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Lung cancer is the leading cause of cancer-related mortality worldwide, and detecting 

the disease can still save lives. if a lung cancer diagnosis has been made. The illness 

known as lung cancer occurs when healthy lung cells transform into dangerous 

aberrant cells known as cancer cells. Tumors are collections of cancerous cells that 

grow over time. Today, medical imaging scans are being interpreted with the use of 

artificial intelligence and contemporary data science techniques. In contrast to 

conventional techniques, which depend on the subjective and time-consuming visual 

examination of radiologists, the emphasis now is on creating reliable automated 

diagnostic tools. This change is in line with the core objective of radiomics, a 

developing field of study that combines customized medicine with medical imaging. 

Improvements in lung cancer screening provide a glimmer of hope for life-saving 

treatments. Together, in stage one, the survival rate is 70%. Stage 2 drops to 50% as 

stage 3 drops. And stage four for the most part is not curable disease, but there are 

some patients who might be alive around five years.The aforementioned problems are 

efficiently addressed by the merging of LDCT followed by AI based Multilevel 

Optimization with hybrid stack model. This paper introduces a hierarchical reference 

architecture for Lung Cancer Classification. The proposed approach (GLCM) features 

are extracted from LDCT further investigated with M-GWO technique to figure-out 

best features. The best solution obtained from this hybrid stacked model is use to 

classify input image as normal or abnormal.  

Keywords: LDCT , Lung Cancer, Machine Learning , Optimization , GLCM. 

 

1. INTRODUCTION 

1. Lung cancer (LC) is the world's biggest cause of cancer-related mortality, but improvements 

in lung cancer screening provide a glimmer of hope for life-saving treatments. The lungs are 

two critical organs located in the chest that are fundamental to the complicated structure of 

our bodies [1]. They allow for the exchange of carbon dioxide and oxygen, which is necessary 

for life. By breathing in oxygen and breathing out carbon dioxide through tiny air sacs, our 

lungs regulate this vital gas exchange. The onset of lung cancer, a deadly disease in which 
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healthy lung cells transform into cancerous cells that multiply into tumors and cause havoc by 

encroaching on and damaging healthy lung tissue, can, however, upset this harmonious 

function [2].  

Lung cancer's journey is not limited to the lung; there is a significant possibility that it may 

spread via blood or lymph to other regions of the body. Two different varieties of lung cancer 

are small cell lung cancer (SCLC) and non-small cell lung cancer (NCLC). These are identified 

by the cell types that are affected and how they appear under the microscope. The most 

common kind of lung cancer is non-small cell, but SCLC is more aggressive and grows and 

spreads quickly [3]. The root cause of LC are  smoking, family history of lung cancer, HIV 

infection, exposure to hazardous chemicals, and second hand smoking, radon, asbestos, and 

air pollution [4]. These all contribute to an elevated risk profile. Lung cancer is a sneaky 

disease; in its early stages, it seldom exhibits any signs. However, if the illness worsens, 

symptoms include a persistent cough, chest discomfort, breathing problems, blood in the 

cough, hoarseness, appetite loss, trouble swallowing, weight loss, exhaustion, and swelling in 

the face or neck may appear, indicating the need for immediate medical assistance [5].  

The spectrum of symptoms associated with lung cancer encompasses fatigue, sudden weight 

loss, dyspnea, chest pain, persistent cough, and hemoptysis, indicative of coughing up blood. 

Various root cause  of LC, including exposure to cigarette smoke, nickel, arsenic, air pollution, 

radon, and a personal or family history of the disease [6]. Additionally, asbestos exposure is a 

notable risk factor. Small cell carcinoma often presents at an advanced metastatic stage and 

involves neuroendocrine cells. Non-small cell carcinoma includes adenocarcinoma, which is 

common and affects gland cells, and squamous cell carcinoma, which occurs in proximal lung 

tissue [7]. These Large cell carcinoma (LCC), characterized as large tumor cells, can grow in 

either proximal or peripheral lung tissue. Radiographic imaging, such as chest X-rays, aids in 

identifying lung cancer features like pulmonary opacity, hilum enlargement, pleural effusion, 

and lung collapse, depending on tumor size. lung cancers can prompt the transformation of 

lung cells into neuroendocrine cells, leading to paraneoplastic syndrome [9]. Neuroendocrine 

cancer cells release hormone-like substances, such as parathyroid hormone-like substance 

causing hypercalcemia, ACTH-like substance stimulating cortisol production, and anti-

diuretic hormone increasing water retention, mirroring normal hormone functions. 

Lung cancer screening  emphasizes on two importance method for identifying patients who 

require an immediate referral to a lung specialist. Specifically, this includes individuals who 

have had a chest X-ray indicating potential lung cancer and those aged 40 and above 

experiencing unexplained hemoptysis (coughing up blood) [10]. For instance, a 50-year-old 

woman presenting with a week-long history of hemoptysis should prompt an urgent two-week 

referral without delay. The second part of the guideline pertains to patients who necessitate 

an urgent chest X-ray within two weeks to evaluate for lung cancer. Notably, The helpful list 

of symptoms to monitor, particularly in individuals aged 40 and older. Moreover, if a patient 

exhibits two unexplained symptoms or has a history of smoking alongside one or more 

unexplained symptoms, an urgent chest X-ray is warranted. The guideline outlines specific 

clinical indicators that warrant consideration for a chest X-ray within two weeks. These 

include thrombocytosis (increased platelet count) in patients 14 years of age and older, finger 

clubbing, supraclavicular lymphadenopathy, the continuation of fical lymphadenopathy, and 

chest symptoms suggestive of lung cancer [11].  For instance, a patient with a persistent chest 

infection unresponsive to multiple antibiotic courses should raise suspicion for underlying LC.  

Finding the stage and diagnosis of lung cancer are essential elements in formulating a 

successful treatment plan. The progression of NCLC involves several phases, ranging from the 

occult stage, in which cancer cells are limited to lung fluids, to advanced stages, where the 

tumors invade distant organs and lymph nodes [12]. On the other hand, small cell lung cancer 

is categorized into localized and regional phases according to the degree of dissemination both 
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inside the chest and to other locations [13]. It typically occurs between the ages of 55 and 84 

years, with the peak incidence seen in the 7th and 8th decades of life, around 65 to 74 years. 

