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The growing prevalence of image manipulation poses critical challenges to the reliability of visual 

content across fields like journalism, law enforcement, and digital forensics. Traditional methods 

often struggle to detect complex forgeries, especially in cases like splicing or copy-move 

operations, and lack the efficiency to process large datasets in real time. To address these issues, 

this research introduces a novel image forgery detection framework combining Convolutional 

Neural Networks (CNNs) and Error Level Analysis (ELA). By leveraging CNNs for pixel-level 

anomaly detection and ELA for identifying compression inconsistencies, the system effectively 

detects various manipulations with improved precision and scalability. Extensive testing on a 

diverse dataset revealed a high accuracy rate exceeding 94%, underscoring the system’s potential 

for real-time applications. This comprehensive approach represents a major leap forward in 

image authentication, offering a reliable solution to uphold the integrity of visual content in 

today’s digitally manipulated world. 

Keywords: Forgery detection, CNN (Convolutional Neural Networks), ELA (Error Level 

Analysis), digital forensics, image manipulation, authenticity verification, machine learning, 

deep learning, compression anomalies, visual content integrity 

 

1. INTRODUCTION 

The advent of advanced image editing software has transformed the way digital content is produced and 

disseminated, offering immense creative potential but also raising concerns over the authenticity of visual media. 

However, this advancement has significantly amplified the challenges associated with maintaining the authenticity 

of visual content, particularly in critical domains such as journalism, social media, and digital forensics [1]. The 

manipulation of digital images poses significant risks, as it enables the spread of misinformation, disrupts the 

reliability of content in law enforcement investigations, and undermines trust in social media platforms. In 

journalism, manipulated images can distort facts and fuel propaganda, while in digital forensics, they can 

compromise the credibility of evidence used in courtrooms [1, 2]. 

Traditional image forgery detection methods, which primarily rely on manual inspection and rule-based algorithms, 

are increasingly proving inadequate in addressing modern challenges. Manual detection methods, while effective for 

small-scale or low-resolution tasks, are time-intensive and susceptible to human error, making them impractical for 

real-time applications or large-scale datasets [2]. Similarly, rule-based algorithms often lack the flexibility to detect 

advanced forgery techniques such as splicing, copy-move manipulations, and deepfake images. These techniques 

frequently involve high-resolution editing that surpasses the capabilities of conventional detection frameworks, 

necessitating more sophisticated solutions [3]. 

Machine learning, particularly the rapid advancements in deep learning, has transformed methodologies for 

detecting image forgeries. CNNs, a fundamental component of deep learning, are highly proficient in capturing 

hierarchical features from images, making them adept at detecting intricate manipulation patterns that may go 
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unnoticed by the human eye. CNNs analyze pixel-level inconsistencies and anomalies, allowing for the detection of 

subtle tampering across diverse image datasets [4]. This capability has revolutionized forgery detection systems, 

making them significantly more accurate and versatile compared to traditional methods [3, 4]. 

Despite the notable advancements brought about by CNNs, challenges remain in addressing the full spectrum of 

forgery detection needs. Traditional methods, including even advanced rule-based systems, struggle to handle the 

diversity and complexity of forgery techniques. These gaps underscore the need for hybrid detection solutions that 

harness the advantages of diverse methodologies [5]. Error Level Analysis (ELA), for instance, has proven to be a 

valuable complementary approach to CNNs. By identifying compression discrepancies in digital images, ELA can 

detect tampering in compression artifacts, often indicative of manipulations. When used in conjunction with CNNs, 

ELA enhances the robustness and reliability of detection frameworks [6]. 

 

Fig. 1. Overview of Image Forgery Detection 

Hybrid systems that integrate CNNs and ELA have demonstrated remarkable potential in addressing these 

challenges. By combining advanced feature extraction with pixel-level compression analysis, such systems can 

effectively detect a wide array of manipulations. This research presents a novel framework that incorporates both 

techniques, achieving an impressive 94% accuracy when tested on a diverse dataset of authentic and manipulated 

images [7]. The combined use of CNNs and ELA improves the system's ability to detect forgeries while maintaining 

flexibility and efficiency across various application domains and image qualities [1, 6]. 

