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The evaluation of automobile diesel engine models equipped with BS6 technology and above is 

still in its early stages, making both physical testing and predictive modeling novel areas of 

research. This study aims to develop an Artificial Neural Network (ANN) model for predicting 

the performance parameters of automobile diesel engines, including brake power (BP), brake-

specific fuel consumption (BSFC), brake thermal efficiency (BTE), nitrogen oxides (NOX), 

volumetric efficiency (VE), and exhaust gas temperature (EGT). Currently, engine modeling 

and calibration rely on expensive tools that require skilled manpower and licensing costs, 

limiting accessibility for research. Additionally, the accuracy of conventional modeling tools is 

typically around 60%, which can be improved to 90% through parameter optimization. 

Furthermore, engine modeling is a time-consuming and repetitive process across different 

vehicle models and variants, necessitating more efficient alternatives. To address these 

challenges, this research focuses on two key objectives: 1. Developing a data-driven automotive 

diesel engine model for Hardware-in-the-Loop (HiL) simulation using ANN. 2. Predicting 

engine performance and emissions under real-world drive cycles. The Feedforward 

Backpropagation Network is trained using the Levenberg-Marquardt algorithm to achieve 

optimal performance. Experimental validation shows that the trained ANN engine model 

accurately predicts engine emissions and performance within the provided drive cycle, 

demonstrating its potential as an efficient and cost-effective alternative to traditional modeling 

techniques. 

Keywords: Vehicle engine modelling, Artificial Neural network, HIL simulation, Control and 

optimization, Neuro computing. 

 

INTRODUCTION 

THE automotive industry has recently experienced remarkable growth [1]. The requirement for pollution control is 

becoming essential in the automotive industry along with the improvement in performance [2]. Every nation in the 

world is making the required adjustments to its emission rules in order to strike a balance between the requirement 

for controlled emissions and other factors [3]. As the effects of pollution throughout the world are pressuring us to 

regulate pollution from many industries, India leaped directly to BS VI norms from BS IV norms in order to satisfy 

the global emission limits [4]. The law created Bharat stage regulations to limit vehicle emissions of air pollutants. 

The standards put in place in 2000 concentrate on the discharge of air pollutants like particulate matter, carbon 

monoxide, nitrogen oxides, and Sulphur oxides (PM) [5]. As Bharat standard stages rise, there is a greater degree of 

parameter optimization in engine modelling. The most recent standard, known as BS-VI, can be explained in the 

following ways. PM and nitrogen can both be reduced by BS-VI by 80% and 70%, respectively [6]. The engine labels 

have been dramatically enlarged by the implementation of BS VI requirements, reaching 45000 labels [7-8]. 

RELEVANCE OF THE ANN ENGINE MODEL 

The standard engine modelling is unable to fully accommodate changes in the shift from BSIV to BSVI [9-10]. For 

the development, calibration, and testing of engine control systems in automobiles, conventionally Physics-based 

CAE Engine models are deployed [11]. A minor adjustment to an input parameter, however, also forces the model to 
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complete relearning [12]. In order to prevent the re-learning of learnt weights and bias, a parameterization model is 

proposed [13]. The cost of the expensive modelling tools, expert labor and licensing fees required for current engine 

modelling and calibration restricts research. Although parameter improvement might increase modelling accuracy 

from the existing tools 60 to 90 percent, the process is exceedingly time-consuming and repetitious for all vehicle 

types and variants. The creation of these control measures necessitates the conduct of relevant research and 

development. The growing quantity of operational factors, in addition to their high cost and time-intensive nature, 

are driving Original Equipment Manufacturers (OEM) to develop new simulation techniques. 

ANN MODEL 

A computer model that mimics how biological neural networks work is called an ANN model. This type of network 

deal with complex and nonlinear problems. Because of this, many of complex application choose ANN for the 

forecasting requirements. Typically, an ANN model has three parts: the input layer, some hidden layers, & then the 

output layer. Each part plays an important role in how the model functions. Since the weight of the network and 

biases are initially generated randomly, back propagation neural network (BPNN) is a popular approach for 

supervising training [15-16]. Numerous research contains information regarding the ANN theory for the 

characteristics prediction of internal combustion engine [17-25]. If the problem deals with the prediction tool for 

the application consisting of complex or nonlinear model, ANN is the best option [26]. Using the MATLAB 

NNToolbox, the model was created in line with the flowchart as shown in Fig. 1. A total of 75 percent of the datasets 

utilized as input from the engine test result, randomly chosen as training data and the remaining 25 percent were 

spent for validation. The goal of this prediction model is to decrease local minima and increase prediction accuracy. 

