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ARTICLE INFO ABSTRACT

Lung cancer is the leading cause of cancer-related mortality worldwide, and detecting
the disease can still save lives. if a lung cancer diagnosis has been made. The illness
Revised: 22 Feb 2025 known as lung cancer occurs when healthy lung cells transform into dangerous

aberrant cells known as cancer cells. Tumors are collections of cancerous cells that
Accepted: 26 Feb 2025  grow over time. Today, medical imaging scans are being interpreted with the use of
artificial intelligence and contemporary data science techniques. In contrast to
conventional techniques, which depend on the subjective and time-consuming visual
examination of radiologists, the emphasis now is on creating reliable automated
diagnostic tools. This change is in line with the core objective of radiomics, a
developing field of study that combines customized medicine with medical imaging.
Improvements in lung cancer screening provide a glimmer of hope for life-saving
treatments. Together, in stage one, the survival rate is 70%. Stage 2 drops to 50% as
stage 3 drops. And stage four for the most part is not curable disease, but there are
some patients who might be alive around five years.The aforementioned problems are
efficiently addressed by the merging of LDCT followed by AI based Multilevel
Optimization with hybrid stack model. This paper introduces a hierarchical reference
architecture for Lung Cancer Classification. The proposed approach (GLCM) features
are extracted from LDCT further investigated with M-GWO technique to figure-out
best features. The best solution obtained from this hybrid stacked model is use to
classify input image as normal or abnormal.
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1. INTRODUCTION

1. Lung cancer (LC) is the world's biggest cause of cancer-related mortality, but improvements
in lung cancer screening provide a glimmer of hope for life-saving treatments. The lungs are
two critical organs located in the chest that are fundamental to the complicated structure of
our bodies [1]. They allow for the exchange of carbon dioxide and oxygen, which is necessary
for life. By breathing in oxygen and breathing out carbon dioxide through tiny air sacs, our
lungs regulate this vital gas exchange. The onset of lung cancer, a deadly disease in which
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healthy lung cells transform into cancerous cells that multiply into tumors and cause havoc by
encroaching on and damaging healthy lung tissue, can, however, upset this harmonious
function [2].

Lung cancer's journey is not limited to the lung; there is a significant possibility that it may
spread via blood or lymph to other regions of the body. Two different varieties of lung cancer
are small cell lung cancer (SCLC) and non-small cell lung cancer (NCLC). These are identified
by the cell types that are affected and how they appear under the microscope. The most
common kind of lung cancer is non-small cell, but SCLC is more aggressive and grows and
spreads quickly [3]. The root cause of LC are smoking, family history of lung cancer, HIV
infection, exposure to hazardous chemicals, and second hand smoking, radon, asbestos, and
air pollution [4]. These all contribute to an elevated risk profile. Lung cancer is a sneaky
disease; in its early stages, it seldom exhibits any signs. However, if the illness worsens,
symptoms include a persistent cough, chest discomfort, breathing problems, blood in the
cough, hoarseness, appetite loss, trouble swallowing, weight loss, exhaustion, and swelling in
the face or neck may appear, indicating the need for immediate medical assistance [5].

The spectrum of symptoms associated with lung cancer encompasses fatigue, sudden weight
loss, dyspnea, chest pain, persistent cough, and hemoptysis, indicative of coughing up blood.
Various root cause of LC, including exposure to cigarette smoke, nickel, arsenic, air pollution,
radon, and a personal or family history of the disease [6]. Additionally, asbestos exposure is a
notable risk factor. Small cell carcinoma often presents at an advanced metastatic stage and
involves neuroendocrine cells. Non-small cell carcinoma includes adenocarcinoma, which is
common and affects gland cells, and squamous cell carcinoma, which occurs in proximal lung
tissue [7]. These Large cell carcinoma (LCC), characterized as large tumor cells, can grow in
either proximal or peripheral lung tissue. Radiographic imaging, such as chest X-rays, aids in
identifying lung cancer features like pulmonary opacity, hilum enlargement, pleural effusion,
and lung collapse, depending on tumor size. lung cancers can prompt the transformation of
lung cells into neuroendocrine cells, leading to paraneoplastic syndrome [9]. Neuroendocrine
cancer cells release hormone-like substances, such as parathyroid hormone-like substance
causing hypercalcemia, ACTH-like substance stimulating cortisol production, and anti-
diuretic hormone increasing water retention, mirroring normal hormone functions.

Lung cancer screening emphasizes on two importance method for identifying patients who
require an immediate referral to a lung specialist. Specifically, this includes individuals who
have had a chest X-ray indicating potential lung cancer and those aged 40 and above
experiencing unexplained hemoptysis (coughing up blood) [10]. For instance, a 50-year-old
woman presenting with a week-long history of hemoptysis should prompt an urgent two-week
referral without delay. The second part of the guideline pertains to patients who necessitate
an urgent chest X-ray within two weeks to evaluate for lung cancer. Notably, The helpful list
of symptoms to monitor, particularly in individuals aged 40 and older. Moreover, if a patient
exhibits two unexplained symptoms or has a history of smoking alongside one or more
unexplained symptoms, an urgent chest X-ray is warranted. The guideline outlines specific
clinical indicators that warrant consideration for a chest X-ray within two weeks. These
include thrombocytosis (increased platelet count) in patients 14 years of age and older, finger
clubbing, supraclavicular lymphadenopathy, the continuation of fical lymphadenopathy, and
chest symptoms suggestive of lung cancer [11]. For instance, a patient with a persistent chest
infection unresponsive to multiple antibiotic courses should raise suspicion for underlying LC.
Finding the stage and diagnosis of lung cancer are essential elements in formulating a
successful treatment plan. The progression of NCLC involves several phases, ranging from the
occult stage, in which cancer cells are limited to lung fluids, to advanced stages, where the
tumors invade distant organs and lymph nodes [12]. On the other hand, small cell lung cancer
is categorized into localized and regional phases according to the degree of dissemination both
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inside the chest and to other locations [13]. It typically occurs between the ages of 55 and 84
years, with the peak incidence seen in the 7th and 8th decades of life, around 65 to 74 years.
One crucial aspect to understand is the strong association between lung cancer and cigarette
smoking. When someone inhales tobacco, particularly the polycyclic hydrocarbons and
nitrosamines present in it, they are exposed to potent carcinogens. Polycyclic hydrocarbons,
in particular, are known to bind to nuclear DNA, causing mutations and acting as mutagens.
Benzopyrene compounds, another component of tobacco, then act as tumor promoters,
further contributing to the development of lung cancer.Despite advances in medical
technology, lung cancer continues to be a severe challenge in the field of oncology, taking a
considerable number of lives each year. The goal of early lung cancer detection provides
pathway to introduce novel techniques, most notably the use of artificial intelligence (AI) into
diagnostic medical imaging. This study explores the vital significance of early lung cancer
diagnosis, emphasizing how Al-driven solutions have the potential to transform screening
practices and enhance patient outcomes [14]. The startling data on lung cancer survival and
diagnosis rates highlight the critical need for game-changing therapies. Every year, around 2
million individuals worldwide receive a lung cancer diagnosis, and a sizable portion of them
lose their lives to the disease. With just a small percentage of patients living past diagnosis,
the five-year survival statistics, especially in developed countries such as the UK, provide a
sobering picture of the obstacles that patients confront. Lung cancer symptoms in their late
stages are a major factor in this dismal situation since they frequently appear after the illness
has moved to an advanced level, which reduces the effectiveness of therapy and the likelihood
of survival [15].