One crucial aspect to understand is the strong association between lung cancer and cigarette 

smoking. When someone inhales tobacco, particularly the polycyclic hydrocarbons and 

nitrosamines present in it, they are exposed to potent carcinogens. Polycyclic hydrocarbons, 

in particular, are known to bind to nuclear DNA, causing mutations and acting as mutagens. 

Benzopyrene compounds, another component of tobacco, then act as tumor promoters, 

further contributing to the development of lung cancer.Despite advances in medical 

technology, lung cancer continues to be a severe challenge in the field of oncology, taking a 

considerable number of lives each year. The goal of early lung cancer detection provides 

pathway to introduce  novel techniques, most notably the use of artificial intelligence (AI) into 

diagnostic medical imaging. This study explores the vital significance of early lung cancer 

diagnosis, emphasizing how AI-driven solutions have the potential to transform screening 

practices and enhance patient outcomes [14]. The startling data on lung cancer survival and 

diagnosis rates highlight the critical need for game-changing therapies. Every year, around 2 

million individuals worldwide receive a lung cancer diagnosis, and a sizable portion of them 

lose their lives to the disease.  With just a small percentage of patients living past diagnosis, 

the five-year survival statistics, especially in developed countries such as the UK, provide a 

sobering picture of the obstacles that patients confront. Lung cancer symptoms in their late 

stages are a major factor in this dismal situation since they frequently appear after the illness 

has moved to an advanced level, which reduces the effectiveness of therapy and the likelihood 

of survival [15].  

An ray of hope has emerged in the fight against lung cancer with the use of AI technology in 
healthcare. By leveraging AI algorithms, medical professionals can analyze chest CT-Scan with 
unprecedented accuracy, identifying subtle nodules that may indicate early-stage lung cancer. 
This capability holds immense potential in circumventing the late diagnosis dilemma, paving 
the way for timely interventions and improved survival rates. However, while AI-enabled chest 
CT-Scan analysis is a significant advancement and it offers even greater precision in detecting 
and characterizing pulmonary nodules [16]. One of the key advantages of AI-enabled chest CT-
Scan analysis lies in its applicability to incidental nodule diagnosis. Given the widespread use 
of chest CT-Scan for various medical purposes globally, integrating AI algorithms into existing 
imaging workflows can facilitate the early identification of suspicious nodules indicative of 
lung cancer [17]. This proactive approach streamlines the triage process, enabling healthcare 
providers to prioritize high-risk patients for further diagnostic evaluations such as chest CT 
scans or biopsies [18]. Incorporating CT scans into the diagnostic pathway enhances the 
accuracy of lung cancer detection, particularly in distinguishing benign nodules from 
malignant ones and assessing the extent of disease progression [19]. Therefore, while AI-
driven chest CT-Scan analysis is a valuable tool in early lung cancer detection, the integration 
of CT scans provides a comprehensive diagnostic approach that maximizes the chances of 
identifying and treating lung cancer at its earliest stages. This multidimensional strategy 
underscores the importance of leveraging advanced imaging technologies to combat this 
pervasive disease effectively [20].   
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Figure 1. Root cause analysis of Lung Cancer 

 

2. ROLE OF AI IN SCREENING OF LUNG CANCER: 

The role of artificial intelligence (AI) in screening for lung cancer has become increasingly 

prominent due to its potential to enhance early detection and improve patient outcomes. AI 

techniques integrated into medical imaging systems to aid in the interpretation of lung scans. 

Here are some key aspects of AI's role in lung cancer screening: 

Risk Stratification: AI can assist in stratifying patients based on their risk of developing 

lung cancer. By analyzing various factors, such as imaging features, patient history, and 

genetic markers, AI models can provide personalized risk assessments and guide healthcare 

providers in implementing targeted screening strategies [21]. 

Integration with Clinical Workflow: AI tools can be seamlessly integrated into existing 

clinical workflows, allowing for efficient screening processes and streamlined communication 

between healthcare professionals. This integration facilitates prompt follow-up and treatment 

planning for patients identified with suspicious findings [22]. 

Enhanced Accuracy: Studies have shown that AI-based lung cancer screening systems can 

achieve high levels of sensitivity and specificity, reducing false-positive and false-negative 

rates compared to traditional methods. This increased accuracy helps avoid unnecessary 

interventions while ensuring that potential cases of lung cancer are not missed [23]. 

Continuous Learning: AI models can continuously learn from new data and updates, 

improving their performance over time. This adaptability enables ongoing refinement of 

screening algorithms and ensures that they remain up-to-date with the latest advancements 

in LC detection and management [24]. 

This paper is structured as follows: second Section  provides the motivation behind this 

research work, third section provide the related works, fourth section presents the proposed 

technique, fifth section  analyzes the results, and last section concludes the paper with 

discussions. 
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3. MOTIVATION: 

The motivation behind the advancements in lung cancer diagnosis stems from a deep 

commitment to enhancing patient outcomes, streamlining healthcare delivery, and improving 

medical decision-making processes. By embracing innovative technologies, we aim to tackle 

the multifaceted challenges associated with lung cancer, spanning from accurate diagnosis to 

personalized treatment strategies. Our focus is on leveraging these advancements to 

revolutionize healthcare delivery and ultimately improve the quality of life for patients battling 

lung cancer. 

4. OUR CONTRIBUTIONS: 

Hierarchical Reference Architecture Leveraging Lung Cancer Classification: 

We have introduced a novel hierarchical reference architecture that integrates lung cancer 

classification methodologies. This structured framework not only facilitates accurate 

diagnosis but also enhances the management of complex healthcare systems efficiently. By 

leveraging insights from lung cancer classification leads to improved patient treatment . 

M-GWO Feature Selection Technique: 

Our proposed Hybrid_PSO feature selection technique plays a pivotal role in optimizing 

overall system performance. By employing advanced algorithms, we can identify and prioritize 

key features relevant to lung cancer diagnosis and treatment. This optimized feature selection 

process not only improves the accuracy of diagnostic tools but also contributes to more 

efficient healthcare delivery, reducing unnecessary procedures and enhancing resource 

utilization. 