It is based on one hidden layer of the multilayered perceptron (MLP) structure. When pales in comparison to other 

kinds of ANN's models, MLP exhibits the most remarkable outcomes [27]. According to Fig. 1, the prediction model 

structure consists of six output levels, one hidden layer, and two input layers. For ANN modelling, a back 

propagation architecture with one hidden layer has been designed. Numerous studies are conducted in the area of 

neural network-based engine modeling for automobiles, wherein various combinations of biodiesels are employed 

to determine which is most appropriate, greener & more efficient [28-29]. 

   

Figure 1: ANN to represent Engine modelling 

One of the challenging tasks in neural network modelling is selecting the optimised network architecture. In order 

to avoid using a high number of weights during training, the hidden layer's number of hidden neurons was changed 

between 10 and 30 using a trial-and-error methodology. The values of root mean square error (RMSE) do not 

necessarily proportional with the number of neurons in the hidden layer, according to training findings. It has been 

discovered that fewer neurons would result in a decrease in network performance, whereas more neurons more 

than 28 will not significantly improve training results. As a result, 28 neurons were determined to be the ideal 

quantity for the hidden layer.  

Two neurons are present in the input layer, 28 neurons are present in the hidden layer, and 6 neurons are present 

in the output layer in the final arrangement. Log-sigmoid and linear activation functions were chosen because they 

perform well in nonlinear processes, such as determining the correlation between input and output characteristics 

of an automobile engine. Since the Levenberg-Marquardt training algorithm offers the quickest training speed and 

convergence time for the backpropagation model, it has been utilised to calculate the weight and bias value[30]. To 
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increase the prediction model's accuracy, performance goals of 1.0 x 10-3 have been set. Table 1 displays the 

configuration of the trained ANN model.  

Table 1: ANN Model Training Configuration 

Parameter Specification 

Input layer-neurons 2 

Hidden layer-

neurons 

28 

Output layer-neuron 6 

Training-function Levenberg-

Marquardt 

Performance-

function 

Mean square error 

Activation-function Log-sigmoidal, 

Linear 

Performance-goal 1.0 x 10-3 

 

To avoid complex ANN learning processes caused by high input values, all inputs and outputs are normalized 

between 0 and 1 for lowest and maximum values [31]. The criteria of 𝑅𝑀𝑆𝐸, mean absolute prediction error (𝑀𝐴𝑃𝐸) 

and coefficient of determinations (𝑅2) and are used to gage the accuracy and quality of the prediction model. The 

RMSE shows the average discrepancy between the experiment results and the forecasts. 𝑅2 on the other hand, 

gauges how accurately the regression depicts the actual dataset [32]. 𝑅2 ranges from 0 to 1, with an ideal ANN 

prediction model having an  𝑅2 closer to 1. The MAPE parameter displays the error in the prediction.  

ENGINE MODELLING AND RESULTS 

The Levenberg-Marquardt approach was exploited to train an ANN model for predicting the performance of 

automotive diesel engines. The developed ANN model's ideal architecture is 2-28-6. The 𝑅2and 𝑀𝐴𝑃𝐸 criteria have 

been chosen to assess network accuracy. To examine the network’s reaction more thoroughly, regression analysis 

was done between the target and related network output. The results show that the model can accurately predict the 

performance of car diesel engines at different engine speeds and loads. Fig 3 and Fig 4 show the correlation 

between ANN model predictions and experimental data w.r.t engine performance indices. There is a substantial 

connection between the model and the experimental data, as indicated by the increased value of 𝑅2, which is almost 

equal to unity. 

