologies. The monitoring of 

agriculture in real-time using IoT technology has changed dramatically the CYP. Talaat et al. [16] 

developed the CYP Algorithm which merges IoT features with DT, RF, and Extra Tree (ET) Regressors. 

It provided R² = 0.9933 with Extra Tree Regressor. Their system also employed active learning to 

reduce the amount of labeled data needed.  EL methods have surfaced as powerful models for 

reinforcing predictive accuracy. Kuppan et al. [17] is the one who showed DT, Extra Tree (ET), and 

CatBoost (CatBst) classifiers performed well, with Extra Tree providing 99.15% accuracy. Ramesh et al. 

[6], the other author, built a stacked ensemble model with six base learners and a Decision Tree meta-

model, which achieved R² = 0.98 with reduced RMSE. AutoML frameworks have further automated 

the processes of model selection and hyperparameter tuning. Kheir [18] examined the performance of 

22 ML models for wheat yield prediction by stacking the models and got R² = 0.7. The growing gap 

regarding the implementation of XAI in agriculture was addressed by Mariadass et al. [19] who created 

a multi-objective AutoML framework focusing on accuracy and interpretability.  

 

Although the literature presents advances towards feature selection, EL, DL, and IoT-based 

methodologies [20-25], the following notable gaps persist: 

• Most studies do not systematically combine remote sensing, meteorological, and soil data for yield 

prediction. They did not explore multi-source data integration. 

• The black-box nature of ML models renders them useless in agricultural settings despite their 

higher accuracy because stakeholders fail to make sense of the results. 

• Many models are trained on specific regional datasets to increase accuracy but this greatly reduces 

adaptability to other agricultural environments.  

• Most studies use only a limited number of models for evaluation which are unable to depict the 

reality of yield prediction. 

 

To fill these leaps, this research proposes the fully automated, explainable EL framework that will adjust 

all the hyperparameters in ensemble models and will become more interpretable. Our central 

achievements are as follows: 
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• Systematic Hyperparameter Optimization with Optuna: We utilize Optuna for optimization of 

hyperparameters through eight different diverse models, and we obtain an optimal model 

performance. 

• Multi-Source Agricultural Data Integration: We bring together multiple data 

sets including soil, climate, and remote sensing data, for developing a more accurate prediction 

model. 

• Improved Model Transparency via XAI:  SHAP values are used to explain the features that the 

model is using and makes better decisions for alerting the users about how to take care of the farm 

land and also the responsibility of the government to the farmers. 

• Evaluation across Diverse Agro-Ecological Conditions: We conduct our study on multiple datasets 

to determine the generalization and the differences of agriculture environments in which case our 

approach is validated. 

• Comprehensive Benchmarking against Existing Models: We present an investigation comparing 

multiple ML models and suggest an efficient model in terms of both the accuracy of prediction and 

computational efficiency, which is often overlooked by the researchers.  

 

By leveraging state-of-the-art hyperparameter tuning, XAI, and multi-data sources, this work provides 

an interpretable and scalable method to improve the accuracy of crop yield prediction. 

 

METHODOLOGY 

 

A. Overview of the Proposed Framework 

The process diagram of the proposed research for CYP is shown in Fig.1. 

 

 
Figure 2: The Process Diagram of the Proposed Research 

 

B. Dataset Description  

This analysis makes use of reliable sources which provide quality agricultural and climate data. Pesticide 

usage and crop yield data was collected from the FAO provided FAOSTAT database [25], whereas 

rainfall and temperature data were obtained from the World Bank Climate Change Indicators database 