Additionally, the framework offers real-time processing capabilities, making it highly applicable in scenarios that 

demand swift and reliable image authentication. For instance, in journalism and law enforcement, where time-

sensitive decisions are crucial, this system can rapidly identify tampered images and safeguard the integrity of visual 

content. Furthermore, its application extends to social media platforms, enabling automated verification of user-

uploaded images to mitigate the spread of manipulated content [1, 3]. 

In conclusion, given the rise in image manipulation continues to increase, the development of robust, scalable, and 

efficient detection systems becomes increasingly critical. The combined method that merges CNNs with ELA 

represents a cutting-edge advancement in the field, delivering a holistic solution that overcomes the shortcomings of 

conventional techniques while laying the groundwork for future progress in detecting image manipulation. This 

innovative approach showcases the significant developments being made in this area of research [1, 7]. 

The manuscript is organized as follows: A thorough examination of current image forgery detection methodologies 

and approaches is outlined in Section II, while Section III details the methodology, covering the dataset used, 

preprocessing via Error Level Analysis (ELA), and the design of the proposed Convolutional Neural Network (CNN) 

model. Section IV presents the experimental results, accompanied by an in-depth examination and discussion of the 

findings and their implications. To conclude, Section V recaps the main findings of the paper and suggests possible 

avenues for subsequent investigations. 

2. LITERATURE REVIEW 

In 2023, Mashael Maashi et al. [1] offered a fresh perspective on Copy-Move Forgery Detection (CMFD) through the 

integration of the RSA (Reptile Search Algorithm) with advanced deep learning techniques. Their method utilizes 
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NASNet for feature extraction and RSA for hyperparameter optimization, followed by classification with XGBoost. 

When tested on benchmark datasets, this approach outperformed existing models in identifying forged regions. 

In 2020, Akram Hatem Saber et al. [2] carried out a comprehensive analysis of digital image forgery detection 

strategies, dividing them into active methods, including digital watermarking, and passive methods like detecting 

splicing and copy-move forgery. Their study explored the use of convolutional neural networks (CNNs) in forgery 

detection, emphasizing both their advantages and limitations, while also suggesting potential improvements for 

detection algorithms and forensic methodologies. 

In 2022, Emad Ul Haq Qazi et al. [3] designed a deep learning-based method utilizing the ResNet50v2 architecture 

alongside the YOLO CNN to identify splicing forgeries in digital images. Evaluation on the CASIA v1 and CASIA v2 

datasets demonstrated remarkable performance, with the system attaining 99.3% accuracy through transfer learning 

and 81% accuracy without it on the CASIA v2 dataset. The incorporation of pre-trained models through transfer 

learning significantly enhanced detection accuracy, especially for splicing forgery. 

In 2016, Ying Zhang et al. [4] introduced a two-phase deep learning approach methodology for forgery detection in 

image regions across multiple file formats. Their approach involved using a Stacked Autoencoder (SAE) for feature 

extraction and contextual information analysis to identify tampered regions. This method demonstrated greater 

effectiveness than previous approaches, achieving 91.09% accuracy on the CASIA dataset and showing versatility in 

handling both JPEG and TIFF formats. 

In 2009, Hany Farid [5] conducted an extensive review of methods for detecting image forgery, categorized them 

into pixel-level, format-dependent, camera-dependent, physically-based, and geometry-based categories. The study 

reviewed the evolution of forensic technologies alongside the rise of advanced digital manipulation tools, noting that 

while creating completely undetectable forgeries is increasingly challenging, it remains a goal for forgers. 

In 2019, Chandandeep Kaur et al. [6] reviewed passive image forgery detection methods, focusing on techniques for 

detecting copy-move, splicing, and retouching. Their study emphasized the dependence on manual oversight in many 

existing approaches and highlighted the need for more automated and generalized detection systems. The authors 

also stressed the importance of distinguishing between malicious manipulations and benign edits. 

In 2021, Wina Permana Sari et al. [7] explored the application of ELA as a preprocessing method to enhance the 

precision of deep learning-based forgery detection. The findings suggested that ELA can improve models' ability to 

detect subtle manipulations, though its effectiveness depends on dataset quality and model architecture. The study 

called for further optimization of both datasets and algorithms to improve generalization across various forgery types. 