 

  

Figure 2: ANN Model flowchart 

The coefficient of determinations 𝑅2for the ANN prediction for (a) Brake specific fuel consumption BSFC, (b) Brake 

power BP, (c) Brake thermal efficiency BTE, (d) Volumetric efficiency VE, (e) Exhaust gas temperature EGT, and (f) 

Oxides of Nitrogen are 0.99994, 1, 0.99792, 0.99998, 0.93946 and 0.67582 respectively as shown in Fig.3 and 

Setting Up Parameters for Input and Output 

ANN Architecture 

Training of ANN Model 

Validate ANN model performance 

The ANN model is prepared for assessment. 

Is taking errors acceptable? 

Is model acceptable? 

No 

No 

Yes Yes 
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Fig.4. Thus, it can be said that the findings acquired using the ANN model are superior and more precise than those 

obtained using traditional mathematical methods. In Fig.3 and 4, the vertical axis shows the actual regression data, 

and the horizontal axis represents the target value. The circles illustrate the coordinates of each R2 value. The 

continuous line represents the alignment with the training data. Training efficiency is determined by the proximity 

of the output to the desired target and forms a cluster along the solid line. In overall training BSFC training can be 

considered remarkable compared to NOx. For the provided training inputs NOx training performed its best. 

 
Figure 3: Trained Regression plot for BSFC, BP, BTE and VE 

In Fig.3 VE and BP have a clean solid line illustrating the overlapping of R2 values. In Fig.4 EGT and NOx data is 

scattered because of the non-linearity of the training data. 

 
 Figure 4: Trained Regression plot for EGT and NOx 

In addition, the complicated and non-linear interactions between process factors and engine performance make it 

particularly challenging to create a relationship between them using mathematical models. The ANN prediction 

generates a superior prediction of the performance of the automotive diesel engine and offers the best fit to the 

experimental results. The diagrams presented in Figures 5 through 10 illustrate the mean square error (MSE) 

encountered during the network’s training process. The blue graph specifically depicts the training MSE of the 

network. 

 



322  

 

J INFORM SYSTEMS ENG, 10(3) 

  
Figure 5: Performance- BSFC  

The green graph shows the validation MSE of the network. The red graph shows the test MSE obtained. The BSFC 

network iterated for 513 epochs where the best validation performance is obtained at 473rd epoch. 

  
Figure 6: Performance- Brake power 

The BP performance network go over 195 epochs as the best validation performance is obtained at 145th epoch. 

  
Figure 7: Performance- Brake thermal efficiency 

The BTE performance network considers 71 epochs, but the best validation performance is obtained at 21st epoch. 

 

  
Figure 8: Performance- Volumetric efficiency 
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The VE training network runs 1000 epochs and attains the best validation performance at 1000th epoch. 

 
 

Figure 9: Performance- Exhaust gas temperature 

The EGT training model totally runs 77 epochs and reaches the best validation performance at 71st epoch. 

  
Figure 10: Performance- Oxides of nitrogen 

The NOx training model totally runs 114 epochs and reaches the best validation performance at 64th epoch. 

ANN ENGINE MODELLING ON REAL TIME CYCLE 

The Worldwide Harmonized Light Vehicle Test Cycles (WLTC) are chassis dynamometer examines designed to 

assess the fuel utilization and emissions of light-duty vehicles. These tests were developed by the UN ECE GRPE 

(Group of Rapporteurs on Pollution and Energy). The WLTC is a subset of the Worldwide Harmonized Light 

Vehicles Test Procedures (WLTP), which are documented as UNECE Global Technical Regulation No. 15 (GTR 15). 

The WLTP has replaced the European NEDC-based type endorsement testing process for light-duty vehicles, with 

the transition occurring between 2017 and 2019. The new standard aims to more accurately reflect contemporary 

driving conditions. To accomplish this, the WLTP extends the duration to 30 minutes, compared to the NEDC’s 20 

minutes, and features a more dynamic speed profile with quicker acceleration and shorter braking intervals. 

Additionally, the average speed has been raised to 46.5 km/h, and the maximum speed to 131.3 km/h, as illustrated 

in Figure 11 [33].  