An ray of hope has emerged in the fight against lung cancer with the use of Al technology in
healthcare. By leveraging Al algorithms, medical professionals can analyze chest CT-Scan with
unprecedented accuracy, identifying subtle nodules that may indicate early-stage lung cancer.
This capability holds immense potential in circumventing the late diagnosis dilemma, paving
the way for timely interventions and improved survival rates. However, while Al-enabled chest
CT-Scan analysis is a significant advancement and it offers even greater precision in detecting
and characterizing pulmonary nodules [16]. One of the key advantages of Al-enabled chest CT-
Scan analysis lies in its applicability to incidental nodule diagnosis. Given the widespread use
of chest CT-Scan for various medical purposes globally, integrating AI algorithms into existing
imaging workflows can facilitate the early identification of suspicious nodules indicative of
lung cancer [17]. This proactive approach streamlines the triage process, enabling healthcare
providers to prioritize high-risk patients for further diagnostic evaluations such as chest CT
scans or biopsies [18]. Incorporating CT scans into the diagnostic pathway enhances the
accuracy of lung cancer detection, particularly in distinguishing benign nodules from
malignant ones and assessing the extent of disease progression [19]. Therefore, while AI-
driven chest CT-Scan analysis is a valuable tool in early lung cancer detection, the integration
of CT scans provides a comprehensive diagnostic approach that maximizes the chances of
identifying and treating lung cancer at its earliest stages. This multidimensional strategy
underscores the importance of leveraging advanced imaging technologies to combat this
pervasive disease effectively [20].
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DISPARITIES IN LUNG CANCER INCIDENCE
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Figure 1. Root cause analysis of Lung Cancer

2. ROLE OF AI IN SCREENING OF LUNG CANCER:

The role of artificial intelligence (AI) in screening for lung cancer has become increasingly
prominent due to its potential to enhance early detection and improve patient outcomes. Al
techniques integrated into medical imaging systems to aid in the interpretation of lung scans.
Here are some key aspects of AI's role in lung cancer screening;:

Risk Stratification: Al can assist in stratifying patients based on their risk of developing
lung cancer. By analyzing various factors, such as imaging features, patient history, and
genetic markers, Al models can provide personalized risk assessments and guide healthcare
providers in implementing targeted screening strategies [21].

Integration with Clinical Workflow: Al tools can be seamlessly integrated into existing
clinical workflows, allowing for efficient screening processes and streamlined communication
between healthcare professionals. This integration facilitates prompt follow-up and treatment
planning for patients identified with suspicious findings [22].

Enhanced Accuracy: Studies have shown that Al-based lung cancer screening systems can
achieve high levels of sensitivity and specificity, reducing false-positive and false-negative
rates compared to traditional methods. This increased accuracy helps avoid unnecessary
interventions while ensuring that potential cases of lung cancer are not missed [23].

Continuous Learning: Al models can continuously learn from new data and updates,
improving their performance over time. This adaptability enables ongoing refinement of
screening algorithms and ensures that they remain up-to-date with the latest advancements
in LC detection and management [24].

This paper is structured as follows: second Section provides the motivation behind this
research work, third section provide the related works, fourth section presents the proposed
technique, fifth section analyzes the results, and last section concludes the paper with
discussions.
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3. MOTIVATION:

The motivation behind the advancements in lung cancer diagnosis stems from a deep
commitment to enhancing patient outcomes, streamlining healthcare delivery, and improving
medical decision-making processes. By embracing innovative technologies, we aim to tackle
the multifaceted challenges associated with lung cancer, spanning from accurate diagnosis to
personalized treatment strategies. Our focus is on leveraging these advancements to
revolutionize healthcare delivery and ultimately improve the quality of life for patients battling
lung cancer.

4. OUR CONTRIBUTIONS:
Hierarchical Reference Architecture Leveraging Lung Cancer Classification:

We have introduced a novel hierarchical reference architecture that integrates lung cancer
classification methodologies. This structured framework not only facilitates accurate
diagnosis but also enhances the management of complex healthcare systems efficiently. By
leveraging insights from lung cancer classification leads to improved patient treatment .

M-GWO Feature Selection Technique:

Our proposed Hybrid_PSO feature selection technique plays a pivotal role in optimizing
overall system performance. By employing advanced algorithms, we can identify and prioritize
key features relevant to lung cancer diagnosis and treatment. This optimized feature selection
process not only improves the accuracy of diagnostic tools but also contributes to more
efficient healthcare delivery, reducing unnecessary procedures and enhancing resource
utilization.

Machine Learning-Based Stacked Model for Scalability and Flexibility:

We have developed a machine learning-based stacked model designed to offer scalability and
flexibility to healthcare institutions. This model empowers hospitals to adapt swiftly to
evolving technological advancements in the medical domain. By leveraging machine learning
capabilities, hospitals can streamline workflows, enhance predictive analytics for early
detection, and customize treatment protocols based on real-time data insights. This scalability
and flexibility enable healthcare facilities to stay at the forefront of lung cancer diagnosis and
treatment, ensuring optimal patient care in a rapidly changing healthcare landscape.

5. Related work:

The medical landscape, particularly in cancer treatment, has witnessed remarkable strides
through Al-driven analyses of vast datasets. These technological advancements have not only
enhanced diagnostic accuracy but also paved the way for tailored therapies based on individual
patient profiles. recent studies have demonstrated Al's prowess in early lung cancer detection,
transcending the traditional association with smoking. Non-smokers, too, can fall victim to
lung cancer, emphasizing the criticality of vigilant symptom monitoring and timely medical
intervention.

In the realm of LC classification using deep learning and image analysis techniques, various
research endeavors have been undertaken to address the challenges of accuracy and efficiency
in diagnosis. Raza et al. (2023) introduced Lung-EffNet, a transfer learning-based predictor
leveraging the EfficientNet architecture. This approach represents a significant leap in
accuracy, as Lung-EffNet achieved remarkable results in accurately classifying LC from CT
scans. By integrating top layers in the classification head of the model, Lung-EffNet
demonstrated the potential of transfer learning in enhancing predictive capabilities,
showcasing its effectiveness in the critical domain of early cancer detection. Pandit et al. (2023)
contributed to the field by enhancing lung cancer classification through multispace image
pooling and an autoencoder system integrated into their CNN model. This innovative
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approach not only improved overall accuracy but also addressed the issue of processing time,
a crucial factor in real-time diagnosis and treatment planning. By leveraging advanced
techniques like multispace image pooling and autoencoders, Pandit et al. showcased the
importance of combining traditional CNN frameworks with cutting-edge methodologies to
achieve optimal results in medical image analysis. Naseer et al. (2023) focused on lobe
segmentation and nodule detection, essential components in accurate lung cancer diagnosis.
Their modified U-Net and SVM-based model demonstrated promising results in segmenting
lobes and identifying nodules, contributing significantly to the automated detection and
classification of LC from CT scans. This work highlights the importance of robust
segmentation techniques in preprocessing medical images and lays the foundation for
improved diagnostic tools. Mohamed et al. (2023) proposed a hybrid EOSA-CNN model,
showcasing the potential of metaheuristic optimization in improving CNN performance for
lung cancer classification. By addressing challenges related to parameter selection and model
architecture, the EOSA-CNN hybrid model achieved high accuracy and demonstrated superior
specificity and sensitivity compared to other methods. This research signifies the importance
of optimizing deep learning models using metaheuristic algorithms for enhanced performance
in medical image analysis.

