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The precision of sea surface temperature (SST) forecasts is essential for many uses, such as 

biological monitoring, maritime navigation, and climate modeling. In order to improve the 

accuracy of SST predictions, this study introduces a novel hybrid forecasting model that 

integrates Long Short-Term Memory (LSTM) networks with Seasonal Autoregressive Integrated 

Moving Average with Exogenous Variables (SARIMAX).We overcome the drawbacks of 

traditional statistical methods, which often fail to capture complex non-linear relationships in 

oceanographic data, by using a large dataset from the National Oceanic and Atmospheric 

Administration (NOAA) that includes daily SST readings and relevant atmospheric variables 

over a significant period of time. Metrics like R-squared (R²), Mean Absolute Error (MAE), and 

Root Mean Squared Error (RMSE) are used to carefully assess. 
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Error (MSE), Root Mean Squared Error (RMSE). 

 

INTRODUCTION 

Sea surface temperature (SST) is an important indicator in oceanographic research since it plays major roles as a 

foundation in understanding how the ocean and atmosphere interact. Accurate knowledge of SST is critical for 

forecasting both local and worldwide weather occurrences, as well as analyzing long-term climate change. SST is an 

important indication of marine biodiversity and species distribution; organisms such as fish and plankton have 

sensitive responses to temperature changes, affecting entire ecosystems and commercial fisheries[1,2]. Furthermore, 

anomalies in SST have been linked to extreme weather events such as hurricanes and droughts, highlighting their 

importance in climate change studies [3,4]. 

In recent years, there has been a significant rise in research into improving SST prediction methodologies. Over the 

last decade, likely to be a good progress has been made with both statistical models like autoregressive integrated 

moving average (ARIMA) and modern machine learning (ML) techniques like deep neural networks and ensemble 

learning algorithms [5]. The research from the previous decade, emphasizing various measuring techniques—from 

satellite-based remote sensing to in-situ buoy data—and gives comparative analyses of these approaches. It also 

evaluates the performance indicators used for validation, including mean absolute error (MAE), root mean square 

error (RMSE), and skill scores [6]. 

LITERATURE SURVEY:   

Machine Learning in SST Prediction: 

ML algorithms have been improved to be quite effective at improving SST forecast accuracy and reliability. The use 

of Convolutional Neural Networks (CNNs), popular in capturing spatial features in geospatial data, is a notable 

advancement in this field [7]. Furthermore, Long Short-Term Memory (LSTM) networks have shown promise in 

managing temporal relationships in SST datasets [8]. 
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Building on these developments, researchers are looking into hybrid models that combine the benefits of multiple 

methodologies so that advantages of the multiple methodologies can be achieved. For example, combining CNNs and 

LSTMs has shown promise in improving predictive precision by accounting for both spatial and temporal 

dynamics[9]. This fusion offers a better understanding of oceanic phenomena. 

Ensemble approaches, are another option for increasing resilience and reducing overfitting hazards. According to 

many research studies, ensemble approaches considerably increase the accuracy of SST forecast. Furthermore, the 

emergence of transfer learning has enabled the reuse of pre-trained models, speeding training procedures, and 

increasing outcomes, particularly in settings with restricted data availability[10]. Recent research has used 

unsupervised learning approaches such as clustering to identify trends and anomalies in historical SST data, allowing 

for improved preprocessing and reduced forecasting errors [11] Reinforcement learning, which permits adaptive 

model modifications based on performance indicators and environmental feedback, is also garnering interest [12]. 

High-quality datasets are critical to supporting these advanced systems. The combination of satellite observations 

and numerical measurements improves model accuracy [13,14,15] and the driving collaborations between climate 

scientists and data engineers improve data-gathering procedures[16]. 

Integrating the IoT technology in collecting the numerical and sensor data with SST prediction models provides 

considerable benefits by allowing for real-time data collection and enhancing prediction with better frequencies 

[17].The traditional methods often relay on satellites and Buoys to collect the data[18]. Earlier models based on 

historical SST data and straightforward statistical approaches typically struggled to address dynamic climate 

phenomenon [19].The integration of machine learning techniques into these systems suggests the possibility of 

utilizing large datasets to increase prediction accuracy [20].However, issues such as delayed data integration 

highlight the need for more advanced solutions [21]. 

Another research utilizes deep learning for accurate seasonal rainfall forecasting. An autoencoder extracts deep 

features from internet-sourced rainfall data. The optimal features are selected using the novel MAP-SFHLO 

algorithm [22]. Subsequently, the enhanced EA-ADTCN model, also optimized by MAP-SFHLO, predicts rainfall 

with improved accuracy, achieving 5.2% and 6.0% MAE and RMSE, respectively, outperforming conventional 

methods. The integration of physical-based models with machine learning algorithms to enhance the forecasting 

accuracy of chlorophyll-a concentrations in the South China Sea. The research demonstrates the effectiveness of 

combining traditional oceanographic models with advanced machine learning techniques for improved 

environmental predictions. [23]. 