In 2023, Niousha Ghannad et al. [8] developed an enhanced U-Net model fine-tuned using the Grasshopper 

Optimization Algorithm (GOA) for detecting image forgeries on social media platforms. Their work aimed to improve 

segmentation accuracy and achieve high precision, recall, and F1 scores for forgery detection. Tested on the CASIA 

dataset, their model outperformed others in detecting manipulations such as splicing and copy-move forgery, 

demonstrating its potential for real-time applications in digital forensics. 

In 2019, Ida Bagus Kresna Sudiatmika et al. [9] developed a novel hybrid approach that integrates ELA with CNN to 

enhance the precision of image forgery detection. Their method, tested on the CASIA dataset for both training and 

validation, achieved a training performance of 92.2% and validation performance of 88.46%, highlighting its 

efficiency in enhancing forgery detection. This research underscored the benefits of using ELA as a preprocessing 

step to highlight manipulated regions, thereby improving the performance of CNNs in detecting forgeries. 

In 2018, Yue Wu, Wael Abd-Almageed et al. [10] proposed a groundbreaking DNN framework designed for detecting 

copy-move forgeries (CMFD). Their model integrated convolutional layers for feature extraction, a self-correlation 

mechanism for similarity calculation, and a forgery mask decoder to identify altered areas. This approach 

demonstrated robustness against various transformations, including JPEG compression, affine modifications, and 

blurring, delivering superior accuracy on standard benchmark datasets. 

3. METHODOLOGY 

3.1. Image Dataset: The CASIA Image Tampering Detection Evaluation Database (CASIA ITDE) is a well-

established benchmark employed to assess the effectiveness of image forgery detection algorithms. Developed by the 

Institute of Automation, Chinese Academy of Sciences (CASIA), this dataset is specifically designed to support studies 
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in the domain of image manipulation detection. It has gained recognition as a reliable standard for evaluating and 

contrasting the effectiveness of different forgery detection methods. 

The dataset includes a large collection of genuine and altered images, covering various forgery techniques such as 

splicing and copy-move manipulations. Splicing refers to the process of combining segments from multiple images 

to create a forged image, while copy-move entails duplicating sections of the same image to conceal or fabricate 

information. These manipulations are executed using various tools to replicate real-world forgeries, offering a 

challenging and realistic benchmark for testing forgery detection systems. 

The CASIA ITDE dataset is organized into two main subsets: CASIA v1 and CASIA v2. CASIA v1 contains a smaller 

set of 800 authentic images and 921 tampered ones, while CASIA v2 is considerably larger, with 7,491 authentic 

images and 5,123 tampered ones. The images in CASIA v2 are more diverse in terms of size, content, and 

manipulation techniques, offering researchers a robust dataset to test the generalizability of their models. 

Furthermore, the dataset includes metadata and detailed annotations about the forgery type and manipulated 

regions, which are invaluable for training and evaluating machine learning models. 

In our research, we leverage the CASIA dataset, known for its extensive and challenging collection of manipulated 

images, to rigorously evaluate our proposed system. The CASIA dataset contains a total of 14,337 images, comprising 

both authentic and tampered visuals. However, for our study, we focused exclusively on the subset of images in JPG 

format, amounting to 11,278 samples. This decision was motivated by the prevalence of the JPG format in real-world 

digital images, making the evaluation more practical and aligned with real-world use cases. 

11,278 images were systematically divided into three subsets to support structured training, validation, and testing. 

Specifically, 8,457 images were allocated for training with their corresponding labels, ensuring the model had a robust 

foundation for learning. A separate validation set of 2,115 images and labels was used to fine-tune hyperparameters 

and prevent overfitting. Finally, a test set comprising 557 images and labels was designated to evaluate the model's 

performance objectively. 

This structured division ensures that our system is comprehensively evaluated on unseen data while allowing for 

effective training and validation. By employing the CASIA dataset in this manner, we ensure that our approach is 

robust against various manipulation techniques and applicable across diverse domains. The dataset’s realistic 

manipulation scenarios and detailed annotations make it an ideal benchmark for testing the efficacy of our forgery 

detection system.

    

(a)       (b) 

Fig. 2. Example of CASIA ITDE; (a) Authentic Image (b) Forged Image 

Figure 2 illustrates an example from the CASIA ITDE dataset, showcasing (a) an authentic image and (b) a forged 

image, highlighting the types of manipulations the dataset includes for evaluating forgery detection systems. 