[26]. These databases are very rich to enable integrative studies of crop productivity in different agro-

ecological zones and regions. The integrated dataset contains 4349 individual observations from 168 

countries over the period 1990 to 2016. It has predefined important agricultural and environmental 

parameters such as crop yield (hg/ha), average rainfall in mm per year, pesticide used in tonnes, and 

average temperature yearly in degrees Celsius. The pesticide’s variability is high; it ranges from 0 to 1.81 

million tonnes with an average of 20,300 and standard deviation of 118,000 tonnes, which indicates 
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diverse global farming practices.  The study focus was on several crops such as potatoes, sorghum, 

soybeans, and several others to enhance the applicability scope. The dataset was cleaned, merged and 

missing values were dealt to provide complete datasets without bias.  Table 1 shows a subset of the 

dataset which reflects the geographical diversity in rainfall, temperature, pesticide application, and crop 

yield for various crops across regions. For example, Qatar’s potato yield with low rainfall (74mm) is very 

low when compared with South African sorghum yield which receives significantly higher rainfall of 

495mm. This scenario variability is extreme, which speaks to the depth of the dataset and its capture of 

many different agricultural and climatic conditions for the purposes of predictive modeling. This 

comprehensive dataset provides a robust foundation for developing accurate and interpretable CYP 

models.  

 

Table 1: Sample Records from the Final Integrated Dataset 

Unnamed Area Item Year 

Crop 

yield 

(hg/ha) 

avg_rain_fall 

(mm) 

Pesticides 

(Tonnes) 

Avg 

temp 

24811 
South 

Africa 
Potatoes 1999 315545 495.0 26098.80 21.64 

24933 
South 

Africa 
Sorghum 2004 28692 495.0 26857.00 18.75 

4877 Bulgaria Soybeans 1999 8333 608.0 3004.75 9.67 

23775 Qatar Potatoes 2004 80000 74.0 68.00 28.20 

22182 Pakistan Soybeans 1997 12942 494.0 16936.00 22.14 

 

C. Exploratory Data Analysis 

A comprehensive exploratory data analysis (EDA) was performed to examine temporal trends, feature 

distributions, and inter-variable correlations within the dataset, thereby informing our data 

preprocessing and model-building strategies. 

Figure 2 presents normalized time-series data (1990–2016) for crop yield, rainfall, pesticide usage, and 

temperature across all regions. Normalization was performed by scaling each variable to the range [0,1], 

thereby enabling direct visual comparisons despite inherent differences in their units of measurement.  

 

The analysis reveals some important aspects:  

1. The agricultural output increases slowly with improved farming technologies and jumps sharply in 

the 2000s.  

2. Rainfall is evidently cyclical, mirroring seasons, with some rains occurring when yields are higher.  

3. Pesticide use is correlated with agricultural expansion and likely increased because of pest pressures 

or as a rationale to increase yields.  

4. And most notably, there is an observable increase in temperature over the years which raises concerns 

about the thermal sensitivity of crops as time goes by.  

 

 
Figure 2: Temporal Trends for Crop Yield and Attributes 
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In Figure 3, average crop yield, rainfall, and temperature are illustrated for each group of crops 

according to their agronomic features. The high-yield crops (for instance, potato and cassava) 

outperform the drought-tolerant cereals (millet and sorghum).  

Rice and maize have better yields in regions with medium to high rainfall due to the constant water 

supply. Yield variability (10-20% standard deviation) shows the variation between regions' farming 

practices and climates.  

 

 
Figure 3: Grouped Crop Metrics by Item 

 

The matrices of correlation (Pearson’s, Spearman’s, Kendall’s) of the main variables are presented in 

Figure 4. Rainfall and yield have a medium positive correlation in all the plots which serves to 

substantiate the necessity of water. In regard to yield, temperature is poorly correlated which imply 

more complex issue, perhaps due to the presence of thresholds or interactions with other factors. At the 

same time usages of pesticides slightly positively correlates with yield which suggests that there may be 

some underlying supressing factors, but a more elaborate integration between the diverse 

influencing factors is essential. These results encouraged the development of more sophisticated 

models able to explain the intricate agronomic patterns in the EDA. 