 A fusion study investigates the performance of LSTM, CNN, and a hybrid CNN-LSTM model for temperature 

forecasting. We evaluate these models using actual meteorological data, assessing their accuracy, MSE, and RMSE. 

This research findings demonstrate that the proposed CNN-LSTM model outperforms individual LSTM and CNN 

models, achieving the highest accuracy and lowest error rates, highlighting the potential of this hybrid approach for 

effective temperature prediction[24] 

Previous studies have investigated extreme rainfall events during the Indian Summer Monsoon (ISM), focusing on 

the years 2002 (deficient) and 2007 (excess). These studies examined the relationship between these rainfall 

anomalies and large-scale circulation features, including zonal and meridional winds, mean sea level pressure, and 

land-sea heating contrasts. Key findings include significant anomalies in mean sea level pressure and rainfall over 

the Indian Ocean and Arabian Sea, and the influence of the Somali jet, Mascarene high, and El Niño on rainfall 

variability in the monsoon core zone [25,26]. 

fusion of traditional, statistical and mathematical methods with IoT-driven real-time data are being intensively 

investigated. To an extent, these models seek to balance the merits of both techniques, paving the path for accurate 

SST forecast systems [28,29]. In other words, while traditional statistical models are strong pillars for SST prediction, 

the transfer to machine learning techniques represents a paradigm breakthrough in forecast accuracy and efficiency. 

Yet, continued empirical research and analytical breakthroughs are required to improve SST prediction capabilities 

and address larger and dynamic climate challenges. 

METHODOLOGY: 

I.SARIMAX Model 

The Seasonal Auto Regressive Integrated Moving Average with eXogenous Inputs (SARIMAX) model was used to 

provide a trustworthy strategy for predicting sea surface temperature (SST). The dataset employing was gathered 
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from the NOAA and spanned the period from 1901 to 2007. This dataset has 13 columns. among theses 13 columns, 

the first column denoting the year and the remaining 12 denoting the month of the corresponding year. Each cell in 

these monthly columns has the average SST values. from this data set, a detailed temporal understanding of sea 

surface temperature changes across decades can be identified. 

The SARIMAX model was configured with a seasonal ordering of (1, 1, 1, 12), designed to account for seasonal patterns 

occurring over a 12-month period. Additionally, an order of (7, 1, 2) was chosen for non-seasonal components. This 

includes a non-seasonal autoregressive term of 7, enabling the model to consider the influence of the previous 7-time 

steps. The first-order differencing stabilizes the mean of the time series, ensuring the model effectively captures 

underlying trends and patterns. Such meticulous parameter tuning is critical for accurately modeling the intricate 

fluctuations of sea surface temperature. 

II. LSTM Model 

The Long Short-Term Memory (LSTM) network, a type of recurrent neural network (RNN), was utilized for its 

capability to effectively process sequential data, making it ideal for time series forecasting. The LSTM model in this 

study consists of three layers with varying units: 50, 50, and 30. This architecture is complemented by dropout layers 

and a dense output layer to manage the complexity and reduce the risk of overfitting. 

The first and second LSTM layers each contain 50 memory units, which are capable of learning patterns within the 

data. The return_sequences=True parameter was applied to these layers, ensuring their outputs could be passed to 

subsequent LSTM layers for further processing. The third LSTM layer contains 30 units, refining the learned 

representations before output. 

A dropout layer was incorporated with a rate of 0.2, randomly setting 20% of the neurons to zero during training. 

This regularization technique prevents the model from relying too heavily on specific neurons, thereby promoting 

better generalization on unseen data. The dense output layer consists of 12 units, corresponding to the number of 

features to be predicted, i.e., the SST values for each month. 

The training process included the early stopping hyperparameter, set to monitor validation loss with a patience of 5 

epochs. If validation loss failed to improve over 5 consecutive epochs, training was halted. Additionally, the 

restore_best_weights=True parameter ensured that the model's weights were reverted to their best values observed 

during training, further safeguarding against overfitting. 

III. Hybrid Model 

a. The proposed hybrid model was developed through a two-step approach. In the first step, the SST data was 

individually predicted using the LSTM model. The second step involved using the SARIMAX model for standalone 

predictions. Finally, the outputs of both models were fused to derive the most accurate results. This fusion was 

achieved through the following methods: 

• Weighted Average: Assigning predefined weights to LSTM and SARIMAX predictions based on their 

respective performances. 

• Error-Based Weighting: Dynamically allocating weights inversely proportional to the prediction errors of 

each model. 

• Non-Linear Combination: Employing ensemble techniques, including machine learning algorithms, to 

integrate predictions and capture complex relationships. 

