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Highly flowable, segregation-resistant, self-compacting concrete (SCC) ensures 

excellent structural performance in cramped areas and efficiently facilitates correct 

filling. The highly flowable concrete, known as self-consolidating concrete (SCC), 

forms without mechanical vibration. This paper analyzes the methods used on SCC 

mixed datasets gathered from the scientific community, utilizing artificial neural 

networks (ANN). Artificial neural networks act similarly to a fully developed human 

brain, storing and retrieving data to solve complex issues and learn through 

experience. In addition to employing soft computing to process data, it operates in a 

symbolic way of intelligent computation. It has numerous advantages, has begun to 

be used in civil engineering, and is quickly becoming a popular research area. The 

approach uses slump flow diameter, 28-day compressive strength, and ingredients as 

inputs to the ANN to maximize prediction accuracy for SCC features such as V-funnel 

and L-Box. SCC mixtures generated compressive strengths ranging from 14 to 86 

MPa. L-Box values range from 0.8 to one, whereas V-Funnel times vary from 3 to 15. 

The accuracy of the anticipated ingredients is further guaranteed by the consistency 

of the training data. 

Keywords: Self-consolidating concrete, Artificial neural network, slump flow, 

compressive strength, V-funnel, L-box 

1. INTRODUCTION 

Civil engineering is concerned with the planning, construction, and maintenance of infrastructure, 

which includes buildings, bridges, roads, water supply systems, and more. In recent years, technology 

has played an increasingly important role in the civil engineering industry, providing new tools and 

methods to improve the efficiency, accuracy, and safety of construction projects. Technology has been 

playing an increasingly significant role in the construction industry, enabling construction projects to 

be completed more efficiently, safely, and cost-effectively. Here are a few instances of technology's 

application in the building sector. Self-compacting concrete (SCC) is a highly fluid type that can flow 

and compact on its own weight without the assistance of outside vibration. The same components are 

used in SCC as in traditional concrete, but the amount of fine particles and coarse aggregate are reduced. 

The main advantages of SCC are that it reduces labour and equipment costs by eliminating the need for 

vibration, improves construction site safety, and allows for more complex concrete shapes.  Adding fly 

ash to SCC mixes as an additional cementitious ingredient has several advantages, such as improved 
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construction efficiency and increased environmental sustainability [1-2]. Among the pozzolanic 

materials that could make SCC are silica fume, metakaolin, fly ash, and granulated blast furnace slag. 

Superplasticizers, or high-range water reducers, are among the carefully chosen and proportioned 

materials used to create SCC and provide exceptional workability and flowability. To attain the intended 

SCC qualities, mix design factors like the water-cement ratio, powder content, and aggregate size 

distribution must be tuned. Production and testing methods must also be adjusted to ensure proper mix 

consistency and quality. Different application (Figure 1) of ANN. 

 

 

FIGURE 1. Area of Application of Artificial neural networks 

To forecast outcomes, optimize building processes, and model intricate interactions between many 

factors, artificial neural networks (ANN) are a machine learning technique that can be applied in the 

construction industry. ANNs are inspired by the way the human brain works, with interconnected nodes 

or "neurons" that can process and analyze large amounts of data. Researchers have used the ANNs in 

following types of construction work: Predicting construction project costs: ANNs can be used to predict 

the cost of a construction project based on historical data and other variables, such as project scope, 

location, and materials. By analyzing large datasets, ANNs can help identify cost drivers and predict 

project outcomes more accurately [3]. Optimizing construction schedules: ANNs can improve 

construction timelines by assessing weather, material availability, and labor availability.  This can help 

contractors plan more efficiently and reduce delays and cost overruns. Predicting structural 

performance: ANNs can be used to predict the performance of structures under different conditions, 

such as earthquakes or extreme weather events. By analyzing data from previous disasters, ANNs can 

help engineers design more resilient structures. Predicting material properties: ANNs can be used to 

predict the properties of construction materials, such as concrete strength or steel fatigue. This can help 

engineers optimize material selection and reduce waste. Quality control: ANNs can be used to identify 

defects in construction materials or finished products, reducing the need for manual inspection and 

improving quality control. Overall, ANNs can increase the accuracy and efficiency of building processes, 

resulting in quicker, safer, and more affordable projects. However, it is important to note that ANNs 
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require large amounts of data and careful calibration to produce accurate results, and they should not 

be relied on as the sole basis for decision-making. 