 

 
Figure 4: Correlation Analysis using Pearson, Spearman and Kendall 

D. Data Preprocessing 

In this study, an effective data preprocessing was performed through a methodical pipeline at data 

integration, missing value computation, outlier processing, feature value standardization, categorical 

data transformation, and sample data partitioning stages was conducted which emerged with useful 

models. The analyzed outlier datasets integrated agricultural yield data from different regions, 

metrological information (rainfall, temperature), and data on pesticide usage was done by linking the 

records with the unique IDs (location, time). The datasets (yield_df, rainfall_df, temp_df, and 

pesticides_df) were merged and required string matching, metadata verification, data cleansing in 

order to remove duplicates. 

Missing numeric values were replaced with the median, which eliminates bias from extreme values, 

whereas missing categorical values were substituted with the descriptor “Unknown” in order to 

safeguard context. Total changes, discovered through boxplots and whittling the interquartile range 

(IQR), were winsorized to the 5th and 95th percentiles to lower their effects without altering relative 

distribution.  
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To scale measurements, we implemented Min-Max Scaling first on the numeric features as defined in 

Eq(1): 

Xscaled = X− Xmin
Xmax− Xmin

         (1) 

 

This form of normalization improves performance using neural networks that are sensitive to scale. 

Subsequently, Z-score standardization was performed as in Eq.(2): 

x =
X−μ

σ
      (2) 

 

ensuring features are filtered on average at zero, which accelerates convergence towards a solution, 

while standard deviation is set to one. For enhanced interpretability and reduced stability Min-Max 

Scaling was applied for gradient based models while Z-score standardization was utilized for distance-

based models. Furthermore, log transformation was used on features such as pesticides, avg_rainfall, 

and avg_temp in order to reduce the amount of bias a skew and normal distribution approximates. 

Tree based models require label encoded categorical variables in order lessen dimensionality while 

maintaining compatibility and finally the dataset was split stratified into training and test sets, 80%, 

20% respectively to maintain bias and proportion of classes.  

 

E. Model Selection and Optimization 

Finding a suitable predictive model is important as it needs to achieve adequate accuracy, robustness, 

and generalizability, which dictates the comprehensive evaluation of different   ensemble model 

techniques, boosting techniques, and distance based models, amongst other machine learning methods. 

The criteria used for selection were based on predictive accuracy and computational time. 

RF which reduces variance reduction through the combination of various decision trees and is 

calculated as in Eq(3): 

ŷ =
1

N
∑ fi(x)N

i=1     (3) 

N, as noted in the equation, is the number of trees in the ensemble. 

XGBoost, LightGBM, and CatBoost, structured data regressors, integrate weak learners in a boosting 

iterative and optimize through gradient boosting methods.  

XGBoost utilizes a second order Taylor approximation in the optimization of a loss function with L1 and 

L2 regularization for generalization. The objective function for XGBoost is given as in Eq.(4): 

L(θ) = ∑ l(yi
n
i=1 − ŷi) − ∑ Ω(fk)T

k=1       (4) 

where l(yi − ŷi) and Ω(fk) represent loss, and complexity functions, respectively. LightGBM uses 

histogram-based splitting to reduce computational complexity. CatBoost can use the ordered boosting 

technology to solve target leakage for the categorical features.  Also, outcome prediction by a weighted 

average of the k nearest neighbors is performed by the k-NN regressor and it defined as in Eq.(5): 

f(x) = ∑ wiyi
n
i=1 ,   wi =

1

d( xi,x)
      (5) 

Where d(xi, x)  is the chosen distance metric. 

Hyperparameter tuning was executed using Optuna, a Bayesian optimization which relies on Tree-

structured Parzen Estimator (TPE) for search space particulalry modification. This approach was 

preferred to traditional ones (e.g., GridSearchCV, Randomized Search) because of the lower 

computational cost and better scalability. In order to trust these performance improvements, models 

were reinitialized before every cross validation fold to block state leakage. Joblib was used to control 

model persistence because it is efficient with large NumPy arrays. Model robustness can be observed as 

the performance metrics remained consistent across folds. The best hyperparameters identified for each 

model are summarized in Table 2 below. 