AR et al. (2023) introduced LCD-CapsNet, an innovative combination of CNN and Capsule
Network, aimed at improving LC detection accuracy. By leveraging the unique capabilities of
Capsule Networks in recognizing fine-grained spatial correlations, LCD-CapsNet achieved
high precision and recall rates, showcasing its potential as a robust tool for automated LC
diagnosis from CT scans. This work highlights the importance of exploring diverse deep
learning architectures to achieve optimal results in medical image classification tasks. Prakash
et al. (2023) contributed to the field by developing an EESNN-FSOA-LCC model using genetic
algorithm optimization. This approach demonstrated superior accuracy and processing
efficiency compared to existing methods, showcasing the potential of hybrid metaheuristic and
CNN algorithms in improving lung cancer classification. By integrating genetic algorithm
optimization into the model training process, Prakash et al. highlighted the importance of fine-
tuning model parameters for optimal performance in medical image analysis. Bushara et al.
(2023) introduced VGG-CapsNet, an ensemble method for lung cancer detection that
leveraged the capabilities of both VGG and Capsule Networks. This novel approach
demonstrated high precision, recall, and specificity rates, underscoring its effectiveness in
accurately identifying and classifying lung cancer from CT scans. By combining different deep
learning architectures, Bushara et al. showcased the potential of ensemble methods in
improving diagnostic accuracy in medical imaging. Dunn et al. (2023) utilized deep learning
and radiomic analysis for automated lung cancer subtype classification, achieving high
accuracy in distinguishing different subtypes. Their study underscored the importance of
leveraging advanced Al techniques like deep learning and radiomics to extract meaningful
features from medical images, enabling accurate classification of lung cancer subtypes. This
research contributes to the ongoing efforts in personalized medicine by providing tools for
precise diagnosis and treatment planning based on subtype-specific characteristics.

The collective efforts of researchers in the field of LC classification using deep learning and
image analysis techniques signify the rapid advancements and ongoing innovations in medical
image analysis. These endeavors not only focus on improving diagnostic accuracy but also
emphasize the importance of efficiency, processing speed, and model optimization. By
exploring diverse methodologies, combining different deep learning architectures, and
integrating metaheuristic optimization techniques, researchers are paving the way for more
accurate, efficient, and personalized approaches to lung cancer diagnosis and treatment.
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Table 1. Comparative analysis among literature survey the done

Reference HObjective HMethodology HAdvantage ‘leltatlons
[25] Raza et al|[LC  classification  using||Proposed Lung-EffNet based||Achieved 99.10% accuracy,/|Lack of detailed
(2023) EfficientNet from CT-scan|jon EfficientNet architecture||outperformed other CNNs in|lcomparison with other
images with top layer modification,|[terms of accuracy and)|state-of-the-art
evaluated on IQ-OTH/NCCD)||efficiency models
dataset, handled class
imbalance
[26] Pandit et al.||[Enhanced lung cancer||[Used CNN with multispace||Increased accuracy to 99.5%,||Limited discussion on
(2023) classification using CNN with||[image pooling and||reduced processing time scalability and
multispace image pooling||lautoencoder for improved generalizability
and autoencoder system accuracy and reduced
processing time
[27] Naseer et al.|[LC  classification  using||Developed a modified U-Net||Achieved promising results in||Limited dataset
(2023) modified U-Net and SVM for lobe segmentation and|[lobe segmentation and nodule||description and

nodule detection, used SVM
for classification

detection

external validation

[28] Mohamed et
al. (2023)

LC classification using hybrid
metaheuristic and CNN

Proposed EOSA-CNN hybrid
model for lung cancer
classification, optimized with
EOSA

Achieved 0.9321 accuracy,
demonstrated improved
specificity and sensitivity

Limited discussion on
algorithm complexity
and training time

[29] AR et al
(2023)

Detection and classification
of
LC using LCD-CapsNet

Introduced LCD-CapsNet
combining CNN and CapsNet
for LC detection and
classification

Achieved 94% accuracy,
demonstrated high precision
and recall

Lack of  detailed
comparison with other
CapsNet variants

[30] Prakash et al.
(2023)

Enhanced Elman Spike
Neural Network for lung
cancer classification

Proposed EESNN-FSOA-LCC
model using genetic algorithm
and flamingo search
optimization

Achieved high accuracy
compared to existing methods

Limited discussion on
model interpretability

[31] Cao et al.
(2023)

'Weakly supervised deep CNN
for LC classification

Developed E2EFP-MIL model
for efficient and accurate LC

Achieved high AUCs and
accuracy, demonstrated

Limited discussion on
model explainability

subtype classification generalizability and clinical validation
[32] Jagadeesh et||Genetic algorithm-based LC||Developed improved model||Outperformed existing||Limited discussion on
al. (2023) segmentation and||using genetic algorithm for LC||methods in accuracy and||algorithm scalability

classification segmentation and PNN for|[processing time

classification
[33] Bushara et al.||Ensemble = method  with||Proposed VGG-CapsNet||[Demonstrated superiority over|[Lack  of  detailed
(2023) CapsNet for LC detection ensemble for LC detection,||basic CapsNet and CNN/lanalysis on model

achieved high accuracy and|/combinations robustness

precision

[34] Dunn et al.
(2023)

Automated LC  subtype
classification using deep
learning

Applied iMRRN for image
segmentation and various
classification algorithms for
subtype classification

Achieved high accuracy in
classifying lung cancer
subtypes

Limited discussion on

data  preprocessing
steps and model
explainability

6. Proposed work: As meticulous approach has been adopted, employing a feature
selection method known as M-GWO in algorithm 1. This acronym may signify an optimization
algorithm designed for feature selection. Through the implementation of M-GWO, a
comprehensive analysis has been undertaken, resulting in the identification and selection of
eleven crucial features deemed essential for optimizing the system's performance.
Subsequently, the data corresponding to these selected features has been compiled into a new
dataset named M-GWO. This dataset serves as the foundation for the next phase of the stack
model utilizing the insights gained from the M-GWO dataset. The hybrid_stack model implies
a strategic arrangement or configuration of features. This systematic and data-driven
approach reflects a commitment to enhancing the performance and responsiveness of the
framework in question, showcasing a methodical integration of advanced optimization
techniques in the pursuit of efficiency.
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Figure 2.Work flow of proposed model.

Data Description: The LC dataset from the Iraq-Oncology Teaching Hospital/National
Center for Cancer Diseases (IQ-OTH/NCCD) was gathered during a three-month period in
autumn 2019 at the aforementioned specialty institutions. It comprises both healthy
individuals' and patients' CT scans that have been diagnosed with LC at various stages. In these
two centers, radiologists and oncologists marked IQ-OTH/NCCD slides. A total of 1190
pictures, or CT scan slices from 110 instances, are included in the collection (see Figure 1). The
three groups of these instances are malignant, benign, and normal. Out of them, 45 instances
have been classed as normal cases, 40 as malignant cases, and 15 as benign ones. Originally,
the CT scans were gathered in DICOM format. [35].

GLCM Feature Extraction:

i. Autocorrelation Equation (1):

Autocorrelation measures the similarity of a pixel to its neighboring pixel throughout the
image.

It quantifies how the pixel values are correlated with each other at different spatial distances.