3.2. Error Level Analysis (ELA): ELA is a method employed to identify image manipulation by analyzing the 

compression artifacts found in digital images. It is based on the idea that saving an image saved in a lossy format 

such as JPEG creates compression artifacts that maintain consistent patterns in the unaltered areas, but differ in the 

manipulated regions. These patterns are consistent in unaltered parts of the image but tend to differ in tampered 

areas, as they have often been edited and recompressed separately. 
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ELA operates by re-saving an image at a slightly reduced quality compared to its original compression and comparing 

the recompressed version with the original. The difference generated, referred to as the "error level," reveals areas of 

the image displaying abnormal compression artifacts. Tampered areas typically show higher error levels due to 

differences in compression introduced during the manipulation process. This makes ELA particularly effective for 

identifying edits such as splicing, copy-pasting, or region-specific modifications. 

In our project, ELA serves as a vital complement to the feature extraction capabilities of Convolutional Neural 

Networks (CNNs). While CNNs are adept at identifying subtle pixel-level anomalies, ELA helps in localizing 

suspicious regions by detecting inconsistencies in compression artifacts. This integration of techniques results in a 

more robust and precise image forgery detection system. Specifically, ELA helps identify tampering even in cases 

where traditional methods struggle, such as detecting manipulations in high-resolution images or complex forgery 

scenarios. By integrating ELA into our workflow, we have significantly enhanced the ability of our system to identify 

and validate manipulated regions, making it a valuable addition to the forgery detection framework. 

 

    

(a)       (b) 

Fig. 3. ELA of Authentic Image; (a) Original Image (b) ELA Output 

    

(a)       (b) 

Fig. 4. ELA of Manipulated Image; (a) Original Image (b) ELA Output 

Figures 3 and 4 illustrate the use of Error Level Analysis (ELA) on authentic and manipulated images within the 

dataset. 

Figure 3 displays the ELA of an authentic image, where (a) shows the original image and (b) presents its 

corresponding ELA result. The ELA highlights inconsistencies in compression artifacts, which are less pronounced 

in genuine images. 

Figure 4 illustrates the ELA of a forged image, with (a) presenting the original image and (b) showing the ELA output. 

In the manipulated image, the compression artifacts are more noticeable due to the tampering, aiding in the detection 

of the forgery. 

These figures illustrate how ELA can be used to expose hidden anomalies in image authenticity by analyzing pixel-

level inconsistencies that may be overlooked by the human eye [11-16].
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4. PROPOSED SYSTEM 

 

Fig. 5. Block Diagram for Detection of Image Manipulation 

Figure 5 illustrates the block diagram for the Image Manipulation Detection System, describing the sequential flow 

of data from input to the creation of a detailed report. 

4.1 Input Image: The system begins by accepting an input image for authenticity verification. The image may vary 

in resolution and format, serving as the basis for further processing. To ensure consistency, each input image is 

resized and normalized: 

𝒙′ =
𝑥 −  𝜇

𝜎
 

In this context, x refers to the pixel intensity values of the original image, μ represents the mean, and σ indicates the 

standard deviation. This normalization enhances the system's capability to handle various image formats effectively. 

4.2 Pre-Processing: In this stage, the image undergoes transformations such as resizing, edge enhancement, and 

noise reduction. For resizing, images are scaled to 128 × 128 pixels. Pixel-level discrepancies, crucial for detecting 

forgery, are emphasized through techniques like Error Level Analysis (ELA): 

𝐸𝐿𝐴(𝑥, 𝑥′) =∣ 𝑥 − 𝑥′ ∣ 

Here, x corresponds to the original image, while x′ denotes the recompressed image version. ELA highlights regions 

with compression inconsistencies, which are indicative of tampering. 

4.3 Feature Extraction: During feature extraction, important attributes such as edge patterns, textures, and pixel 

anomalies are captured. This process involves convolution operations performed by the CNN: 

𝑓(𝑥, 𝑦) = (𝐼 ∗ 𝐾) (𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) ⋅ 𝐾(𝑖, 𝑗)

𝑛

𝑗 = −𝑛

𝑚

𝑖 = −𝑚

 

In this case, the input image matrix is represented by I, the kernel (filter) is denoted as K, and n and m indicate the 

dimensions of the kernel (n×m). This operation enables the system to extract hierarchical features from the image, 

essential for detecting manipulations like splicing or copy-move forgeries. 