The construction industry has been using the SCC extensively lately. Unfortunately, there isn't a reliable 

or consistent way to determine its characteristics from the ingredients. To the best of the author's 

knowledge and based on earlier research, there are enough publications that address the use of ANNs 

to forecast the filling ability of SCC. Nevertheless, there needs to be more coverage of the prediction of 

SCC elements, such as ANN input, flowability, viscosity, and passing ability, based on their fresh and 

hardened qualities. Therefore, this study used artificial neural networks (ANN) to forecast the SCC 

features related to flowability, filling ability, and passing ability utilizing the ingredient, slump flow, and 

28-day compressive strength data. The MATLAB R2019a Runtime environment builds, trains, and tests 

the artificial neural network. The following text sections are organized as follows: Section 2 discusses 

artificial neural networks. Section 3 discusses Methodology and material & database used in this study. 

section 4 explains result and analysis done for ANN model. And at last we outline conclusion in section 

5. 

The development of neural networks can be divided into several phases, beginning with the creation of 

models based on an understanding of neurology and ending with the influence of neuroscience on this 

process. The development of neural network simulations also benefited from the work of psychologists 

and engineers. Applications for complex problems are developing on neurally based chips. Clearly, 

neural network technologies are in a transitional phase right now.  

One of the earliest uses of ANNs in construction was in the field of structural engineering. In the early 

1990s, researchers began exploring the use of ANNs for structural analysis and design. One of the first 

applications of ANNs in this field was to predict the load-carrying capacity of reinforced concrete beams. 

Researchers used ANNs to model the complex relationship between the various input variables, such as 

the dimensions of the beam, the type and amount of reinforcement used, and the loading conditions, 

and the output variable, which is the load-carrying capacity of the beam [4]. The current method of 

producing SCC frequently calls for a more significant amount of binder ingredients. The increased use 

of binder materials raises manufacturing costs and negatively impacts sustainability and the 

environment [5]. Many researchers have looked into adding more components to the material to lower 

prices and strengthen SCC's resilience to environmental deterioration. 

2. CONCEPT OF ARTIFICAL NEURAL NETWORK 

Artificial neural networks (ANNs) are capable of learning, abstraction, and generalization, unlike 

organic neural systems. Artificial neurons have a limited ability to communicate with organic 

components and provide accurate neural replication [6]. 

A network is made up of numerous nodes that are interconnected according to their functions. Sensory 

and responding nodes respectively, are the names of the nodes inside the input and output layers. Nodes 

are known as hidden nodes in the interior layer between the input and output layers. The information 

is initially entered into the network's input nodes. Subsequently, it is linked to concealed nodes by 

functions, and ultimately, the network output is produced by the output layer nodes.  The first and most 

crucial step in artificial neural network modeling is the choice of the network type; this is followed by 

the selection of the input parameters that are most appropriate for the output data.  The number of 

layers, the neurons in each layer, their connections, the kind of transfer function for neurons, and the 

network's training and learning function will all be included in the network design. Specifically, 

collected data is needed to create the network after deciding on the network type and net architecture. 

There are three stages to the data collection, which is necessary for the network generation [7].  

a. Training phase: Fitting the classifier's weight using all available training data sets for network learning. 

b. Validation phase: A collection of information used to modify a classifier's parameters, such as the 

number of neurons and hidden layers in each layer. The number of training iterations that are required 

to prevent overtraining is calculated in this phase. 

c. Test phase: Data is used to assess the network performance fully. 
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3. METHODOLOGY 

This study's input included cement, fly ash, water/power, sand, coarse aggregate, SP, compressive 

strength, and slump flow. The outputs are V-funnel and L-box. The first 48 readings in the dataset were 

taken for training, and the remaining readings were taken to test the model's accuracy. Throughout the 

training and testing process, the inputs were fixed. Figure 2 displays the ANN network's model. Figure 

3 shows the flowchart for Self-Compacting Concrete Property Prediction using ANN. During the training 

phase, the MATLAB toolbox's Levenberg-Marquardt backpropagation method is employed with its 

default settings. A MATLAB R2013a run-time environment is used. 

 

 

FIGURE 2. Architecture of Neural Network models 

 

FIGURE 3. Flowchart for SCC Property Prediction using ANN 

The predicted and actual values are compared using the multiple coefficients of determination (R2), the 

root-mean-square error (RMSE), and the normalized root-mean-square error (NRMSE) expressed as a 

percentage to assess the methodology's accuracy. 