A higher autocorrelation value indicates smoother and more uniform texture

P(x,y) = g:oZﬁ:ol(u.U)l(u+x,v+y)
YY) = ZNg—1 ZNg—1 12 (u ‘U)
u=0 v=0 )

(1)

ii. Contrast (Equation 2):

Contrast measures the intensity difference between a pixel and its neighbors.
It quantifies the local variations or changes in pixel intensity within the image.

Higher contrast values indicate a more distinct boundary between different texture regions.

Cont.= ZZIi —Jjl1?p(i, )
j

i

(2)

iii. Correlation (Equation 2):

It quantifies how much the pixel values are correlated with each other across the image.
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e A high correlation value indicates a strong linear relationship between neighboring pixels.

Correl = z 2 U “i)g.;.“j)p(i:j)
T i 0j

(3)

iv. Cluster Prominence (Equation 4):

e It measures the skewness of the GLCM matrix, indicating the presence of clustered or
dispersed texture patterns.

e Higher values suggest more asymmetry and clustering in the texture.

Ng—1Ng-1

Pro = z Z (i +j—u,— uy)4p(i:j)
i=0 j=0
(4)

v. Cluster Shade (Equation 5):

e Cluster Shade measures the skewness of the GLCM matrix and the uniformity of pixel
distribution.

¢ It quantifies the asymmetry of the GLCM around its mean value, indicating the uniformity or
non-uniformity of texture.

e Higher values indicate greater asymmetry and non-uniformity in texture distribution.
Ng—1Ng-1

Sha = Z Z (i+)—ue— uy)3p(i,j)
i=0 j=0
(5)

vi. Dissimilarity (Equation 6):

¢ Dissimilarity measures the average absolute difference in grayscale values between a pixel and
its neighbors.

¢ It quantifies the heterogeneity or dissimilarity of texture within the image.

e Higher values indicate greater dissimilarity or variation in texture patterns.

Dissimilarity = Z Zli —jlp@,j)
i

(6)
vii. Energy (Equation 7):

e Energy measures the uniformity and orderliness of texture by summing the squared elements
of the GLCM.

¢ It quantifies the presence of repetitive patterns or regularity in texture.
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e Higher energy values indicate more orderliness and repetitive patterns.

Energy = Z p(i,j)?
B
(7)

viii. Entropy (Equation 8):

Entropy measures the randomness or uncertainty in the distribution of pixel values within the
image.

It quantifies the degree of disorder or unpredictability in texture patterns.

Higher entropy values indicate greater randomness and less predictability in texture.

Ng—1Ng-1

Ent = z Z p(i, ) log(p(i, ))
j=0

=0 j

(8)

ix. Homogeneity (Equation 9):

Homogeneity measures the closeness of the distribution of GLCM elements to the diagonal.
It quantifies the similarity or homogeneity of texture within the image.
Higher homogeneity values indicate more uniform and homogeneous texture.

1
Homog =) ) =y
omeg idajl+i—j|? @)

(9)
X. Maximum Probability (Equation 10):
® The maximum probability of a certain pair of pixels occurring in the picture is measured.
® It quantifies the most frequently occurring texture pattern or pixel pair.
® Higher values indicate a higher probability of occurrence for a specific texture pattern.
Max. Probability = max.p(i,j) for all (i,))
(10)

xi. Sum of Squares Variance (Equation 11):

It quantifies the heterogeneity or variability in texture patterns based on gray level sums.

Higher values indicate greater variability and dispersion in texture patterns.

Ng

Variance = Z(i —w?*p(i,))
i=1

(11)

xii. Sum Average (Equation 12):

It quantifies the average gray level sum in the texture patterns.

Higher values indicate a higher average gray level sum in the texture.
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2Ny

sum average = Z ipx+y(z)
i=2
(12)
7. Data Cleaning:

Managing and Resolving Missing Data: One of the most important phases in data
analysis is handling missing values. Choosing whether to remove rows or columns with
missing data or use sophisticated machine learning-based approaches to fill in the blanks will
depend on the situation. The missing value is replaced by mean value.

Normalization: Scaling Numerical characteristics: Preventing the dominance of particular
characteristics during model training by normalizing numeric features to make sure they are
on a comparable scale. To handle this problem, the suggested model uses the Standard Scaler
normalization technique in the context of sensor data traffic characteristics with different
magnitudes. By using this technique, feature observations are converted to have a standard
deviation of 1 and a mean incoming traffic value of 0. By doing this, biases from incoming
traffic are removed while maintaining the statistical properties of the data. This scaling is
implemented by using Equation 13 (the transformation function).

Ss(z) =
(13)

In such case, z is the feature Z is a member of the set {z_1,z 2,...,z N}, and the standard score
for z features is S_S (z). The observed value is the O_V. The feature mean is denoted by M.

The standard deviation of the characteristics is denoted by S_D. Here is how M(z) and S_D
(z) are calculated:

Oy (2)-M(2)
Sp(2)

N 0v(@)
M(Z) = —Z‘_lNL (14)

Sp(2) = ;—rzgrﬂ (Oy(2) — M(2))? (15)

8. Grey Wolf Optimization: GWO is a metaheuristic optimization algorithm inspired by
the social hierarchy and hunting behavior of grey wolves. It aims to optimize complex
problems by mimicking the leadership hierarchy and collaborative hunting strategies
observed in wolf packs. this algorithm is use to select the important features. Typically, grey
wolves exhibit a preference for living in packs, with an average group size ranging from 5 to 12
individuals. Within the social structure of a grey wolf pack, there are stringent rules governing
dominance and hierarchy. The pack consists of the following roles:

Alphas, serving as leaders, are responsible for decision-making, and their directives are
followed by the entire pack.

Betas, subordinate to alphas, assist in decision and other group happenings. Betas can be
either gender, and they often emerge as strong contenders for assuming the alpha role.
Omegas play the role of scapegoats and are required to submit to all remaining dominant
wolves. They are the preceding in line to partake in meals.

Alphas and betas may have authority over deltas, but deltas exert control over omegas. This
group comprises scouts, sentinels, elders, hunters, and caretakers. Scouts vigilantly watch over
territorial borders, warning the pack of potential threats. Sentinels are dedicated to
safeguarding and ensuring the safety of the pack. Elders, having previously held alpha or beta
roles, bring experience and wisdom. Hunters collaborate with alphas and betas in capturing
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prey to sustain the pack. Caretakers, on the other hand, attend to the needs of weak, ill, and
injured pack members.

The framework of Grey Wolf Optimization model, the most optimal solution is denoted as
alpha (a). The subsequent two best solutions are referred to as beta () and delta (5). The
remaining candidate results are collectively designated as omega (w). The strategy used for
hunting is guided by these four entities—a, 3, §, and w—each following one of the three
aforementioned candidates. To simulate the encircling behavior necessary for the bunch to
hunt prey, the mathematical modeling of this behavior is represented by the following
equations, namely Egs. (16)— (19).

P(t+1)= Pp() + W.Z
(16)

In Eq. (17), D ig defined, where t represents the iteration number, and W and?Y are vectors of

Pp 3
coefficients.  denotes the prey position, while ? signifies the grey wolf position.

W= [¥. Pp(t) - B(0)|
(17)

The W'Y vector are calculated as in equation 18 and 19
X=2xrl—2x
(18)

—

—272 (19)

=l

The process involves linearly decreasing the parameter 'a' from 2 to o0 throughout the
iterations, with 'r1' and 'r2' representing random vectors within the range [0, 1]. Generally, the
alpha guides the hunting, with occasional participation from beta and delta. The updating of
the wolves' positions is expressed as in Eq. (20).