 

Table.2. Best Hyperparameters for Model Optimization through Optuna 

Regressor Models Hyperparameters 

XGBoost (XBst) 
n_estimators=400, max_depth=11, learning_rate=0.1887, 

subsample=0.7787, colsample_bytree=0.8937 
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LightGBM (LGBMR) 
n_estimators=700, num_leaves=130, learning_rate=0.2612, 

feature_fraction=0.8667, bagging_fraction=0.8862 

CatBoost(CatBst) 
iterations=1000, depth=8, learning_rate=0.2644, 

l2_leaf_reg=7.7061, border_count=206 

Random Forest (RF) 
n_estimators=100, max_depth=16, min_samples_split=6, 

min_samples_leaf=4 

Gradient Boosting (GBst) n_estimators=700, learning_rate=0.0861, max_depth=9 

AdaBoost (AdaBst) n_estimators=50, learning_rate=0.0253 

Bagging Regressor (BR) n_estimators=160, max_samples=0.9974, max_features=0.9135 

KNN n_neighbors=3, weights='distance', metric='manhattan' 

 

F. Environmental Setup 

The experiments were performed in a high-performance computing setup to support effective 

processing of large-scale agricultural data. The hardware configuration included an an Intel Core i7 

processor and 8GB RAM. The experiments were run on Windows 11with Python 

3.10, using major libraries like Scikit-learn, TensorFlow, PyTorch, Pandas, and NumPy for model 

training and testing. 

 

G. Model Evaluation and Performance Analysis 

After the model selection and hyperparameter optimization processes, we verifiably analyzed the 

predictive accuracy of the final model with a 10-fold CV strategy. In each iteration, 90% of the data was 

utilized for training purposes while the remaining 10% was used for validation. This method effectively 

managed the bias variance trade off without sacrificing computational efficiency.  

Model performance was measured quantitatively through a number of key measures. The models were 

evaluated through Mean Squared Error (MSE) as defined in Eq.(6)  

MSE =
1

n
∑ (yi − ŷi)

2n
i=1           (6) 

and its square root, the Root Mean Squared Error (RMSE) is defined as in Eq.(7) 

RMSE = √
1

n
∑ (yi − ŷi)

2n
i=1        (7) 

Both introduced a direct measure of our predicted mean error magnitudes. Other measures such as 

mean absolute error (MAE) also αn insight on the average scatter of the predicted and actual values. It 

is defined as in Eq.(8) 

MAE =
1

n
∑ |(yi − ŷi)|n

i=1     (8) 

In addition, the Coefficient of Determination(R²) is calculated and defined as in Eq.(9) 

R2 = 1 −
∑ (yi−ŷi)2n

i=1

∑ (yi−y̅i)2n
i=1

         (9) 

calculated how much the model explains the variance of the target variable. In order to capture the 

relative error for situations that can lead to exponential growth of the dependent variable, we computed 

Mean Squared Log Error (MSLE). It defined as in Eq.(10) 

MAE =
1

n
∑ (log (1 + yi) + log (i + ŷi)

2n
i=1            (10) 

 

RESULTS AND DISCUSSION 

 

The results regarding 10 fold CV and testing of the model are shown in table 3 which include the 

consolidated training time, test inference time, and memory consumption. 

 

Table 3: Summary of Performance Metrics and Computational Resource Utilization for the Evaluated 

Models. 

Regre

ssor 

CV 

MSE 

(avg) 

CV 

RMS

CV 

MAE 

(avg) 

CV 

R2 
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RMS

E 

Test 

MAE 

Te

st 

R2 

Tes

t 

Tra

in 

Test 

Infer

ence 

Mem

ory 

Usag
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Model

s 

E 

(avg) 

(av

g) 

MS

LE 

Tim

e 

(s) 

Time 

(s) 

e 

(MB) 

GBst 
1316277

0 

3614.