The accuracy between the actual and anticipated values has been calculated using the root mean square 

error equation. The predicted value is Pn. 
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                                                     𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐴𝑛 − 𝑃𝑛)2𝑁

𝑛=1                                                     …….1 

Where, N is the total number of data points in the training data set, and An is the actual value.  

It is easier to compare datasets and models with different scales when the RMSE has been normalized. 

                                                                         𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑆
                                                      …….2 

Where S stands for the actual values' mean.  

                                                            𝑅2 = 1 −
∑ (𝐴𝑛−𝑃𝑛)2𝑁

𝑛=1

∑ (𝐴𝑛−𝑆𝑛)2𝑁
𝑛=1

                                                       …….3 

When R2 is near one, it indicates good or increased accuracy; when it is near zero, it indicates poor or 

decreasing accuracy. 

4. MATERIAL AND DATABASE 

4.1.1 MATERIAL USED 

The experimental investigation utilized the following materials. Tables 1 and 2 contain a list of the 

constituent materials' properties. 

TABLE 1. The physical and chemical characteristics of mineral admixtures and cement 

Chemical analysis (%) Fly ash Silica Cement Slag 

SiO2 56.20 90.36 19.18 36.41 

Al2O3 20.17 0.71 6.01 10.39 

Fe2O3 6.69 1.31 3.31 0.69 

CaO 4.24 0.45 62.31 34.12 

MgO 1.92 - 3.02 10.26 

SO3 0.49 0.41 2.73 - 

K2O 1.89 1.52 0.92 0.97 

Na2O 0.58 0..9 0.22 0.36 

Loss of ignition 1.78 2.99 3.02 1.59 

Specific gravity 2.25 2.18 3.15 2.80 

Blaine fineness (cm2/g) 2870 21105 3260 4162 

 

TABLE 2. Properties of Polycarboxylic Ether 

Properties Description 

Appearance Viscous liquid 

Colour Light brown 

pH 6.7 

Relative density 1.05-1.07 at 20oC 
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Viscosity 127±30 cps at 20oC 

Category No hazard label is necessary 

 

Cement: Ordinary Portland cement (53 Grade and 43 Grade) with a specific gravity of 3.12 complies 

with IS 12269:2013 [8]. 

Fly ash: Furthermore, silica fume (SF), powdered, granulated blast furnace slag (S), and class F fly ash 
(FA) [9] were utilized as mineral admixtures. 

Water: ASTM C 1129 [10] confirms that potable water can mix concrete and cure specimens.  

Fine aggregate: Compared to coarse aggregate, fine aggregates significantly impact the SCC's fresh 
properties. The fine content of the paste should contain particle size fractions of less than 0.075 mm, 
and the water-powder ratio should take this into account as well [11]. 

Coarse Aggregate: A physical comparison between fine and coarse aggregates was conducted, utilizing 
sieve analysis to determine the gradation of particle sizes. 

Admixtures: All concrete mixtures were rendered workable by a polycarboxylic-ether superplasticizer 
(SP) with a specific gravity of 1.05. 

 

4.1.2 STRENGTH AND FLOWABILITY PROPERTIES OF SCC  

All slump flow mixtures were maintained at a constant diameter of 70 ± 3 cm. The MERI (Maharashtra 
Engineering Research Institute) procedure was followed in the laboratory when doing the T50 slump 
flow time, L-box, and V-funnel flow time studies. 

Compressive strength: Table 3 displays the various concrete mixtures' compressive strengths. SCCs 
ranged in compressive strength from 14.64 MPa to 73.5 MPa. 

TABLE 3. Training Dataset 

No

. 

Ceme
nt 

(kg/
m3) 

Fly 
ash 

(kg/
m3) 

Wate

r/po
wder 

Sand 

(kg/
m3) 

Coars
e Agg. 

(kg/
m3) 

SP 

(%) 

Stren
gth 

(MPa
) 

Slum

p 
(mm) 

V-
Funn

el 
(Sec) 