P14+P2+P3

P(t+1) = :

(20)

Py, P, P3 are define as in equation (21)-(23), respectively.

—

Where Pa, Ps , Py are the first three best solution in the swarm at a given iteration t, W1, W2,
W3 are defined as in eq. (3),and Z &, Zﬂ, Z; are defined using equation (24) — (26), respectively.
Z,= |Yy. P,— P

(24)
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Z, - |7 7 - 7|

(25)
7r:= |?;-;ij_ ;ﬂ
(26)

Where ¥, Y2, Y3 are define as in equation (17)

A concluding note regarding the GWO pertains to the adjustment of the parameter 'x,'. The
parameter 'a' undergoes a linear update during each iteration, transitioning from 2 to 0 in
accordance with Eq. (27).

2

&=L tMa.rIter (27)

Algorithm 1: M-Grey wolves optimization Model

Input:
n: Total amount grey wolves in the group,
N-Iter: count of repetitions for optimization.

Output:

Pa: Location of the best grey wolf,
f(Pa): Optimal fitness cost.

Initialization:

Randomly initialize positions for n grey wolves in the population.
Identify Alpha, Beta, and Delta:

a. Determine the solutions for Alpha, Beta, and Delta based on the fitness number.
Optimization Loop:

While the termination criteria are not satisfied, perform the following:
a. Update Positions:

i. Update the position of each wolf i in the pack using Eq. (17).

b. Update Parameters:

i. Adjust the parameters a, A, and C.

c. Evaluate Positions:

i. Compute the location of individual wolves.

d. Update:

i. Update the values of a, 3, and &.

End of Optimization Loop
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Note: The algorithm iteratively updates the positions of the grey wolves, modifies
parameters, evaluates fitness for each individual, and updates the alpha, beta, and delta
solutions until the specified stopping criteria are met.

9. Improved Grey Wolf Optimization (M-GWO): Wolf locations are continually
adjusted to any point in space using the GWO technique. Certain unique issues, such feature
selection, have solutions that can only be found in the binary {o, 1} range, which is why a
unique version of the GWO is needed. This paper proposes a novel M-GWO for the job of
feature selection. Each wolf is drawn to the top three best solutions by the wolves updating
equation, which is a function of three location vectors, xa, xp3, and x8. The pool of solutions in
the M-GWO is always in binary form, with every solution located on a hypercube's corner.

Pt*! = Crossover(P1, P2, P3) (28)

where Crossover is required cross over among solutions X, y, and z and P1; P2; P3 Binary
vectors, indicating the impact of the wolf movement towards alpha, beta, and delta wolves in
sequence, are represented by P1, P2, and P3. The calculations for these vectors are determined
through Egs. (29), (32), and (35), respectively.

pd — {1 if (P + bstep?) =1

! 0 Otherwise
(29)

Here, P4 denotes the position vector of the alpha wolf in dimension d, and bstepg is a binary
step in dimension d, which can be computed according to the formula presented in Eq. (30).

1if cstep? = rand

bstep? ={
Pa 0 Otherwise (30)

In this context, "rand" represents a randomly generated number from a uniform distribution.
Meanwhile, cstep stands for the continuous-valued size of step associated with dimension
(d). This step size can be determined by employing a sigmoidal function, as outlined in Eq.
(31).

1

d
Cstepa = —
14 o—10(45(0G—05) (31)

where W¥ are calculated using Egs. (15), and (21) in the dimension d.

bl {1if,xg >1
= 0 Otherwise
(32)

In this scenario, P 5 signifies the position vector of the beta wolf in dimension d, and bstepg is
a binary step in dimension d, the computation of which is specified in Eq. (33).

Lif cstepj = rand

bstepd = {
Pe 0 Otherwise (33)

In this context, "rand" denotes a randomly generated number from a uniform distribution.

Additionally, ¢s tepg represents the continuous-valued size of step is associated with
dimension d. The calculation of this step size involves the utilization of a sigmoid function, as
described in Equation (34).

cstepg =

—————
—10(45 (D%—o0.
o~ 10(41(0g—05)

1+ (34)
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where W1 d, and Zd 3 are computed with Egs. (15) and (21) in dimension d.

pd — {1 if (P + bstep$) =1
0 Otherwise (35)

In this context, £s designates the positional vector used for the delta wolf in dimension d,

d
while PstePs represents a major binary step in the dimension d. The computation of this
1if cstep§ = rand

bstep? = {
bs 0 Otherwise

binary step is outlined in Eq. (36).
(36)

Two different approaches are used to execute the changed version. The first technique uses
binarization of steps toward the top three solutions, followed by a stochastic crossover between
these three basic motions to calculate the updated position of the grey wolf. On the other hand,
the second approach involves using a sigmoidal function to transform the continuously
updated position. The resulting values are stochastically thresholded to ascertain the updated
position of the grey wolf. Both methods for the modified Grey Wolf Optimization (M-GWO)
are applied within the field of feature selection.

10. Result analysis:

Analyzing the results of a model using metrics like accuracy (ACC), Matthews correlation
coefficient (MCC), and F1 score provides valuable insights into its performance. Accuracy gives
an overall view of correct predictions, but it may be biased by imbalanced datasets. MCC offers
a balanced measure, especially useful for imbalanced data, with values closer to 1 indicating
better predictions. F1 score balances precision and recall, making it suitable when false
positives and false negatives hold equal importance. Each metric contributes unique
perspectives, guiding adjustments or optimizations based on the specific needs and
characteristics of the dataset and problem domain.

GLCM Feature extraction

GLCM feature extraction: In the first step we have extracted the GLCM features using Matlab
code. Indifferent GLCM features are discussed in the above section that we have extracted.
GLCM features help us to figure out the lung cancer. The sample records are shown below in
figure 3.

[ o Jautocorre! Contrast  Correlation Correlation Cluster Pro Cluster Sha Dissimilarity Energy Entropy  Homogenei'Homogenei Maximum p'Sum of sqa Sum avera Sum varian Sum entrop: Difference \ Difference ¢ Information m Informaiton Inverse diffcinverse diffcOutcome

1 244218 05046722 05258718 05258718 1416015 1678738 0AI08035 04746637 1463893 084718 08366847 06779527 2851268 2786022 5599688 114609 05046722 08396917 01306213 04295983 09589376 0.5880876 Bengin

2 2434147 0881744 05330237 0531237 132091 1626532 04052658 04825256 1453119 0.8489996 08385536 06841242 2831757 2778573 S.600168 1134705 0381744 0833795 01318477 04301686 0.9534314 0.9883024 Ben

3 242883 09125211 04381537 04981537 1240559 1482333 04338216 04412695 1535675 0.8355353 0.8243565 0.6504845 2841364 2811353 5350508 1190764 09125211 08717501  -0.115354 0.4134015 0.9562863 0.9878429 Beny