The mileage is 23.25 km, which is more than twice the NEDC’s 11 km. In Japan, the WLTP is also utilized for 

vehicle certification. The cycle profile may vary based on the vehicle’s top speed, defined by the original equipment 

manufacturer, rather than operational or safety limits. Class 3 vehicles, characterized by the highest power-to-mass 

ratio, are commonly used in Europe and Japan. The Typical ANN model developed with the real time data is used 

for predicting the outcomes with respect to WLTC class 3 cycle. 
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Figure 11: WLTC class 3 profile 

The trained artificial neural network (ANN) engine model accurately forecasts engine performance and emissions 

for the specified WLTC cycle. The performance indices such as predicted BSFC, BP, BTE and VE are displayed in 

Fig.12, Fig.13, Fig.14 and Fig.15 respectively. Predicted Exhaust gas temperate and NOx emission are displayed in 

Fig.16 and Fig.17 respectively.  

  
 

Figure 12: Predicted- BSFC  

The Fig. 12 displays the graph of predicted BSFC from the given vehicle speed from WLTC drive cycle. The Graph 

indicates a sudden fall for the lower speed and raised to average value between 3000 and 3500 g/(kW.h), this 

pattern is identified due to the spontaneous acceleration. The same pattern is constant after each acceleration of the 

WLTC cycle. 

  
Figure 13: Predicted - Brake Power 

The Fig. 13. Illustrates the graph of Predicted Brake power. According to the graph, the curve shoots to maximum 
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when there is a rise in the vehicle speed. Engine maintains a constant BP when the vehicle is static and same is 

observed in the graph portraying the horizontal lines. The Brake power reduces when the vehicle cruise at higher 

speed with lower torque which is observed between 1200 and 1800. 

 

  
Figure 14: Predicted - Brake thermal efficiency 

Fig.14 illustrates the vehicle speed (0 to 131kmph) versus variations of the BTE for diesel. The highest BTE was 

observed to be 33%, which was achieved at vehicle speed of 40kmph. 

 

  
Figure 15: Predicted - Volumetric efficiency 

Figure 15 illustrates the predictable trends in the volumetric efficiency (VE) behavior of the ANN engine. It was 

observed that VE decreases as speed increases. This reduction in vehicle speed significantly lowers fuel 

consumption. The volumetric efficiency rises with increasing RPM up to the point of peak torque, after which it 

reaches its maximum and then begins to decline. 

  
Figure 16: Predicted - Exhaust gas temperature 
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Figure 16 illustrates the trend of exhaust gas temperature (EGT) recorded for the ANN engine, showing that EGT 

values increase proportionally with engine speed. The maximum EGT was observed to peak at 990°C at a vehicle 

speed of 30 km/h. 

  
Figure 17: Predicted - Oxides of nitrogen 

Figure 17 demonstrates the predictable trends in the volumetric efficiency (VE) behavior of the ANN engine. Under 

conditions of acceleration or high engine load, exhaust emissions increase. Specifically, NOx emissions rise with 

increasing speed but remain low at a stable cruising speed of approximately 130 km/h. 

 CONCLUSION 

For Automotive diesel engine, an ANN model has been successfully created to forecast performance. The input data 

is trained using the Levenberg-Marquardt technique and the ANN BP model. The mathematical model and the real 

experiment data have been compared to the ANN prediction findings. Following is a summary of the study's main 

findings. 

(i) The prediction results of the ANN model, which utilized 28 neurons in the hidden layer, demonstrated a strong 

correlation with the experimental data. 

(ii) With a coefficient of determination (R²) of 0.99, the data point distribution of the ANN model closely matched 

the actual experimental data. In contrast, the R² for the mathematical model was slightly lower, approximately 

0.85. This indicates that the developed ANN model can predict experimental data with a high degree of accuracy. 

(iii) Prediction of Engine key performance and emission in a real time drive cycle such as WLTC is successful.  

(iv) In non-linear issues, ANN are a highly effective strategy that are simple to apply. With dependable and 

endurable precision, the created ANN model may be utilized to forecast Automotive diesel engine performance and 

emission. 

Furthermore, the scope of this work can be used to predict the performance of the biodiesel blend engine model. 

Another scope of this work will be used to predict the performance of engine parameters and recalibrate the input 

to the ECUs in the real time environment. 
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