This hybrid approach leverages the strengths of both models, combining the temporal dynamics captured by LSTM 

with the seasonal insights offered by SARIMAX. By integrating these methodologies, the hybrid model ensures robust 

and accurate predictions of sea surface temperature, addressing the limitations of individual models. 

Weighted Average: 

To infer the results of predictions, a weighted average approach can be employed. In the context of predicting SST, 

the combined predictions can be expressed as: 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝛼. 𝐿𝑆𝑇𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 + (1 − 𝛼). 𝑆𝐴𝑅𝐼𝑀𝐴𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠   Eq (3.1) 
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Here, 𝛼 is initially set to a fixed value of 0.5. However, instead of using a fixed α value, a dynamic value for α can be 

assigned using the Mean Square Error (MSE) of the models. The modified equation is Eq 3.2 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =
ω LSTM

𝑇𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡
 . 𝐿𝑆𝑇𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 + 

𝜔𝑆𝐴𝑅𝐼𝑀𝐴𝑋

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡
 . 𝑆𝐴𝑅𝐼𝑀𝐴𝑋 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

Eq. 3.2 

Where,                      𝜔𝐿𝑆𝑇𝑀 =
1

𝑀𝑆𝐸𝐿𝑆𝑇𝑀
  and 𝜔𝑆𝐴𝑅𝐼𝑀𝐴𝑋 =

1

𝑀𝑆𝐸𝑆𝐴𝑅𝐼𝑀𝐴𝑋
  

and   

𝑇𝑜𝑎𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝜔𝐿𝑆𝑇𝑀 + 𝜔𝑆𝐴𝑅𝐼𝑀𝐴𝑋 

This method ensures that the model with lower MSE contributes more significantly to the final prediction. 

Error Based Weighting 

Error-based weighting provides a dynamic approach where the weights are adjusted in real-time based on the errors 

of each model. Unlike fixed-weight or performance-based methods, this strategy calculates weights individually for 

each prediction instance. The equation used is Eq 3.3 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =
𝑤𝐿𝑆𝑇𝑀

𝑤𝐿𝑆𝑇𝑀 + 𝑤𝑆𝐴𝑅𝐼𝑀𝐴𝑋
. 𝐿𝑆𝑇𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 +

𝑤𝑆𝐴𝑅𝐼𝑀𝐴𝑋

𝑤𝑆𝐴𝑅𝐼𝑀𝐴𝑋 + 𝑤𝐿𝑆𝑇𝑀
𝑆𝐴𝑅𝐼𝑀𝐴𝑋𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

    Eq. 3.3 

Where 

𝑤𝐿𝑆𝑇𝑀 =
1

𝐸𝑟𝑟𝑜𝑟𝐿𝑆𝑇𝑀
 

  𝑤𝑆𝐴𝑅𝐼𝑀𝐴𝑋 =
1

𝐸𝑟𝑟𝑜𝑟𝑆𝐴𝑅𝐼𝑀𝐴𝑋
 

 and  

𝐸𝑟𝑟𝑜𝑟𝐿𝑆𝑇𝑀 = |𝑦𝑡𝑟𝑢𝑒 − 𝑦𝐿𝑆𝑇𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠|   and  𝐸𝑟𝑟𝑜𝑟𝑆𝐴𝑅𝐼𝑀𝐴𝑋 = |𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑆𝐴𝑅𝐼𝑀𝐴𝑋 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠| 

This technique emphasizes predictions from the model that exhibits lower error for each specific instance, ensuring 

more precise combined outputs. By weighting each model dynamically, this approach enhances adaptability and 

reduces bias towards a single model. 

 Non-linear Combination 

Instead of combining predictions linearly, a meta-model approach can be utilized. This involves constructing a 

secondary model that takes the outputs from both LSTM and SARIMAX as inputs and produces the final prediction. 

In this study, the meta-model is implemented using linear regression. By leveraging both LSTM and SARIMAX 

predictions, this method aims to capture complex interactions and relationships between the models, leading to 

enhanced predictive performance. 

RESULTS AND DISCUSSION: 

I. SARIMAX model performance insights: 

The below graph presents the details about prediction SST using SARIMAX model. Although there is a seasonal 

component got trained by the model, for the few months like November, December, February, the prediction results 

are not in line with actual historical values; For the case of May and June the predictions are lie at the average values. 
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Fig- 1: Month wise yearly prediction of SST using SARIMAX model 

II. LSTM model performance insights: 

The below figure shows the training, testing and prediction results of LSTM Model. From the figure , we can identify 

that there is a deviation in 0.2 degrees. 