445 

661.5

30 

0.9

98 

3298.

326 

626.6

36 

0.9

99 

0.0

26 

122.

164 
0.510 

38.48

0 

LGBM

R 

144360

10 

3786.

217 

760.0

88 

0.9

98 

3746.3

05 

736.53

1 

0.9

98 

0.0

83 

2.05

7 
0.192 8.848 

XBst 
149249

50 

3853.

321 

614.2

55 

0.9

98 

3681.5

40 

597.61

5 

0.9

98 

0.0

25 

2.94

5 
0.040 0.000 

CatBst 
165228

50 

4057.

427 

1432.

074 

0.9

98 

3950.1

78 

1389.8

00 

0.9

98 

0.0

49 

8.62

2 
0.006 5.324 

RF 
205977

30 

4526.

439 

947.2

19 

0.9

97 

4164.6

44 

889.6

81 

0.9

98 

0.0

07 

1.79

1 
0.062 

32.84

0 

KNN 
414790

40 

6417.

398 

834.3

90 

0.9

95 

5590.1

07 

733.63

9 

0.9

96 

0.01

2 

0.18

0 
0.226 

21.58

2 

BR 
802991

90 

8960.

127 

6874.

625 

0.9

90 

8837.

208 

6841.2

76 

0.9

90 

0.0

70 

3.13

6 
1.020 

128.7

23 

AdaBst 
158888

7000 

39857

.121 

25175.

059 

0.8

01 

39969

.798 

25230

.546 

0.8

00 

0.27

5 

5.07

2 
0.083 0.000 

 

Finding the best model is a matter of trade-offs in predictive power, processing time, and 

interpretability. As per the results obtained, GBst is the best model as it achieved the highest Test R² of 

0.999 and the lowest Test RMSE (3298.326) as well as Test MAE (626.636). These results show that 

GB generalizes the best out of all the models tested for unseen data. This shows that GB is the best and 

most trustworthy model that can be used for CYP since it captures the complex phenomena of 

agricultural data supremely well. 

The RF is an exceptionally solid and graspable approach, yet is lagging in exactness and efficiency. In 

spite of a high-value of Test R², (0.998), its Test RMSE (4164.644) and MAE (889.681) are lower than 

XGbst and LGBMR. Even though RF is a quick trainer (1.791s), the inference speed (0.062s) is slower 

than XGBoost (0.040s) but it only uses little memory (32.840 MB) which makes it acceptable for many 

applications. The RF is the most appropriate algorithm when models are to be fitted very quickly and 

they come out as well and they can be tuned quite easy. However, for the most accurate and fast 

execution, it is better to use XGBst and LGBMR in the case of CYP in the real world. The bar plots 

depicting the regressor performance comparison are shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Regressor Models performance 

analysis CV & Test Set 

 

In terms of efficiency, XBst and LGBMR present viable options. For absolute error minimization, XGBst 

provides the lowest MAE of 597.615 while achieving a Test R² of 0.998. Furthermore, LGBMR offers 

real-time accuracy for extremely large datasets since it balances high accuracy with the fastest training 

time at 2.057s. On the other hand, AdaBst is highly inefficient, with Test R² = 0.800 and Test RMSE = 

39,969.798 which clearly demonstrates her inability in dealing with the complex feature interactions 
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presented in agricultural data. Furthermore, BR also performed poorly confirming the increasable 

errors exhibited by simple ensemble methods which are not suitable for yield forecasting. 

The predicted vs. actual charts are shown in Figure 6. The most effective models are positioned near the 

line for actual values as predicted, while the BR and AdaBst deviate more. Residual plots showing an 

error distribution is presented in Figure 7. For GBst, XGBst, and LGBMR, the residuals are scattered 

around zero which means there is hardly any bias. AdaBst and BR, on the other hand, have distinct 

residuals which indicate they have higher error rates.  