Machine Learning-Based Stacked Model for Scalability and Flexibility: 

We have developed a machine learning-based stacked model designed to offer scalability and 

flexibility to healthcare institutions. This model empowers hospitals to adapt swiftly to 

evolving technological advancements in the medical domain. By leveraging machine learning 

capabilities, hospitals can streamline workflows, enhance predictive analytics for early 

detection, and customize treatment protocols based on real-time data insights. This scalability 

and flexibility enable healthcare facilities to stay at the forefront of lung cancer diagnosis and 

treatment, ensuring optimal patient care in a rapidly changing healthcare landscape. 

5. Related work:  

The medical landscape, particularly in cancer treatment, has witnessed remarkable strides 

through AI-driven analyses of vast datasets. These technological advancements have not only 

enhanced diagnostic accuracy but also paved the way for tailored therapies based on individual 

patient profiles. recent studies have demonstrated AI's prowess in early lung cancer detection, 

transcending the traditional association with smoking. Non-smokers, too, can fall victim to 

lung cancer, emphasizing the criticality of vigilant symptom monitoring and timely medical 

intervention.  

In the realm of LC classification using deep learning and image analysis techniques, various 

research endeavors have been undertaken to address the challenges of accuracy and efficiency 

in diagnosis. Raza et al. (2023) introduced Lung-EffNet, a transfer learning-based predictor 

leveraging the EfficientNet architecture. This approach represents a significant leap in 

accuracy, as Lung-EffNet achieved remarkable results in accurately classifying LC from CT 

scans. By integrating top layers in the classification head of the model, Lung-EffNet 

demonstrated the potential of transfer learning in enhancing predictive capabilities, 

showcasing its effectiveness in the critical domain of early cancer detection. Pandit et al. (2023) 

contributed to the field by enhancing lung cancer classification through multispace image 

pooling and an autoencoder system integrated into their CNN model. This innovative 
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approach not only improved overall accuracy but also addressed the issue of processing time, 

a crucial factor in real-time diagnosis and treatment planning. By leveraging advanced 

techniques like multispace image pooling and autoencoders, Pandit et al. showcased the 

importance of combining traditional CNN frameworks with cutting-edge methodologies to 

achieve optimal results in medical image analysis. Naseer et al. (2023) focused on lobe 

segmentation and nodule detection, essential components in accurate lung cancer diagnosis. 

Their modified U-Net and SVM-based model demonstrated promising results in segmenting 

lobes and identifying nodules, contributing significantly to the automated detection and 

classification of LC from CT scans. This work highlights the importance of robust 

segmentation techniques in preprocessing medical images and lays the foundation for 

improved diagnostic tools. Mohamed et al. (2023) proposed a hybrid EOSA-CNN model, 

showcasing the potential of metaheuristic optimization in improving CNN performance for 

lung cancer classification. By addressing challenges related to parameter selection and model 

architecture, the EOSA-CNN hybrid model achieved high accuracy and demonstrated superior 

specificity and sensitivity compared to other methods. This research signifies the importance 

of optimizing deep learning models using metaheuristic algorithms for enhanced performance 

in medical image analysis. 

AR et al. (2023) introduced LCD-CapsNet, an innovative combination of CNN and Capsule 

Network, aimed at improving LC detection accuracy. By leveraging the unique capabilities of 

Capsule Networks in recognizing fine-grained spatial correlations, LCD-CapsNet achieved 

high precision and recall rates, showcasing its potential as a robust tool for automated LC 

diagnosis from CT scans. This work highlights the importance of exploring diverse deep 

learning architectures to achieve optimal results in medical image classification tasks. Prakash 

et al. (2023) contributed to the field by developing an EESNN-FSOA-LCC model using genetic 

algorithm optimization. This approach demonstrated superior accuracy and processing 

efficiency compared to existing methods, showcasing the potential of hybrid metaheuristic and 

CNN algorithms in improving lung cancer classification. By integrating genetic algorithm 

optimization into the model training process, Prakash et al. highlighted the importance of fine-

tuning model parameters for optimal performance in medical image analysis. Bushara et al. 

(2023) introduced VGG-CapsNet, an ensemble method for lung cancer detection that 

leveraged the capabilities of both VGG and Capsule Networks. This novel approach 

demonstrated high precision, recall, and specificity rates, underscoring its effectiveness in 

accurately identifying and classifying lung cancer from CT scans. By combining different deep 

learning architectures, Bushara et al. showcased the potential of ensemble methods in 

improving diagnostic accuracy in medical imaging. Dunn et al. (2023) utilized deep learning 

and radiomic analysis for automated lung cancer subtype classification, achieving high 

accuracy in distinguishing different subtypes. Their study underscored the importance of 

leveraging advanced AI techniques like deep learning and radiomics to extract meaningful 

features from medical images, enabling accurate classification of lung cancer subtypes. This 

research contributes to the ongoing efforts in personalized medicine by providing tools for 

precise diagnosis and treatment planning based on subtype-specific characteristics.  