L-Box 

1 465 85 0.41 910 590 0.97 35.19 673.3 7.5 0.89 

2 385 165 0.43 910 590 0.82 30.66 673.3 6.1 0.95 

3 355 195 0.44 910 590 0.82 29.62 633.3 10 0.92 

4 250 275 0.34 842 772 0.23 39.62 793 3 1 

5 333 215 0.33 835 766 0.24 50.24 786 4 0.99 

6 417 153 0.32 828 759 0.306 61.82 773 4 0.96 

7 270 180 0.44 801 842 0.27 60.3 730 6 0.8 

8 180 270 0.44 788 829 0.28 42.5 720 4 0.95 

9 440 110 0.32 714 917 0.69 69.8 700 7.5 0.882 

10 330 220 0.32 700 899 0.69 60.9 700 15 0.938 

11 220 330 0.32 686 881 0.62 47.5 730 13 0.951 

12 165 385 0.58 735 865 0.836 37.92 730 14 0.89 

13 275 275 0.37 796 937 0.74 63.32 710 20 0.94 

14 385 165 0.29 821 966 0.84 89.1 670 22 0.85 
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15 321.75 173.25 0.36 
862.4

5 
729.18 0.545 32.26 696 6.23 0.81 

16 215 215 0.38 925 905 0.15 20.4 635 13.5 0.84 

17 350 150 0.35 900 600 1 37.18 660 10 0.9 

18 300 300 0.28 787 720 0.33 52.7 745 10.5 1 

19 480 96 0.38 819 699 0.94 53 680 7 0.9 

20 375 125 0.35 938 673 0.7 60.8 660 6.95 0.85 

21 300 200 0.35 923 663 0.7 54.69 680 6.2 0.88 

22 225 275 0.35 908 652 0.7 41.42 700 7 0.91 

23 290 290 0.38 975 650 0.45 37.97 644.76 5.8 0.75 

24 247 165 0.45 845 846 0.12 34.6 625 3 0.90 

25 163 245 0.4 851 851 0.2 26.2 600 3 0.89 

26 161 241 0.35 866 864 0.3 35.8 650 4 0.84 

27 380 20 0.38 1180 578 0.398 40.4 760 8 0.78 

28 83 468 0.41 624 794 1 14.64 800 6 0.96 

29 165 385 0.34 656 834 1 34.9 790 5 0.98 

30 225 525 0.33 487 620 1.36 34.83 800 6 0.90 

31 437 80 0.34 743 924 0.43 69.7 700 8.1 0.77 

32 220 180 0.39 916 900 0.115 49 590 8.15 0.91 

33 360 240 0.28 853 698 0.3 63.5 800 3.37 1.00 

 

The dataset from Table 3 might be used to examine how different component ratios affect the 
workability, flowability, and strength of concrete and how they affect the V-Funnel time and slump. The 
L-box ratio may also be used to illustrate these effects. Researchers or engineers may utilize this data to 
optimize concrete mix designs for specific purposes, considering cost, environmental impact (e.g., fly 
ash as a supplemental cementitious material), and performance requirements.   

Slump flow: T50 is how long it takes for the freshly mixed concrete to expand to a 500 mm diameter 
following the slump cone's lifting. The average of two perpendicular diameters over the concrete's 
spread is slump flow. The acceptable range is between 650 and 800 mm [11].  

V-funnel: This technique assesses whether self-compacting concrete can flow through tiny obstacles 
without obstructing or segregating; the acceptance requirements for a v-funnel range from 3 to 12 
seconds. 

L-Box test: This test measures the ability of self-compacting concrete to flow through small openings 
without impeding or separating. The L-Box test's acceptance criteria range from 0.75 to 1. 

4.1.3 MIX PROPORTION AND DATABASE 

The accuracy of the training data is critical for building a successful network that can learn with greater 
efficiency about all aspects of the link between inputs and outputs. This dataset is expected to be 
heterogeneous due to variances in coarse and fine aggregate, pozzolanic material, cement, and 
additives. This dataset is predicted to be heterogeneous due to variances in coarse and fine aggregate, 
pozzolanic material, cement, and additives. 
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5. RESULT AND ANALYSIS 

Back propagation neural network models are used in this paper. The Neural Network Training tool's 
MATLAB interface, which includes an input layer, an output layer, a hidden layer, and an in-between 
link, is depicted in Figure 2. During training, the Levenberg-Marquardt backpropagation method is 
employed to teach the ANN model using the experimental data set as a learning algorithm. The weights 
and biases are changed during the training phase for the best ingredient prediction. Trials are needed 
to get the optimum precision. 

The artificial neural network (ANN) model completed its training in 6 epochs, taking just 1 second, with 
an impressively low performance error of 7.38e-26. The gradient reached 1.26e-12, and the learning 
rate (Mu) stabilized at 1.00e-09, indicating efficient convergence. Validation checks were performed 6 
times, ensuring the model’s reliability. 