These results are a powerful testament to the performance of the gradient boosting models and their 

competency in real world yield prediction. While GBst had so much training time that it was 

comparatively slower (122.16 s), XGBst and LGBMR provided the best trade-off between speed, 

memory consumption, and precision. BR and AdaBst, on the other was too inefficient in the more 

complex regions of feature space, which validates the need for careful model selection. The approach 

we propose, based on Optuna hyperparameter tuning with strong minima validation, provides an 

accurate and computationally efficient, which is needed in large-scale agricultural prediction, predictive 

framework.  

 

 
Figure 6: Model Performance Comparison – Predicted vs. Actual Values 

 

 
Figure 7: Residual Plots for Error Distribution in CYP 

 

Feature Importance Analysis Using Shap 

SHAP were used to identify the feature contributions to the model’s predictions. Here XAI is developed 

with XBst model. Three visuals were used, and the SHAP summary plot (Figure 8) ranks the features 

based on importance, while each point represents an observation. The x-axis displays SHap values, 

which represent the effect on the model's output, and the color gradient characterizes feature values 

(lower values are on the left side of the color scale and higher values are on the right). Pesticides had 

the most significant influence, which is followed by temperature demonstrating a strongly non-linear 

effect. Rainfall exhibited a moderate influence though it was consistent and the cultivated area in fact 

appeared to be the most important in determining predictions. In the other hand, the least important 

factor was the year which indicates that it does not change much with time. The analysis of SHAP 

reaffirmed reliability of the model from the domain knowledge and confirmed that overfitting is not an 

issue that needs to be worried about. These findings show the significance of environmental factors in 

relationship to prediction phenomena, which emphasizes the case for the need to conduct agricultural 

modeling based on actual data instead of using assumptions. 
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Figure 8: SHAP Summary Plot Illustrating Feature Importance and the Impact of Features on Model 

Predictions in CYP. 

 

CONCLUSION AND FUTURE WORK 

 

This work provides a thorough examination of ML models for CYP, utilizing sophisticated ensemble 

methods and hyperparameter tuning by Optuna. The research results showed that GBst could make the 

most accurate predictions by a Test R² of 0.999, with the smallest Test RMSE (3298.326), and the 

lowest Test MAE (626.636), thereby it is the best model for CYP estimation. XBst and LGBMR also 

demonstrated competitive performance, achieving a good balance between accuracy and efficiency, and 

are thus apt alternatives for practical deployment. RF provided strong and interpretable results with 

mediocre computational efficiency but with larger prediction errors compared to GBst, XBst, and 

LGBMR. On the other hand, AdaBst and BR showed much weaker predictive power, highlighting the 

weaknesses of dealing with sophisticated agricultural data. The paper also presents the role of 

hyperparameter tuning through Optuna in optimizing model performance while ensuring 

computational efficiency. 

 

Future Research Directions 

While the proposed framework greatly improves CYP, there are still CYP gaps that require further work. 

(1) Improving Spatiotemporal Generalization: The integration of satellite images and climate forecasts 

in the model’s adaptation for various agro-ecological zones could be improved. (2) Hybrid Learning 

Architectures: Pytorch-based deep neural networks like transformers and LSTMs in an ensemble are 

good choices to improve the robustness of predictions further. (3) Real-Time Implementation: The 

optimization of inference pipelines for edge computing and the IoT would enable real time decision 

support systems to farmers. (4) Fairness and Bias Mitigation: Analyzing model biases among different 

crop types and regions address equitable agricultural intelligence. (5) Uncertainty Quantification: The 

application of probabilistic models can provide confidence intervals which would help in making 

decisions towards deeply sensitive agricultural structures. This multidisciplinary work will help inform 

agricultural policy as well as assist in crop yield forecasting models which ensures sustainability and 

leads to automated agriculture as well as improves broader planning. 
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