The collective efforts of researchers in the field of LC classification using deep learning and 

image analysis techniques signify the rapid advancements and ongoing innovations in medical 

image analysis. These endeavors not only focus on improving diagnostic accuracy but also 

emphasize the importance of efficiency, processing speed, and model optimization. By 

exploring diverse methodologies, combining different deep learning architectures, and 

integrating metaheuristic optimization techniques, researchers are paving the way for more 

accurate, efficient, and personalized approaches to lung cancer diagnosis and treatment. 
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Table 1. Comparative analysis among literature survey the done 

 

Reference Objective Methodology Advantage 
Limitations 

[25] Raza et al. 
(2023) 

LC classification using 
EfficientNet from CT-scan 
images 

Proposed Lung-EffNet based 
on EfficientNet architecture 
with top layer modification, 
evaluated on IQ-OTH/NCCD 
dataset, handled class 
imbalance 

Achieved 99.10% accuracy, 
outperformed other CNNs in 
terms of accuracy and 
efficiency 

Lack of detailed 
comparison with other 
state-of-the-art 
models 

[26] Pandit et al. 
(2023) 

Enhanced lung cancer 
classification using CNN with 
multispace image pooling 
and autoencoder system 

Used CNN with multispace 
image pooling and 
autoencoder for improved 
accuracy and reduced 
processing time 

Increased accuracy to 99.5%, 
reduced processing time 

Limited discussion on 
scalability and 
generalizability 

[27] Naseer et al. 
(2023) 

LC classification using 
modified U-Net and SVM 

Developed a modified U-Net 
for lobe segmentation and 
nodule detection, used SVM 
for classification 

Achieved promising results in 
lobe segmentation and nodule 
detection 

Limited dataset 
description and 
external validation 

[28] Mohamed et 
al. (2023) 

LC classification using hybrid 
metaheuristic and CNN 

Proposed EOSA-CNN hybrid 
model for lung cancer 
classification, optimized with 
EOSA 

Achieved 0.9321 accuracy, 
demonstrated improved 
specificity and sensitivity 

Limited discussion on 
algorithm complexity 
and training time 

[29] AR et al. 
(2023) 

Detection and classification 
of  
LC using LCD-CapsNet 

Introduced LCD-CapsNet 
combining CNN and CapsNet 
for  LC detection and 
classification 

Achieved 94% accuracy, 
demonstrated high precision 
and recall 

Lack of detailed 
comparison with other 
CapsNet variants 

[30] Prakash et al. 
(2023) 

Enhanced Elman Spike 
Neural Network for lung 
cancer classification 

Proposed EESNN-FSOA-LCC 
model using genetic algorithm 
and flamingo search 
optimization 

Achieved high accuracy 
compared to existing methods 

Limited discussion on 
model interpretability 

[31] Cao et al. 
(2023) 

Weakly supervised deep CNN 
for LC classification 

Developed E2EFP-MIL model 
for efficient and accurate LC 
subtype classification 
 

Achieved high AUCs and 
accuracy, demonstrated 
generalizability 

Limited discussion on 
model explainability 
and clinical validation 

[32] Jagadeesh et 
al. (2023) 

Genetic algorithm-based LC 
segmentation and 
classification 

Developed improved model 
using genetic algorithm for LC 
segmentation and PNN for 
classification 

Outperformed existing 
methods in accuracy and 
processing time 

Limited discussion on 
algorithm scalability 

[33] Bushara et al. 
(2023) 

Ensemble method with 
CapsNet for  LC detection 

Proposed VGG-CapsNet 
ensemble for LC  detection, 
achieved high accuracy and 
precision 

Demonstrated superiority over 
basic CapsNet and CNN 
combinations 

Lack of detailed 
analysis on model 
robustness 

[34] Dunn et al. 
(2023) 

Automated LC subtype 
classification using deep 
learning 

Applied iMRRN for image 
segmentation and various 
classification algorithms for 
subtype classification 

Achieved high accuracy in 
classifying lung cancer 
subtypes 

Limited discussion on 
data preprocessing 
steps and model 
explainability 

 

6. Proposed work: As meticulous approach has been adopted, employing a feature 

selection method known as M-GWO in algorithm 1. This acronym may signify an optimization 

algorithm designed for feature selection. Through the implementation of M-GWO, a 

comprehensive analysis has been undertaken, resulting in the identification and selection of 

eleven crucial features deemed essential for optimizing the system's performance. 

Subsequently, the data corresponding to these selected features has been compiled into a new 

dataset named M-GWO. This dataset serves as the foundation for the next phase of the stack 

model utilizing the insights gained from the M-GWO dataset. The hybrid_stack model implies 

a strategic arrangement or configuration of features. This systematic and data-driven 

approach reflects a commitment to enhancing the performance and responsiveness of the 

framework in question, showcasing a methodical integration of advanced optimization 

techniques in the pursuit of efficiency. 
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Figure 2.Work flow of proposed model. 

Data Description: The LC dataset from the Iraq-Oncology Teaching Hospital/National 

Center for Cancer Diseases (IQ-OTH/NCCD) was gathered during a three-month period in 

autumn 2019 at the aforementioned specialty institutions. It comprises both healthy 

individuals' and patients' CT scans that have been diagnosed with LC at various stages. In these 

two centers, radiologists and oncologists marked IQ-OTH/NCCD slides. A total of 1190 

pictures, or CT scan slices from 110 instances, are included in the collection (see Figure 1). The 

three groups of these instances are malignant, benign, and normal. Out of them, 45 instances 

have been classed as normal cases, 40 as malignant cases, and 15 as benign ones. Originally, 

the CT scans were gathered in DICOM format. [35]. 

GLCM Feature Extraction: 

i. Autocorrelation Equation (1):  

• Autocorrelation measures the similarity of a pixel to its neighboring pixel throughout the 
image. 

• It quantifies how the pixel values are correlated with each other at different spatial distances. 

• A higher autocorrelation value indicates smoother and more uniform texture 

 

𝑃(𝑥, 𝑦) =
∑ ∑ 𝐼(𝑢, 𝑣)𝐼(𝑢 + 𝑥, 𝑣 + 𝑦)𝑁

𝑣=0
𝑁
𝑢=0

∑ ∑ 𝐼2𝑁𝑔−1

𝑣=0

𝑁𝑔−1

𝑢=0 (𝑢, 𝑣)
 

                 (1) 

 

ii. Contrast (Equation 2): 

• Contrast measures the intensity difference between a pixel and its neighbors. 

• It quantifies the local variations or changes in pixel intensity within the image. 

• Higher contrast values indicate a more distinct boundary between different texture regions.   

      

𝐶𝑜𝑛𝑡. = ∑ ∑|𝑖 − 𝑗|2𝑝(𝑖, 𝑗)

𝑗𝑖

 

                          
(2) 

iii. Correlation (Equation 2): 

• It quantifies how much the pixel values are correlated with each other across the image. 
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• A high correlation value indicates a strong linear relationship between neighboring pixels. 