4 G6EIS 4487211 02303385 023035 2716991 263283 148553 0.06826681 1227385 05594061 D0S0SS01 01839158 BSST0S 4906512 1464256 217M87 4471 1624973 -0.01948888 0.2480853 08621335 0944384 Bengin_cases
5 7077254 486346 0217123 0217123 2725774 2596149 1559155 00634611 3303189 05485795 04922875 01781997 9427091 5.060736 1565685 2215591 4863946 1661846 -0.01759789 02363284 0.8565596 0.5401633 Bengin_cases
6 6.054184  4.036836 0.2205962 0.2205962 237.2 2349078 1401557 0.07545082 3117321 0.5712275 05201363 01944125 7.996971 4.683125 1297201 2104375 4.036836 1579556 -0.01911136 0.2409759 0.8683887 0.9492581 Ben

7 6310974 4170372 023337 02333727 548382 25.06086 1424772 0.07327908 156728 05634214 05166515 01520764 8322267 4764964 1364087 2132214 4170372 159318 -0.02033994 02500381 0.8667258 0.9478369 Beny

8 6310074 417072 023WZ 0233372 54832 25.06086 14772 0.07327908 1156728 05634214 O0SIGESIS 01920768 6322267 4764968 1364087 2132214 4170372 159318 -0.02033994 D0.2S00381 0.8667258 0.5478369 Beny

6543733 4537297 0.2006785 0.2006785 24 2004225 1504756 0.06746807 3.220636 0.5550038 0.4996245 01823836 8.736038 4.888419 1426165 2159702 4.537297 1632251 -0.01728202 0.233263 0.8603616 0.9435966 Beny
10 6543733 4537297 0.2006785 0.2006785 24 2004225 1504756 0.06746807 3.220636 0.5550038 04996245 01823836 8736038 4.883419 14.26165 2159702 4537297 1.632251 -0.01728202 0.233263 0.8603616 0.9435966 Beny
11 6430398 4253799 02345454 02345454 2566226 25.17184 1438848 0.07217425 3178117 05670626 05147636 0.1919884 8.479082 4.807782 13.94314 21465 4.253799 1601828 -0.02030276 0.2510932 0.8657413 0.9469438 Beny
12 6642247 4424577 02312555 02312555 2665517 25.88718 1475753 0.06871936 3.218314 05603571 05067009 0.1845722  B.7779 4889478 14.49349 2167929 4.424577 1619075 -0.01985135 0.2495471 0.8627942  0.945017 Bengin

1 13 2443239 08893306 05311091 05311091 134.3469 1636884 04070389 0.4775697 1464226  0.84844 08379317 0.6803807 2844492 2785375 5.600544 1143253 08893306 0.3358613  -0.132428 0432008 0.9592784 09882371 Bengin
14 6749646  4.600214 02096713 0.2096713 257.4946 24.64919 1517413 0.06538505  3.25064 05529712 04971454 01788603 8.972719 4.955576 1474958 2179177 4.600214 1638093  -0.0178287 0.2381823 0.8593829 0.9429009 Beny s
15 2433957 07937423 05510406 05510406 111.0351 1440919 04036267 0456714 1490571 08429477 08330175 0.6626283 2787831 2793961 5.398046 116464 07937423 0.8359871 0124943 0439842 0.9588959 0.9891619 Ben; s
16 2419604 07804458 0553145 0.553145 1116455 1438701 0.3964805 0.4609448 1474902 08454166 0.835876 0.6658854 2762217 2782943 5.364241 1155023 07804458 0.825756  -0.138245 0.4416352 0.9596168 0.9893684 Bengin_cases
17 2419604 07804458 0553145 0.553145 1116455 1438701 0.3964805 0.4609444 1474902 0.8454166 0.835876 0.6658854 2. 5364241 1155023 07808458 0.82575  -0.138245 04416352 09596168 0.5893684 Bengin_cases

18 2502512 08258023 0543303  0.543903 1125546 14.5148 04273418 0426126 1554479 0.8320999 08218615 0.6380936 2 5442789 1208617 08258023 0.8641178  -0.1282698 04371191 09563405 0.9887016 Ben,
19 2502512 0.8258023 0543903 0543903 1125546 145148 04273418 0428126 1558479 0.8320999 0.8218619 0.6380936 2 5442789 1208617 08258023 0.8641178  -0.1282698 04371191 0.9563405 0.3887016 Bengin_cases
2541425 08663028 05340625 05340625 1150242 1475164 04415939 04167293 158892 0.8275567 08168325 0.6285309 2925947 2859881 5504383 1231604 0.8663028 0.8810993  -0.1237245 04342507 0.9549914 0.3882026 Bengin_cases
2460212 0.8333984 05084865 0.5084865 100.329 1282001 0452742 03933825 1.607137 081839 08078290 0.6056794 2829152 2848828 5143705 1240959 08333984 0.8912772  -0.1084421 04071245 09533782 0.5884776 Bengin_cases

250181 0.8497281 05133732 05133732 1028621 1314044 0453596 0395248 1.621361 0.8199708 08088438 0.6090227 2878524 2865935 5.244955 1253012 0.8497281  0.894101  -0.1136837 04152076 09534382 0.9882723 Bengin_cases
2531733 0.8569068 05179450 05179459 104.4903 1341513 04564319 03916833 1.633646 0.8189243 0807829 0.6057521 2912744 2878315 5312643 1261693 0.856%068 0.8974532  -0.1144229 04201261 0953163 0.3881769 Bengin_cases

Figure 3: Extracted GLCM features

To shuffle dataset and perform label encoding, we can leverage scikit-learn's utilities. Utilize
sklearn.utils.shuffle to randomize the order of your dataset, ensuring a balanced
representation across training and testing sets. Concurrently, employ sklearn.preprocessing.
LabelEncoder to transform categorical labels into numerical values, facilitating compatibility
with machine learning algorithms. This process streamlines data preparation, enhancing
model performance and interpretability while maintaining data integrity and consistency
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throughout the analysis pipeline.shuffling of GLCM dataset & output lable encoding. The

sample records are shown below in figure 4.

. A B c [’}
1 [Autocorrel}Contrast

2 2.220194 0.7682311 0.5362699 0.5362699
3

3

F G -

Correlation Correlation Cluster Pro Cluster Sha Dissimilarit Energy

1 ] K
Entropy

™M N

o

P Q R

s T u v

w

Homogene Homogene Maximum (Sum of sqa Sum averag Sum varian Sum entrog Difference \ Difference « Informatior Informaitor Inverse diff Inverse diff Outcome

1271289  15.1035 0.3529508 05354996 1.299713 0.8679045 0.8590595 0.723763 2.562903 2.665328 5.233896 1.025558 0.7682311 0.7622749 -0.140218 0.4200408 0.9646452 0.9898576 15