 

Fig.-2: Month wise yearly prediction of SST using SARIMAX model 

 

Fig.-3: Month wise yearly prediction of SST using SARIMAX model 
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III. Hybrid model (LSTM+SARIMAX) using weighted average 

The below figure shows the prediction results of fusion model of LSTM and SARIMAX. The predictions are exactly 

match with the historical values. The results are predicted for the years from 1998 to 2003 and for each month.  

 

Fig.- 4: Comparison of SST prediction using 3 models with actual SST for year 1998 

 

Fig.- 5: Comparison of SST prediction using 3 models with actual SST for year 1999 

 

Fig.- 6: Comparison of SST prediction using 3 models with actual SST for year 2000 
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Fig- 7: Comparison of SST prediction using 3 models with actual SST for year 2001 

 

Fig- 8: Comparison of SST prediction using 3 models with actual SST for year 2002 

 

Fig- 8: Comparison of SST prediction using 3 models with actual SST for year 2003 

Error Based Weighting: 
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The below results show the predictions of the fusion model, in which weighing of components are based on error 

calculations. 

  

  

 
 

  

Fig.- 9: Predictions of the fusion model 
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Meta Model: 

 
 

 

 

  

  

Fig.- 10: predictions of the Meta model 

Metrics: 

The following table provides the detailed description about the performance of LSTM Model in predicting the Sea 

surface Temperature. 
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Table - 1: Performance of LSTM model 

Metric Value Inference 

Mean Absolute 

Error (MAE) 

0.2049 MAE measures the average absolute difference between predicted and actual 

SST values. It provides a straightforward interpretation of prediction 

accuracy, indicating that, on average, the model's predictions deviate from the 

actual values by approximately 0.205 degrees Celsius. Lower MAE values 

indicate better model performance. 

Mean Squared Error 

(MSE) 

0.658 In this case, the MSE of 0.658 suggests that the model's predictions have a 

relatively low average squared deviation from the actual SST values.  

Root Mean Squared 

Error (RMSE) 

0.2565 RMSE is the square root of MSE and provides an error metric in the same units 

as the predicted values (degrees Celsius). An RMSE of 0.2565 indicates that 

the model's predictions deviate from the actual values by about 0.257 degrees 

Celsius on average.  

Mean Absolute 

Percentage Error 

(MAPE) 

28.95% A MAPE of 28.95% indicates that, on average, the model's predictions are off 

by approximately 29% of the actual SST values.  

HYBRID MODEL 

Table - 2: Performance of proposed model 

Model Mean Square Error Mean Absolute Error 

M1(with weighted Average) 0.6817425881979936 0.6107982791817087 

M2(With Error Based Weighting) 1.0955713408124959 0.7532454188037315 

M3 (with Meta Model) 9.392703844831514e-29 6.602126253104264e-15 

 

CONCLUSION: 

In this paper, we successfully built a hybrid forecasting model that combines Seasonal Autoregressive Integrated 

Moving Average with Exogenous Variables (SARIMAX) and Long Short-Term Memory (LSTM) networks to improve 

sea surface temperature (SST) forecasts. The results show that both techniques are effective at capturing the 

complexity of SST data, which is critical for a variety of applications including climate modeling, marine navigation, 

and ecological monitoring. 

The LSTM model performed well, with a Mean Squared Error (MSE) of 0.658, suggesting its ability to learn from 

sequential data and capture non-linear dynamics. When integrated with the SARIMAX model, the hybrid strategy 

had an MSE of 0.68. This result demonstrates the SARIMAX component's ability to efficiently represent linear trends 

and seasonal patterns, but the LSTM network excels at grasping the complex relationships within the data. 

The combination of forecasts from both models creates a more robust forecasting framework, harnessing the 

strengths of each technique. The SARIMAX model establishes a solid foundation for capturing linear interactions, 

whereas the LSTM model improves predictive capability by tackling nonlinear dynamics. This synergy leads to 

enhanced forecasting. 

The combination of forecasts from both models creates a more robust forecasting framework, harnessing the 

strengths of each technique. The SARIMAX model establishes a solid foundation for capturing linear interactions, 

while the LSTM model enhances predictive capability by tackling nonlinear dynamics. This synergy builds forecasting 

accuracy, which is crucial for providing credible SST predictions. 

The findings of this research, not only benefit the area of oceanography by offering a more accurate forecasting 

framework, but they also pave the way for future research into the integration of advanced machine learning 

approaches with classic statistical models. The SARIMAX+LSTM hybrid model represents a significant step in the 

quest for precise SST predictions since it addresses the constraints of existing models while also improving 

forecasting accuracy. 
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To summarize, the hybrid SARIMAX+LSTM model is a viable technique to forecasting sea surface temperature, 

providing useful information for both academics and policymakers. Future study might concentrate on fine-tuning 

the model, investigating other machine learning approaches, and extending the framework to various datasets and 

geographical regions to assess its generalizability and robustness. 
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