 

 Correl = ∑ ∑
(i − μi)(j − μj)p(i, j)

σi σj 
ji

 

                      

(3) 

iv. Cluster Prominence (Equation 4):  

• It measures the skewness of the GLCM matrix, indicating the presence of clustered or 
dispersed texture patterns. 

• Higher values suggest more asymmetry and clustering in the texture. 

 

Pro = ∑ ∑ (𝑖 + 𝑗 − 𝑢𝑥 − 𝑢𝑦)
4

𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

                                                                         
(4) 

 

v. Cluster Shade (Equation 5): 

• Cluster Shade measures the skewness of the GLCM matrix and the uniformity of pixel 
distribution. 

• It quantifies the asymmetry of the GLCM around its mean value, indicating the uniformity or 
non-uniformity of texture. 

• Higher values indicate greater asymmetry and non-uniformity in texture distribution. 

 Sha = ∑ ∑ (𝑖 + 𝑗 − 𝑢𝑥 − 𝑢𝑦)
3

𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

                             
(5) 

vi. Dissimilarity (Equation 6): 

• Dissimilarity measures the average absolute difference in grayscale values between a pixel and 
its neighbors. 

• It quantifies the heterogeneity or dissimilarity of texture within the image. 

• Higher values indicate greater dissimilarity or variation in texture patterns. 

 

Dissimilarity = ∑ ∑|i − j| p(i, j)

ji

 

                                                                                                                                                                          
(6) 

vii. Energy (Equation 7): 

• Energy measures the uniformity and orderliness of texture by summing the squared elements 
of the GLCM. 

• It quantifies the presence of repetitive patterns or regularity in texture. 
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• Higher energy values indicate more orderliness and repetitive patterns. 

 

Energy = ∑ 𝑝(𝑖, 𝑗)2

𝑖,𝑗

         

              (7) 

 

viii. Entropy (Equation 8): 

⚫ Entropy measures the randomness or uncertainty in the distribution of pixel values within the 

image. 

⚫ It quantifies the degree of disorder or unpredictability in texture patterns. 

⚫ Higher entropy values indicate greater randomness and less predictability in texture. 

 

Ent = ∑ ∑ 𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗))  

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

                                                                                         (8) 

ix. Homogeneity (Equation 9): 

⚫ Homogeneity measures the closeness of the distribution of GLCM elements to the diagonal. 

⚫ It quantifies the similarity or homogeneity of texture within the image. 

⚫ Higher homogeneity values indicate more uniform and homogeneous texture.  

𝐻𝑜𝑚𝑜𝑔 = ∑ ∑
1

1 + |𝑖 − 𝑗|2
𝑃(𝑖, 𝑗)

𝑗𝑖
 

                                                                                         (9)                           

x. Maximum Probability (Equation 10): 

⚫ The maximum probability of a certain pair of pixels occurring in the picture is measured. 

⚫ It quantifies the most frequently occurring texture pattern or pixel pair. 

⚫ Higher values indicate a higher probability of occurrence for a specific texture pattern. 

 

𝑀𝑎𝑥. 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑚𝑎𝑥. 𝑝(𝑖, 𝑗)𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗)     

       

                                             (10) 

xi. Sum of Squares Variance (Equation 11): 

• It quantifies the heterogeneity or variability in texture patterns based on gray level sums. 

• Higher values indicate greater variability and dispersion in texture patterns.                                                                             

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑(𝑖 − 𝜇)2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑖=1

 

                                                                                                                                                                        
(11) 

xii. Sum Average (Equation 12): 

• It quantifies the average gray level sum in the texture patterns. 

• Higher values indicate a higher average gray level sum in the texture. 
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𝑠𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝑖𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

   

                          (12) 

7. Data Cleaning:  

Managing and Resolving Missing Data: One of the most important phases in data 

analysis is handling missing values. Choosing whether to remove rows or columns with 
missing data or use sophisticated machine learning-based approaches to fill in the blanks will 
depend on the situation.  The missing value is replaced by mean value. 

Normalization: Scaling Numerical characteristics: Preventing the dominance of particular 
characteristics during model training by normalizing numeric features to make sure they are 

on a comparable scale. To handle this problem, the suggested model uses the Standard Scaler 
normalization technique in the context of sensor data traffic characteristics with different 
magnitudes. By using this technique, feature observations are converted to have a standard 
deviation of 1 and a mean incoming traffic value of 0. By doing this, biases from incoming 
traffic are removed while maintaining the statistical properties of the data. This scaling is 

implemented by using Equation 13 (the transformation function). 

                                                                                                             
(13) 

In such case, z is the feature Z is a member of the set {z_1,z_2,...,z_N}, and the standard score 
for z features is S_S (z). The observed value is the O_V. The feature mean is denoted by M. 
The standard deviation of the characteristics is denoted by S_D. Here is how M(z) and S_D 

(z) are calculated: 

                                                                                   (14) 

                                                      (15) 

  

8. Grey Wolf Optimization: GWO is a metaheuristic optimization algorithm inspired by 

the social hierarchy and hunting behavior of grey wolves. It aims to optimize complex 

problems by mimicking the leadership hierarchy and collaborative hunting strategies 
observed in wolf packs. this algorithm is use to select the important features. Typically, grey 
wolves exhibit a preference for living in packs, with an average group size ranging from 5 to 12 
individuals. Within the social structure of a grey wolf pack, there are stringent rules governing 
dominance and hierarchy. The pack consists of the following roles: 

I. Alphas, serving as leaders, are responsible for decision-making, and their directives are 
followed by the entire pack. 

II. Betas, subordinate to alphas, assist in decision and other group happenings. Betas can be 
either gender, and they often emerge as strong contenders for assuming the alpha role. 

III. Omegas play the role of scapegoats and are required to submit to all remaining dominant 

wolves. They are the preceding in line to partake in meals. 