5.889187 3.729205 0.2887051 0.2887051 269.8299 27.41173 1.295554 0.0917055 3.023441 0.5990769 0.5538951 0.2330136  7.68035 4.530951 12.75872 2.081002 3.729205 1.536048 -0.028229 0.2879702 0.8781517 0.9534255 0
4 177506 0328504 0.623683 0.623683 387471 6.17035 0.196711 0.649984 0.979385 0.918586 0.914025 0.802839 189746 245189 4.13044 0.804646 0328504 0.529486 -0.234593 0.478352 0979467 0.995319 2
5 4172091 2.426787 0.3565878 0.3565878 250.3215 25.96532 0.9374253 0.1708434 2.486287 0.6832241 0.6538921 0.3605622 5328346 3.74145 8.935365 178732 2.426787 1.319827 -0.045182 0.3294664 0.9093566 0.9693436 0
6 195062 0.436338 0.645002 0.645002 78.1342 10.8949 0.209856 0.684267 0.954507 0.921857 0.915786 0.825262 2.12949 2.49372 49599 0.779192 0436338 053206 -0.26201 0.49659 0.978888 0.994027 2
7 211441 0540575 0.6064 06064 76677 11.0133 0279737 0587424 118229 089162 0.884208 0761719 234175 260602 4.9523 0949093 0.540575 0.661348 -0.19751 0475965 097148 0.992499 2
8 1.85392 0490838 0545239 0.545239 55.7162 8.15041 0.262644 0.613068 1.07407 0.895816 0.889518 0.777813 2.05822 2.49759 4.34207 0.862521 0.490838 0.636827 -0.158858 0.409228 0.973042 0.993192 2
9 2238639 0.8123411 0.5075576 0.5075576  124.087 14.55201 0.3860926 0.4939927 1.379485 0.8528468 0.8433854 0.6915173 2.602955 2.698148 5105481 1.079944 0.8123411 0.8103827 -0.115332 0.3939957 0.9610709 0.9892204 0
10 201581 0486596 0.64095 0.64095 96.2406 12.7139 0.219684 0.682294 0.973464 020139 0913963 0.82411 221789 251495 51974 0790861 0486596 0.544712 -0.257132 0.497463 0.978137 0.993468 2
11 1985572 0.5721086 0.5946199 0.5946199 102.9654 13.30588 0.2397748 0.6935884 0.9543636 0.9168757 0.9094601 0.8311332 2.232304 2.502899 5.254964 0.7694279 0.5721086 0.5675398 -0.217 0.4510536 0.9765063 0.9924278 2
2 198151 0.5564453 0.6022579 0.6022579 109.6616 13.65073 0.2316062 0.6914597 0.9539325 0.9190476 0.9123533 0.8297105 2221442 2.498242 5.225563 0.7707475 0.5564453 0.556526 -0.226542 0.4630602 0.977302 0.9927128 2
13 185901 044295 0611859 0.611859 683485 9.68167 0.207491 0.70312 0.909858 0.924041 0.917742 0.836927 2.04216 245798 4.79078 0.739449 0.44295 0.524133 -0.244505 0.469603 0.979235 0.993961 2
14 194392 0480944 0610739 0610739 77.6612 10.7213 0233456 0.660055 1.00205 0912326 0.905802 0.80966 2.14573 250344 48447 0.813759 0480944 0575657 -0.220615 0461689 0976462 0.993422 2
15 166632 0.354875 0.602689 0.602689 53.2062 7.59107 0.170642 0.747985 0.777277 0936614 093157 0.863683 180706 236403 4.41458 0.63691 0354875 0.457539 -0.242501 0.435855 0.982838 0.995134 2
16 206477 050633 0630125 0630125 881321 12.0434 0.240882 0.642939 1.06239 0.910169 0.903537 0.799045 2.27636 255598 5.10698 0.860559 0.50633 0.587668 -0.24132 0.498689 0975795 0993114 2
17 173946 0363276 0624423 0624423 59.605 835502 0.175856 0.73013 0.822453 0.934154 0929073 0.853058 188414 230819 453458 0.676446 0363276 0467742 -0.271868 046929 0982279 0.995038 2
18 1.75839 0357116 0.603603 0.603603 39.0836 6.36452 0.199127 0.674492 0.942925 0.920847 0.915439 0.818821 1.89717 243843 4.23152 0.769081 0.357116 0527749 -0.23009 0.465471 0.979469 0.994935 2
19 2.008739 0.5580519 0.6059625 0.6059625 112.9953 13.82418 0.2350394 0.6817917 0.9818333 0.9171387 0.9102952 0.8238071 2.249168 2513731 5.237999 0.7921768 0.5580519 0.5652536 -0.229677 0.4716196 0.9768969 0.9927002 2
20 190642 0.469935 0.607643 0607643 785853 10.6187 0.226017 0.667644 0.976698 0.915005 0.90889 0.814359 2.10288 248411 4.77839 0.794936 0.469935 0.562531 -0.222381 0.457936 0977231 0.993621 2
21 2.656208 0.9475777 0.5297082 0.5297082 131.7808 16.31528 0.4677447 0.3980712 1.650833 0.8197895 0.8082252 0.6124464 3.084938 2.91385 57714 1.27388 0.9475777 0.9107836 -0.119656 0.4339383 0.9525771 0.9872114 1
22 22872 0716563 0556629 0556629 98.2474 131037 0.362106 0505797 1.36913 0.850534 0.850606 0.701497 260364 271106 518108 107841 0.716563 0.780963 -0.147278 0.440871 0963165 0990225 0
23 2.231244 0.7508521 0.5529782 0.5529782 125.7179 15.34599 0.340041 0.5548443 1.268126 0.8743129 0.865471 0.7382985 2.565274 2.658454 5347251 1.003528 0.7508521 0.7427996 -0.150747 0.4304535 0.9660594 0.9900636 1
24 2494953 0.8643153 0526168 0.526168 118.1067 14.79942 0.4450214 0.417726 1.570502 0.8254867 0.8148061 0.6281671 2.883353 283912 541768 1.216116 0.8643153 0.8840813 -0.115019 0.4162109 0.9545699 0.9881928 0
25 193938 045445 0.600309 0.600309 662678 9.21015 0.252891 0.603763 1.10107 0.897697 0.891899 0.77181 212219 252781 4.50347 0.890351 0.45445 0.622545 -0.192793 0.454377 0.973867 0.993669 0
26 165338 0.324439 0582786 0582786 31.8105 532287 0.184588 0692228 0.880962 0.92561 0.920921 0.829596 1.77599 2.38895 4.01077 0.721663 0.324439 0.502188 -0.21987 0.44064 0.980896 0.995397 2
27 132686 0159375 0574249 0574249 136511 236332 0.0986098 0.807663 0.550992 0958664 095644 0.897721 137228 220866 3.60197 0.472815 0.159375 032116 -0.26519 0.392615 0989658 0997713 2
28 225156 0.686252 0.554032 0.554032 90.3896 12.2178 0.357564 0.498564 136864 0.85919 0.850743 0.695517 255293 2.70217 5.02033 1.0806 0.686252 0.774169 -0.14774 0.437733 0.963436 0.990577 0
29 165394 0278909 0612833 0612833  27.601 472448 0.17365 0.676343 0.898242 0.926901 0.923096 0.819432 175404 239443 3.88858 0743018 0.278909 0.487245 -0.241128 0.466514 0981768 0.995998 2
30 4.128184 2.449098 0.3453393 03453393 243.7281 25.28068 0.9435796 0.1716639 2.484911 0.6825247 0.6526509 0.3626877 5.295822 3.732144 8.829245 178374 2.449098 1.326368 -0.042684 03205183 0.9088531 0.9690065 0
31 2264668 0.8074621 0.5284936 0.5284936 134.1054 15.69536 0.3717237 0.5145922 1.346923 0.8605796 0.8513673 0.7079274 2.626652 2.692316 5.285931 1.058807 0.8074621 0.7886374 -0.129356 0.4113421 0.9627452 0.9893439 1=

Figure 4: shuffle dataset

Feature selection using M-GWO: Feature selection using the M-GWO (Modified Grey Wolf
Optimizer) algorithm involves a metaheuristic approach to identify the most relevant
features from a given dataset. The M-GWO algorithm is an enhancement of the traditional
Grey Wolf Optimizer (GWO), integrating modified strategies to improve feature selection
accuracy. figure 5 provide the code to perform feature selection using M-GWO.