4.4 Model: The system employs a Convolutional Neural Network (CNN) for classification tasks. The CNN's 

architecture is optimized with layers that include convolution, max-pooling, and global average pooling (GAP): 

𝐺𝐴𝑃 =
1

𝑁
 ∑ 𝑓𝑖

𝑁

𝑖 = 1

 

Here, fi denotes the feature map values, and N indicates the total number of feature maps. The Global Mean Pooling 

(GMP) layer reduces the dimensionality while maintaining the spatial structure, thereby enhancing the model's 

generalization capability. 

The CNN is trained with the cross-entropy loss function for categorical classification optimize the model: 

𝐿 = −
1

𝑁
∑[𝑦𝑖 𝑙𝑜𝑔(𝑦̂𝑖) + (1 − 𝑦𝑖) log (1 − 𝑦̂𝑖)]

𝑁

𝑖 = 1

 

Here, N is quantity of samples, yi represents true label (1 for correct class, 0 otherwise), and 𝑦̂i represents predicted 

probability. 

4.5 Decision: The system classifies the image as either authentic or forged based on the model's output. The 

classification score is determined by the sigmoid function: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 

This approach transforms the model's predictions into probabilities between 0 and 1, facilitating efficient binary 

classification. 

4.6 Suspected Forgery: If the image is flagged as forged, it undergoes further scrutiny to validate the decision. 

This step focuses on identifying specific irregularities such as cloned regions, spliced sections, or inconsistent visual 

elements. 

4.7 Authentic: For images classified as authentic, no additional anomaly detection is performed. However, the 

results are logged for documentation and reporting purposes. 

4.8 Further Analysis: For suspected forgeries, a deeper examination is conducted to uncover detailed evidence of 

manipulation. Advanced techniques such as region-based analysis, artifact localization, or segmentation may be 

employed to strengthen the findings. 

4.9 Report: The final step consolidates all findings into a comprehensive report. This report includes the input 

image, detected anomalies (if present), the classification result, and a summary of the techniques used. The output 

serves as a valuable resource for further review, legal action, or forensic documentation.

 

Fig. 6. CNN Architecture for Image Forgery Detection: Layered Structure and Classification 

Figure 6 illustrates a carefully designed model tailored to analyze and classify the authenticity of digital images. At 

its foundation, the architecture starts with an input layer that takes images resized to dimensions of 128×128 pixels 

with three color channels, representing the blue, red, and green components of the image. This ensures a 

standardized input size, making it suitable for processing by the network. 

The model is divided into four key stages, each comprising layers dedicated to feature extraction. In each stage, two 

convolutional layers equipped with 64 filters are used, where each filter has a size of 5x5. Each filter is succeeded by 

the ReLU (Rectified Linear Unit) activation function, adding non-linearity to the network. This non-linearity is 

essential for allowing the model to identify and learn intricate patterns within the image data. Following the 

convolutional layers, a max-pooling operation is applied using a 2x2 window to reduce spatial dimensions. The max-

pooling operation decreases the spatial dimensions of the feature maps, preserving the key features while decreasing 

computational requirements and reducing the likelihood of overfitting. 

𝑃(𝑥, 𝑦) = max
𝑖,𝑗 ∈ 𝑊𝑖𝑛𝑑𝑜𝑤

𝑓(𝑥 + 𝑖, 𝑦 + 𝑗) 

In this case, P(x,y) represents the pooled value at the coordinates (x,y), while f(y+j,x+i) represents the values within 

the receptive field (pooling window) of the input feature map. The max-pooling operation extracts the highest value 

from this window, effectively decreasing the spatial dimensions while preserving the key features. 

As the input progresses through the stages, the model captures increasingly abstract and intricate features. The initial 

stages focus on identifying low-level features like edges and textures, while later stages extract higher-level 

representations, such as patterns indicative of image tampering. This hierarchical feature extraction is one of the 

defining characteristics of convolutional neural networks, making them particularly effective for image analysis tasks. 

After the feature extraction is complete, the model employs a global mean pooling (GMP) layer. In contrast to 

traditional flattening layers that can lead to overfitting, the GAP layer computes the mean of each feature map, 

(7) 
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producing a compact representation. This not only reduces the dimensionality but also ensures that the spatial 

structure of the features is maintained, improving the network's generalization ability. 