IV. Alphas and betas may have authority over deltas, but deltas exert control over omegas. This 
group comprises scouts, sentinels, elders, hunters, and caretakers. Scouts vigilantly watch over 
territorial borders, warning the pack of potential threats. Sentinels are dedicated to 
safeguarding and ensuring the safety of the pack. Elders, having previously held alpha or beta 

roles, bring experience and wisdom. Hunters collaborate with alphas and betas in capturing 
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prey to sustain the pack. Caretakers, on the other hand, attend to the needs of weak, ill, and 
injured pack members. 
The framework of Grey Wolf Optimization model, the most optimal solution is denoted as 

alpha (α). The subsequent two best solutions are referred to as beta (β) and delta (δ). The 
remaining candidate results are collectively designated as omega (ω). The strategy used for 
hunting is guided by these four entities—α, β, δ, and ω—each following one of the three 
aforementioned candidates. To simulate the encircling behavior necessary for the bunch to 
hunt prey, the mathematical modeling of this behavior is represented by the following 

equations, namely Eqs. (16)– (19). 

                                                                                                
(16) 

In Eq. (17),   is defined, where t represents the iteration number, and   and   are vectors of 

coefficients.  denotes the prey position, while  signifies the grey wolf position. 

                                                                                                
(17) 

The  vector are calculated as in equation 18 and 19 

                                                                                                                (18) 

                                                                                                                             (19) 

  

The process involves linearly decreasing the parameter 'a' from 2 to 0 throughout the 
iterations, with 'r1' and 'r2' representing random vectors within the range [0, 1]. Generally, the 

alpha guides the hunting, with occasional participation from beta and delta. The updating of 
the wolves' positions is expressed as in Eq. (20). 

                                                                                                    
(20) 

 are define as in equation (21)-(23), respectively. 

,                                                                                                     
(21) 

,                                                                                                   
(22) 

  

,                                                                                                   
(23) 

Where , ,   are the first three best solution in the swarm at a given iteration t, , , 

 are defined as in eq. (3), and , ,  are defined using equation (24) – (26), respectively. 

                                                                                                     
(24)                                                                                  
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(25) 

                                                                                                      
(26) 

   

Where , ,  are define as in equation (17) 

A concluding note regarding the GWO pertains to the adjustment of the parameter 'x,'. The 
parameter 'a' undergoes a linear update during each iteration, transitioning from 2 to 0 in 
accordance with Eq. (27). 

          (27) 

Algorithm 1: M-Grey wolves optimization Model 

Input: 

n: Total amount grey wolves in the group, 

N-Iter: count of repetitions for optimization. 

Output: 

 

Pα: Location of the best grey wolf, 

f(Pα): Optimal fitness cost. 

Initialization: 

 

Randomly initialize positions for n grey wolves in the population. 

Identify Alpha, Beta, and Delta: 

a. Determine the solutions for Alpha, Beta, and Delta based on the fitness number. 

Optimization Loop: 

While the termination criteria are not satisfied, perform the following: 

a. Update Positions: 

i. Update the position of each wolf i in the pack using Eq. (17). 

b. Update Parameters: 

i. Adjust the parameters a, A, and C. 

c. Evaluate Positions: 

i. Compute the location of individual wolves. 

d. Update: 

i. Update the values of α, β, and δ. 

 

End of Optimization Loop 
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Note: The algorithm iteratively updates the positions of the grey wolves, modifies 

parameters, evaluates fitness for each individual, and updates the alpha, beta, and delta 

solutions until the specified stopping criteria are met. 

 

9. Improved Grey Wolf Optimization (M-GWO): Wolf locations are continually 

adjusted to any point in space using the GWO technique. Certain unique issues, such feature 
selection, have solutions that can only be found in the binary {0, 1} range, which is why a 
unique version of the GWO is needed. This paper proposes a novel M-GWO for the job of 
feature selection. Each wolf is drawn to the top three best solutions by the wolves updating 

equation, which is a function of three location vectors, xα, xβ, and xδ. The pool of solutions in 
the M-GWO is always in binary form, with every solution located on a hypercube's corner. 

                                                                        (28) 

where Crossover is required cross over among solutions x, y, and z and P1; P2; P3 Binary 

vectors, indicating the impact of the wolf movement towards alpha, beta, and delta wolves in 
sequence, are represented by P1, P2, and P3. The calculations for these vectors are determined 
through Eqs. (29), (32), and (35), respectively. 

                                                                       
(29) 

Here, denotes the position vector of the alpha wolf in dimension d, and  is a binary 
step in dimension d, which can be computed according to the formula presented in Eq. (30). 

                                                                      (30) 

In this context, "rand" represents a randomly generated number from a uniform distribution. 

Meanwhile,  stands for the continuous-valued size of step associated with dimension 
(d). This step size can be determined by employing a sigmoidal function, as outlined in Eq. 
(31). 

                                                                                   (31) 

where  are calculated using Eqs. (15), and (21) in the dimension d. 

                                                                               
(32) 

In this scenario,  signifies the position vector of the beta wolf in dimension d, and  is 
a binary step in dimension d, the computation of which is specified in Eq. (33). 

                                                                       (33) 

In this context, "rand" denotes a randomly generated number from a uniform distribution. 

Additionally,   represents the continuous-valued size of step is associated with 
dimension d. The calculation of this step size involves the utilization of a sigmoid function, as 

described in Equation (34). 

                                                                                          (34) 
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where W1 d, and Zd β are computed with Eqs. (15) and  (21) in dimension d. 

                                                                       (35) 

In this context,   designates the positional vector used for the delta wolf in dimension d, 

while   represents a major binary step in the dimension d. The computation of this 

binary step is outlined in Eq. (36).                                                                     

(36) 

Two different approaches are used to execute the changed version. The first technique uses 
binarization of steps toward the top three solutions, followed by a stochastic crossover between 
these three basic motions to calculate the updated position of the grey wolf. On the other hand, 

the second approach involves using a sigmoidal function to transform the continuously 
updated position. The resulting values are stochastically thresholded to ascertain the updated 
position of the grey wolf. Both methods for the modified Grey Wolf Optimization (M-GWO) 
are applied within the field of feature selection. 