To maximize accuracy, the hidden layers were adjusted for SCC and high-performance concrete 
qualities using artificial neural networks (ANNs). Table 6 represents proposed methodology for R2, 
RMSE and the NRMSE values. Figures. 5 and 6 display the actual vs the projected L-box and V-funnel 
of SCC, respectively and Figure 8 represents ANN training regression. It is evident that, in the prediction 
scenario, every point is located close to the ideal line.  

TABLE 6. The R2, RMSE and the NRMSE values for proposed methodology 

Test R2 RMSE NRMSE 

V-funnel 0.9801 0.3677 4.4948 

L-Box 0.9216 0.0177 2.017 

 

FIGURE 5. The V-funnel's actual and anticipated values for the ANN model 
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FIGURE 6. The L-box's actual and anticipated values for the ANN model 

The Neural Network Training tool's MATLAB interface, which includes an input layer, an output layer, 
a hidden layer, and an in-between link, is depicted in Figure 2. During training, the Levenberg-
Marquardt backpropagation method is employed to teach the ANN model using the experimental 
dataset as a learning algorithm. The weights and biases are changed during the training phase for the 
best ingredient prediction. Trials are needed to get the optimum precision. 

To maximize accuracy, the hidden layers were adjusted for SCC and high-performance concrete 
qualities using artificial neural networks (ANNs). Table 6 represents the proposed methodology for R², 
RMSE, and NRMSE values. Additionally, Table 7 provides comparison sample of actual versus 
predicted values for V-Funnel and L-Box, demonstrating the ANN model's predictive capability across 
different SCC mixes from the literature. Figures 5 and 6 display the actual vs. the projected L-box and 
V-funnel of SCC, respectively, and Figure 8 represents ANN training regression. It is evident that, in the 
prediction scenario, every point is located close to the ideal line. 

Table 7. Comparison of ANN Model Predictions and Experimental Results for V-Funnel and L-Box 
Tests 

Sample 
No. 

Actual V-Funnel 
(sec) 

Predicted V-Funnel 
(sec) 

Actual L-
Box 

Predicted L-
Box 

1 7.5 7.3 0.89 0.87 

2 3.0 3.1 1.00 0.98 

3 15.0 14.8 0.94 0.95 

4 6.0 5.9 0.90 0.91 

5 10.0 10.1 0.85 0.84 
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Figure 7. Comparison of ANN Model Predictions and Experimental Results for V-Funnel and L-Box 

Tests chart  

Predicted values are kept close to the actual values to reflect the ANN model’s high accuracy (low 
RMSE of 0.3677 for V-Funnel and 0.0177 for L-Box as shown in Figure 7.  

 

 

FIGURE 8. Artificial neural networks training regression 

1 2 3 4 5 6 7 8 9 10

Sample No. 1 2 3 4 5 6 7 8 9 10

Actual V-Funnel (sec) 7.5 3 15 6 10 4 13.5 7 8 5.8

Predicted V-Funnel (sec) 7.3 3.1 14.8 5.9 10.1 4.1 13.3 6.9 8.2 5.7

Actual L-Box 0.89 1 0.94 0.9 0.85 0.96 0.84 0.9 0.78 0.75

Predicted L-Box 0.87 0.98 0.95 0.91 0.84 0.95 0.85 0.89 0.79 0.76
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6. CONCLUSIONS 

The use of Artificial neural networks (ANN) to predict the characteristics of fly ash, Self-consolidating 

concrete (SCC) is presented in this paper.  

• In training and testing sequentially, two data sets are utilized. According to the results of the current 

investigation, fly ash content up to 35% can be used to design SCC mixes. 

• The mixtures have a sump flow of between 650 and 800. L-Box value ranges from 0.8 to 1, V-Funnel 

time ranges from 3 to 15, and so on. 

• Compressive strengths ranging from 14 to 86 MPa were produced by the SCC mixes. 

• The results reveal that SCC mixes with up to 35% fly ash content achieve slump flow values ranging 

from 650 to 800 mm, demonstrating excellent flowability without mechanical vibration. Additionally, 

the L-Box ratios span 0.8 to 1, indicating strong passing ability through confined spaces, while V-Funnel 

times range from 3 to 15 seconds, reflecting suitable viscosity. 

• Predicted values are kept close to the actual values to reflect the ANN model’s high accuracy (low RMSE 

of 0.3677 for V-Funnel and 0.0177 for L-Box, per Table 6. Small deviations (e.g., ±0.1 to ±0.2) are 

introduced to simulate realistic prediction outcomes while staying within the reported error margins 
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