The network ends with a fully connected layer employing a sigmoid activation unit, designed specifically for 

classifying into two categories. This layer generates a probability score, enabling the distinction between authentic 

(real) and forged (fake) images. The sigmoid function ensures the output falls within a range of 0 to 1, establishing a 

clear boundary for classification. 

To train the model effectively, the Adam optimizer is used. Adam (Adaptive Moment Estimation) is a widely adopted 

optimization algorithm known for its efficiency and stability during training. It integrates the strengths of two widely 

used optimization methods: AdaGrad and RMSProp, enhancing learning efficiency. The optimizer adaptively adjusts 

the learning rate for each parameter, ensuring faster convergence and robust performance across a variety of tasks. 

The optimizer is defined mathematically as follows: 

4.10 First Moment Estimate (Mean of Gradients): 

𝑚𝑡 = 𝛽1𝑚𝑡 − 1  +  (1 − 𝛽1)𝑔𝑡 

Here, mt denotes the exponential moving average of gradients at time t, β1 represents the decay rate for the first 

moment (default value is 0.9), and gt signifies the gradient of the loss with respect to the parameter.  

The first moment estimate (mt) helps the optimizer by tracking the mean of gradients, enabling it to determine the 

direction for parameter updates effectively. 

4.11 Second Moment Estimate (Variance of Gradients): 

𝜈𝑡 = 𝛽2𝜈𝑡 − 1  +  (1 − 𝛽2)𝑔𝑡
2 

Here, νt represents the exponential moving average of squared gradients, and β2 denotes the decay rate for the second 

moment (default value is 0.999).  

Second Moment Estimate (𝜈𝑡) tracks the variance (magnitude) of gradients, ensuring that larger gradients don't 

dominate parameter updates. 

4.12 Bias Correction: 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡   , 𝜈̂𝑡 =

𝜈𝑡

1 − 𝛽2
𝑡 

Bias Correction addresses the initialization bias in mt and 𝜈𝑡, especially in the early stages of training. 

4.13 Parameter Update: 

𝜃𝑡 = 𝜃𝑡 − 1 − 𝛼
𝑚̂𝑡

√𝜈̂𝑡  +  𝜖
 

Here, θt represents the exponential moving average of gradients at time t, α denotes the decay rate for the first 

moment (default value is 0.9), and ϵ signifies the gradient of the loss with respect to the parameter. 

Parameter Update (𝜃𝑡) combines the corrected mean and variance to update model parameters. The adaptive learning 

rate ensures efficient and stable convergence. 

This architecture is specifically designed for image manipulation detection, utilizing the hierarchical feature 

extraction capabilities of CNNs. Its use of multiple convolutional stages, coupled with global average pooling and a 

binary classifier, ensures that the network can accurately identify subtle manipulations in images. Such a design is 

particularly valuable in applications like digital forensics, where precise and reliable detection of tampered images is 

critical. The overall balance between computational efficiency and detection accuracy makes this model a robust 

solution for the task at hand. 

5. RESULTS AND DISCUSSION 

The detection system for image forgery, integrating Convolutional Neural Networks (CNN) with Error Level Analysis 

(ELA), demonstrates excellent accuracy in identifying tampered images. Through comprehensive testing on dataset 

(8) 

(9) 

(10) 

(11) 
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of authentic and manipulated images, the system proved highly effective in detecting a range of manipulation 

techniques, making it a valuable asset for practical use in various fields. 

1. Performance Metrics: The system attained an exceptional accuracy rate of 94%, showcasing its proficiency in 

accurately classifying images as forged or authentic. This performance reflects the power of combining CNN for 

feature extraction with ELA to detect compression inconsistencies. 

Accuracy =
TP + TN

TP + FP + FN +  TN
 

2. Precision and Recall: The system demonstrates robust performance with a precision rate of 97%, effectively 

minimizing false positives, a recall score of 100%, showcasing its ability to detect the majority of manipulated images, 

and an F1 score of 96%, highlighting its balanced precision and recall capabilities. 

Precision =
TP

TP + FP
 

Recall =
TP

TP + FN
 

F1 score =
2 x Precision x Recall

Precision + Recall
 

3. Processing Time: The system demonstrated rapid real-time processing, with an average analysis time of 1.2 

seconds per image, making it ideal for applications requiring swift verification. 