10. Result analysis: 

Analyzing the results of a model using metrics like accuracy (ACC), Matthews correlation 
coefficient (MCC), and F1 score provides valuable insights into its performance. Accuracy gives 
an overall view of correct predictions, but it may be biased by imbalanced datasets. MCC offers 
a balanced measure, especially useful for imbalanced data, with values closer to 1 indicating 

better predictions. F1 score balances precision and recall, making it suitable when false 
positives and false negatives hold equal importance. Each metric contributes unique 
perspectives, guiding adjustments or optimizations based on the specific needs and 
characteristics of the dataset and problem domain. 

GLCM Feature extraction  

GLCM feature extraction: In the first step we have extracted the GLCM features using Matlab 
code. Indifferent GLCM features are discussed in the above section that we have extracted. 
GLCM features help us to figure out the lung cancer.  The sample records are shown below in 
figure 3. 

 

Figure 3: Extracted GLCM features 

To shuffle dataset and perform label encoding, we can leverage scikit-learn's utilities. Utilize 
sklearn.utils.shuffle to randomize the order of your dataset, ensuring a balanced 
representation across training and testing sets. Concurrently, employ sklearn.preprocessing. 
LabelEncoder to transform categorical labels into numerical values, facilitating compatibility 

with machine learning algorithms. This process streamlines data preparation, enhancing 
model performance and interpretability while maintaining data integrity and consistency 
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throughout the analysis pipeline.shuffling of GLCM dataset & output lable encoding.  The 
sample records are shown below in figure 4.  

 

Figure 4: shuffle dataset 

Feature selection using M-GWO: Feature selection using the M-GWO (Modified Grey Wolf 
Optimizer) algorithm involves a metaheuristic approach to identify the most relevant 

features from a given dataset. The M-GWO algorithm is an enhancement of the traditional 
Grey Wolf Optimizer (GWO), integrating modified strategies to improve feature selection 
accuracy. figure 5 provide the code to perform feature selection using M-GWO.  

 

Figure 5:code to perform feature selection using M-GWO. 

Fine-tune the M-GWO algorithm by adjusting parameters like the number of iterations 
(num_iter), population size, and convergence criteria. Shown in figure 6. 
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Figure 6:M-GWO algorithm adjusting parameters 

Iterate this process to achieve optimal feature subsets that maximize model performance. 
Adjust parameters and experiment with different evaluation metrics to optimize feature 

selection outcome shown in figure 7. 

 

Figure 7: Optimize feature selection outcome 

Figure 8, helps to determine how quickly the algorithm reaches a stable solution, whether 
there are any oscillations or fluctuations in the optimization process, and whether the 

algorithm exhibits any convergence and divergence patterns. 

 

Figure 8: convergence and divergence patterns 

11. Data Preprocessing: 

This section incorporates data preprocessing steps all the listed methodology is implemented 
as in methodology section. We have implemented M-GWO for the feature selection.  Figure 9 
determine class count at output label. The dataset contains three different class, Bengin_cases 

120 instant, Malignant_cases 561 instance and Normal_cases 561 instants. 
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Figure 9:Count of output label 

A correlation matrix is shown in figure 10, displaying the correlation values among the 
variables. The correlation between two variables is displayed in each cell of the table. The 
number falls between -1 and 1. A complete positive linear link exists between two variables if 

their correlation coefficient is 1.  

 

Figure 10: correlation matrix 

Artificial Neural Network(ANN):  This computational model is inspired by biological 
neural networks, such as those found in the human brain, in terms of both form and 

functionality. ANNs are used in artificial intelligence and machine learning to handle 
complicated data inputs and produce outputs that are dependent on correlations and patterns 
found in the data. The input layer, hidden layers, and output layer are the layers of linked 
nodes, or neurons, that make up these networks and collaborate to learn and make predictions 
or judgments. Figure 11 (a) and (b) demonstrate ANN had approx 84 % training and validation 

accuracy and high validation loss. This indicate that ANN is not fit for this dataset. 
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Figure 11 a) training and validation 
accuracy 

Figure 11 b) Training and validation loss 

KNN:  A straightforward yet effective machine learning approach for classification and 
regression problems is K-Nearest Neighbors (KNN). When predicting a new data point, the 
"K" in KNN stands for the number of nearest neighbors to take into account. Figure 12 a) 

demonstrate the confusion matrix score, b)train data set result achieved a high accuracy of 
0.960, indicating that it correctly classified 96.0% of the samples. The MCC of 0.932 suggests 
a strong correlation between predicted and actual values, and the F1 score of 0.959 reflects a 
good balance between precision and recall and test data set result, KNN achieved  an accuracy 
of 0.927, an MCC of 0.870, and an F1 score of 0.927.  This ROC curve indicates performance 

across all metrics, especially in terms of accuracy, F1-score and MCC. 

 

 

a) KNN Confusion matrix b) Training and Testing results of KNN 
model 
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c) ROC curve for KNN 

Figure 12: Overall KNN results 

Decision Tree (DT): A Decision Tree is a hierarchical structure where each internal node 
represents a decision based on a feature, and each leaf node represents the outcome or class 
label.Figure 13  a) demonstrate the confusion matrix score, b)train data set result, DT 
performed well with an accuracy of 0.875, an MCC of 0.786, and an F1 score of 0.872. This 
suggests that the decision tree model was effective in capturing the underlying patterns in the 

data and making accurate predictions and test result achieved an accuracy of 0.840, an MCC 
of 0.716, and an F1 score of 0.843. It shows reasonable performance but falls short compared 
to KNN and the stacked model in terms of MCC and F1 score. This ROC curve indicates 
performance across all metrics, especially in terms of accuracy, F1-score and MCC. 

 
 

a) DT Confusion matrix b) Training and Testing results of DT model 
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c) ROC curve for KNN 

Figure 13: Overall DT results 

SVM:  The data points that are closest to the decision border are known as support vectors, 
and they are essential in determining the margin. SVMs are memory-efficient for big datasets 

because they only use a subset of training data points (called support vectors) that are close to 
the decision border. Figure 14 a) demonstrate the confusion matrix score, b)train data set 
result, had a lower accuracy of 0.831 compared to KNN. The MCC of 0.715 and F1 score of 
0.783 also indicate comparatively lower performance in terms of both correlation and balance 
between precision and recall and test dataset result had an accuracy of 0.869, an MCC of 

0.769, and an F1 score of 0.832. While the accuracy is decent, the MCC and F1 score are slightly 
lower compared to KNN. This ROC curve indicates performance across all metrics, especially 
in terms of accuracy, F1-score and MCC. 

 

 

a) SVM Confusion matrix b) Training and Testing results of SVM model 
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c) ROC curve for SVM  

Figure 14: Overall SVM results 

MLP: An artificial neural network with many layers of nodes (neurons) comprising an input 
layer, one or more hidden layers, and an output layer is called a multilayer perceptron (MLP).  
Figure 15 a) demonstrate the confusion matrix score, b)train data set result, r performance to 

SVM RBF, with an accuracy of 0.830, an MCC of 0.709, and an F1 score of 0.780. While MLP 
is a powerful model, it seems to have slightly underperformed in this context compared to 
other models and test dataset result had an accuracy of 0.873, an MCC of 0.771, and an F1 
score of 0.780. It performs well in terms of accuracy but shows a lower F1 score compared to 
other models.This ROC curve indicates performance across all metrics, especially in terms of 

accuracy, F1-score and MCC. 

 

 
 

a) MLP Confusion matrix b) Training and Testing results of MLP 

model 
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c) ROC curve for MLP 

Figure 15:Overall MLP results 

Proposed Model: Proposed stack model: stacked models are a powerful technique in 
machine learning ensembles, offering enhanced predictive performance by leveraging the 
strengths of multiple base models and effectively combining their predictions through a meta-
model. Figure 16 a) demonstrate the confusion matrix score, b)train data set result 
demonstrated exceptional performance across all metrics, with an accuracy of 0.998, an MCC 

of 0.996, and an F1 score of 0.998. This indicates near-perfect classification and a very strong 
correlation between predicted and actual values and test dataset result outperformed all other 
models with an accuracy of 0.949, an MCC of 0.909, and an F1 score of 0.948. It demonstrates 
superior performance across all metrics, indicating the effectiveness of ensemble methods or 
stacked models in improving predictive accuracy and robustness. This ROC curve indicates 

performance across all metrics, especially in terms of accuracy, F1-score and MCC. 

 

 

 

a) Proposed Model Confusion matrix b) Training and Testing results of Proposed 

Model 
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c) ROC curve for Proposed Model 

Figure 16: Overall proposed model results 

The results analysis reveals in figure 17,  the proposed model significantly outperforms 
individual machine learning models in terms of accuracy, Matthews Correlation Coefficient 
(MCC), and F1 score. The proposed model achieved an outstanding accuracy of 0.998, a high 

MCC of 0.996, and an impressive F1 score of 0.998, indicating near-perfect classification and 
a strong correlation between predicted and actual values. In comparison, while KNN showed 
high accuracy and MCC, the proposed model surpassed it significantly. Similarly, SVM and 
MLP exhibited lower performance metrics, highlighting the superior predictive capabilities of 
the proposed model. These results underscore the effectiveness of ensemble methods, 

particularly the hybrid stacked model approach, in enhancing predictive accuracy and 
robustness in lung cancer classification tasks. 

 

Figure 17:comparative analysis of train data 

The analysis of the results demonstrates in figure 18,  that the proposed model outperforms 
individual machine learning models. The proposed model achieved a high accuracy of 0.949, 
a substantial MCC of 0.909, and an impressive F1 score of 0.948, indicating its capability for 
accurate classification and strong correlation between predicted and actual values. Compared 
to the baseline models, including KNN, SVM, and MLP, the proposed model demonstrates 

superior performance across all metrics, highlighting the effectiveness of ensemble methods 
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and the hybrid stacked model approach in enhancing predictive accuracy and robustness in 
lung cancer classification tasks. 

 

 

Figure 18:Comparative analysis of test data 

Conclusion:  The integration of contemporary data science techniques and artificial 

intelligence into the interpretation of medical imaging scans marks a significant shift towards 
more reliable and automated diagnostic tools. Unlike traditional methods reliant on subjective 
visual examination by skilled radiologists, this advancement aligns with the core objective of 
radiomics, merging personalized medicine with medical imaging. One of the main causes of 
cancer-related fatalities worldwide, lung cancer, has a difficult environment. However, 

advancements in lung cancer screening provide hope for improved treatment outcomes. The 
survivability rates at different stages of lung cancer highlight the criticality of early detection 
and intervention. Low dose computed tomography (LDCT), the recommended screening test 
for lung cancer, utilizes X-ray technology to produce detailed images of the lungs, aiding in 
the detection of abnormal tissue indicative of cancer. While LDCT offers life-saving potential, 

it also poses risks such as false positives, overdiagnosis, and exposure to X-rays. Therefore, 
screening is recommended primarily for individuals at high risk of lung cancer. New 
Generation Information Technologies (New IT) play a pivotal role in driving the evolution of 
Lung Cancer Classification. Leveraging LDCT in conjunction with AI-based Multilevel 
Optimization through a hybrid stacked model addresses the aforementioned challenges 
effectively. The proposed hierarchical reference architecture facilitates the extraction of 

pertinent features from LDCT scans using GLCM techniques, further refined through IGWO 
analysis to identify optimal features. This optimized solution, when integrated into a hybrid 
stacked model, enables accurate classification of input images as normal or abnormal, thereby 
enhancing diagnostic precision. The comparative analysis of different machine learning 
models, including KNN, SVM, Decision Tree, MLP, and the proposed stacked model, 

demonstrates the superiority of ensemble methods in improving predictive accuracy and 
robustness. The stacked model, with its exceptional performance metrics including accuracy, 
MCC, and F1 score, showcases the efficacy of leveraging multiple base models and a meta-
model for enhanced classification capabilities. The ROC curves further illustrate the strong 
performance across all metrics, highlighting the stacked model's effectiveness in achieving 

accurate and reliable predictions. In conclusion, the integration of advanced data science 
techniques, AI, and ensemble learning methods holds immense potential in revolutionizing 
lung cancer classification and diagnosis. 
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