4. Dataset Diversity: The testing dataset comprised images modified using techniques like splicing, copy-move, 

and retouching. The system maintained consistent performance across these different manipulations, proving its 

robustness and adaptability. 

5. Discussion: The system’s high accuracy can be attributed to the synergistic capabilities of CNN and ELA: 

• CNN Contribution: The CNN model effectively extracts detailed pixel-level features, detecting subtle 

patterns indicative of manipulation. Its ability to learn hierarchical features enhances its effectiveness in identifying 

complex forgeries. 

• ELA Contribution: ELA exposes compression artifacts introduced during manipulation, allowing the 

system to focus on regions of interest, thereby improving detection accuracy. 

By integrating these techniques, the system forms a robust framework capable of detecting various forgery forms, 

even those not immediately apparent to the human eye. 

• Visual Analysis and Metrics: Displays essential visualizations and metrics used to assess the model's 

effectiveness and effectiveness, providing insights into data distribution, learning patterns, and classification results. 

These analyses highlight the robustness of the developed system in detecting image forgeries. 

5.1   Mean Pixel Intensity per Channel 

 

Fig. 7. Mean Pixel Intensity per Channel (ELA) 

Figure 7 illustrates the average intensity of pixel for the red, blue, and green color channels during Error Level 

Analysis (ELA). The blue channel exhibits the highest intensity (~14), followed by red (~11) and green (~8). This 

highlights variations in color intensity, useful for detecting forged regions. 

(12) 

(13) 

(14) 

(15) 
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5.2   Training Accuracy vs Validation Accuracy 

 

Fig. 8. Training Accuracy vs Validation Accuracy 

Figure 8 demonstrate an upward trend over 40 epochs. The training accuracy reaches approximately 99%, indicating 

a well-trained model. Validation accuracy stabilizes near 94%, showing good generalization performance with minor 

fluctuations. 

5.3   Training Loss vs. Validation Loss 

 

Fig. 9. Training Loss vs Validation Loss 

Figure 9 illustrates the decline in the loss during training and validation across 40 epochs. The training loss steadily 

declines, reflecting the model's successful learning, while the validation loss stabilizes with slight variations, 

suggesting strong generalization. A consistent gap between the two suggests no significant overfitting. 

5.4   Training Precision vs. Validation Precision 

 

Fig. 10. Training Precision vs Validation Precision 

Figure 10 demonstrates a steady improvement over 40 epochs. The training precision gradually approaches 99%, 

while the validation precision stabilizes around 96%, with minor oscillations indicating variability in generalization. 

5.5   Training Recall vs. Validation Recall 
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Fig. 11. Training Recall vs Validation Recall 

Figure 11 shows consistent growth throughout 40 epochs. Training recall reaches nearly 99.5%, indicating a highly 

sensitive model. Validation recall fluctuates but stabilizes close to 97%, reflecting good consistency with slight 

variability. 

5.6   Training F1 score vs. Validation F1 score 

 

Fig. 12. Training Recall vs Validation Recall 

Figure 12 exhibits a continuous upward trend. Both training and validation F1-scores converge near 95%, showcasing 

balanced precision and recall, with excellent model performance and generalization. 

5.7   ROC–AUC Curve 

 

Fig. 13. ROC – AUC Curve 

 Figure 13 shows a high AUC (Area Under the Curve) score of 0.97, reflecting exceptional model performance. 

The curve indicates strong discriminatory power, with a strong true positive rate and a minimal false positive rate 

across multiple thresholds. 

• Comparative Performance: The proposed system, which combines CNN with 100% ELA, outperforms 

traditional forensic techniques and standalone machine learning methods, including algorithms like VGG-19, VGG-

16, ResNet-50, DenseNet-121, and Xception. The integration of ELA enhances the model's ability to detect subtle 

artifacts, resulting in superior performance across recall, precision, and F1-Score metrics compared to these 

conventional algorithms. 

5.8   Accuracy of Various Algorithms 
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Fig. 14. Accuracy of Various Algorithms 

Figure 14 shows that CNN with 100% ELA achieves the highest accuracy compared to other algorithms, including 

VGG-19, VGG-16, ResNet-50, DenseNet-121, and Xception. The accuracy improves as ELA increases, highlighting 

the significant role of ELA in enhancing the model’s performance for artifact detection. 

5.9   Performance of CNN with Varying ELA Percentages 

 

Fig. 15. Performance of CNN with Varying ELA Percentages 

Figure 15 demonstrates that increasing ELA improves CNN's performance in precision, recall, and F1-Score. CNN 

with 100% ELA outperforms all other configurations, showing the importance of ELA in improving the model's 

capability to detect slight artifacts with greater accuracy. 

5.10   Precision, Recall, and F1-Score of Various Algorithms 

 

Fig. 16. Precision, Recall, and F1-Score of Various Algorithms 

Figure 16 compares recall, precision, and F1 score across multiple algorithms, with CNN using 100% ELA 

outperforming other models like VGG, DenseNet, ResNet, and Xception. This reinforces the superiority of the 

proposed system in achieving better performance metrics for forensic tasks.

Table I. Accuracy of Various Algorithms 

Name Accuracy (%) 

CNN 72.62 

CNN (ELA 10%) 77.44 

CNN (ELA 50%) 82.36 
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CNN (ELA 90%) 92.34 

CNN (ELA 100%) 

(Proposed) 
94.13 

VGG – 16 77.64 

VGG – 19 48.92 

DenseNet – 121 89.23 

ResNet – 50 93.76 

Xception 93.96 

 

Table II. Performance of CNN with Varying ELA Percentages 

Name Precision (%) Recall (%) F1 - Score (%) 

CNN (ELA 10%) 80.73 90.39 85.81 

CNN (ELA 50%) 84.25 93.00 88.17 

CNN (ELA 90%) 96.59 92.67 94.18 

CNN (ELA 100%) 

(Proposed) 
97.07 99.98 96.23 

 

Table III. Precision, Recall, and F1-Score of Various Algorithms 

Name Precision (%) Recall (%) F1 - Score (%) 

CNN 81.14 86.79 85.93 

VGG – 16 78.09 77.510 77.034 

VGG – 19 48.92 99.98 65.70 

DenseNet – 121 83.64 96.93 89.80 

ResNet – 50 92.26 92.01 92.11 

Xception 98.26 95.39 95.76 

 

Table I presents the accuracy (%) of various algorithms, including CNN models with varying ELA percentages and 

other architectures like VGG-19, VGG-16, ResNet-50, DenseNet121, and Xception. The proposed CNN with 100% 

ELA achieves the highest accuracy of 94.14%, outperforming all others. 

Table II highlights the recall, precision, and F1-score (%) of CNN models with varying ELA percentages. The proposed 

CNN with 100% ELA achieves the highest precision (97.07%), recall (99.98%), and F1-score (96.23%), demonstrating 

its superior effectiveness in accurately detecting and detecting manipulations. 

Table III presents an evaluation of recall, precision and F1-score (%) for different algorithms, including CNN, VGG-

19, VGG-16, ResNet-50, DenseNet-121, and Xception. Among these, Xception achieves the highest precision 

(98.26%) and maintains strong recall (95.40%) and F1-score (95.77%), while DenseNet-121 and ResNet-50 also 

exhibit competitive performance across all metrics but, CNN with 100% ELA outperforms all of them. 

6. CONCLUSION 

This research developed an advanced detection system for image forgery that integrates CNNs with ELA to tackle the 

increasing challenge of detecting altered visual content. This system combines the strengths of CNNs for extracting 

intricate pixel-level features and ELA for detecting subtle compression artifacts that indicate tampering. Extensively 

tested on a varied dataset of authentic and manipulated images, the solution achieved an exceptional performance of 

94%, achieving recall and precision rates of 100% and 97%, respectively, highlighting its capability to detect 



993  
 

J INFORM SYSTEMS ENG, 10(27s) 

manipulations that are often undetectable to the human eye. Additionally, its real-time image processing capability 

makes it well-suited for applications demanding quick and reliable image verification, such as in fields like law 

enforcement, journalism, and digital forensics. Through overcoming the limitations of traditional detection methods, 

this system represents a major breakthrough in ensuring authenticity of visual content. Future work could focus on 

incorporating newer forgery techniques into the training dataset, allowing the system to adapt to emerging threats 

such as GAN-based manipulations. Additionally, expanding the system to detect forgeries in video content and 

integrating blockchain technology for image provenance tracking would enhance its functionality and 

trustworthiness. 
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