©

def Gwo(SearchAagents_no,Max_iter,ub,lb,dim,Cost_fun,X,y):

Alpha_pos—np.zeros{(dim)
Alpha_score=np.inf

Beta_ pos=np.zeros{dim)
Beta_score=np.inf

Delta_ pos=np.zeros(dim)
Delta_ score—np.inf

Positions=initialization(Searchagents_no,dim)
# print(Positions)

Yi=np.zeros{dim)

Y2=np.zeros{dim)

Y3=np.zeros{dim)

Convergence_curve=np.zeros(Max_iter)

e

while l<Max_iter:

for i in range(e,SearchAgents_no):
Flagaub=Positions[i]>ub
Flagal Positions[i]<1lb
Positions[i]=(Positions[i]*(~(Flagaub+Flag4alb)))+ub*Flagaub+lb*Flagalb
nrint(Positionslil)

Figure 5:code to perform feature selection using M-GWO.

Fine-tune the M-GWO algorithm by adjusting parameters like the number of iterations
(num_iter), population size, and convergence criteria. Shown in figure 6.

Agents=25
MaxITter=1&

o

dim=X_train.shape[1]

Best score,Best_ pos,Cg=GWO(Agents,MaxITter,1,©,dim,CostFunction,X,y)

[= 1Iteration 1 -- ©.12700008643732164 Num feature: 11.©
Iteration 2 -- ©.12700002643730164 MNMum feature: 11.0
Iteration 2 -- ©.127000002643730164 Num feature: 11.
Iteration 4 -- ©.122529221@728826@5 MNum feature: 15.e
Iteration 5 -- ©.12252001072823605 MNum fTeature: 15.©
ITteration 6 -- ©.12250601072883605 Num feature: 15.©
Iteration 7 -- ©.1180000150828370848 Mum feature: 15.0
Iteration 8 -- ©.118080001502837848 MNum feature: 15.0
Iteration 2 -- €.1180221502237248 Num feature: 15.@
Iteration 1@ -- @.11S8e@92l15@2@37@48 Num feature: 15.@

plt.plot({cg)
pPlt.show()
Selected=Best_pos
print{selected)
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Figure 6:M-GWO algorithm adjusting parameters

Iterate this process to achieve optimal feature subsets that maximize model performance.
Adjust parameters and experiment with different evaluation metrics to optimize feature
selection outcome shown in figure 7.

- A B c D E F G H 1 1 K L
1 IAuta:nrrel;_CDntra st Correlation Cluster Pror Cluster Shac Entropy Homogeneil Sum of sgat Sum varianc Sum entrop Outcome

2 2.220194 0.7682311 0.5362699 127.1289 15.1035 1.299713 0.8590595 2.562903 5.233896 1.025558 1
3 5.889187 3.729205 O0.2887051 269.8299 27.41173 3.023441 0.5538951 7.68035 12.75872 2.081002 o
4 1.77506 0.328504 0.623683 38.7471 6.17035 0.979385 0.914025 1.89746 4.13044  0.804646 2
= 4.172091 2.426787 0.3565878 250.3215 25.96532 2.486287 0.6538921 5.328346 8.935365 1.78732 o
6 1.95062 0.436338 0.645002 78.1342 10.8949 0.954507 0.915786 2.12949 4.9599 0.779192 2
7 2.11441 0.540575 0.6064 T6.677 11.0133 1.18229 0.884208 2.34175 4.9523 0.949093 2
s 1.85392 0.490838 0.545239 55.7162 8.15041 1.07407 0.889518 2.05822 4.34207 a.862521 2
E) 2.238639 0.8123411 0.5075576 124.087 14.55201 1.379485 0.8433854 2.602955 5.105481  1.079944 o
10 2.01581 0.48B6596 0.64095 96.2406 12.7139 0.973464 0.913963 2.21789 5.1974 0.790861 2
11 1.985572 0.5721086 0.5946199 102.9654 13.30588 0.9543626 0.9094601 2.232304 5.254964 0.7694279 2
12 1.98151 0.5564453 0.6022579 109.6616 13.65073 0.9539325 0.9123533 2.221442 5.225563 0.7707475 2
13 1.85901 0.44295 0.611859 68.3485 9.68167 0.909858 0917742 2.04216 4.79078 0.729449 2
14 1.94392 0.4809449 0.610739 77.6612 10.7213 1.00205 0.905802 2.14573 4.8447 0.813759 2
15 1.66632 0.354875 0.602689 53.2062 7.59107 0.777277 0.93157 1.80706 4.41458 0.63691 2
16 2.06477 0.50633 0.630125 88.1321 12.0434 1.06239 0.903537 2.27636 5.10698 0.860559 2
17 1.72946 0.363276 0.624423 59.605 8.35592 0.822453 0.929073 1.88414 4.53458 0.676446 2
18 1.75839 0.357116 0.603603 39.0836 6.36452 0.942925 0.915439 1.89717 4.23152 0.769081 2
19 2.008739 0.5580519 0.6059625 112.9953 12.82418 0.98183322 0.9102952 2.249168 5.237999 0.7921768 2
20 1.90642 0.469935 0.6076432 /78.5853 10.6187 0.976698 0.90889 2.10288 A4.77839 0.794936 2
21 2.656208 0.9475777 0.5297082 131.7808 16.31528 1.650833 0.8082252 3.084938 5.7714 1.27388 1
22 2.2872 0.716563 0.556629 o8.2474 13.1037 1.36913 0.850606 2.60364 5.18108 1.07841 o
23 2.231244 0.7508521 0.5529782 125.7179 15.34599 1.268126 0.865471 2.565274 5.347251  1.003528 1
24 2.494953 0.8642153 0.526168 118.1067 14.79942 1.570502 0.8148061 2.883353 5.41768 1.216116 o

Figure 7: Optimize feature selection outcome

Figure 8, helps to determine how quickly the algorithm reaches a stable solution, whether
there are any oscillations or fluctuations in the optimization process, and whether the
algorithm exhibits any convergence and divergence patterns.

=

|

0.126

0.1249 4

0.122

0.120

|

0.118

[1- 2. 1. . 1. 1. @. . 1. @. 1. ©. 1. ©. 1. 1. 1. 1. 1. 1. 1. e.]

Figure 8: convergence and divergence patterns
11. Data Preprocessing:

This section incorporates data preprocessing steps all the listed methodology is implemented
as in methodology section. We have implemented M-GWO for the feature selection. Figure 9
determine class count at output label. The dataset contains three different class, Bengin_ cases
120 instant, Malignant_ cases 561 instance and Normal_ cases 561 instants.

df[ 'Outcome’ ].value counts()

Outcome
2 561
%] 416
1 126
Name: count, dtype: intea
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Figure 9:Count of output label

A correlation matrix is shown in figure 10, displaying the correlation values among the
variables. The correlation between two variables is displayed in each cell of the table. The
number falls between -1 and 1. A complete positive linear link exists between two variables if
their correlation coefficient is 1.

- 100

Erbropy —

Homogeneity. L

Sum of sqaures Vanance -

Sum varianc -

Sum entrapy —

Outcame

Figure 10: correlation matrix

Artificial Neural Network(ANN): This computational model is inspired by biological
neural networks, such as those found in the human brain, in terms of both form and
functionality. ANNs are used in artificial intelligence and machine learning to handle
complicated data inputs and produce outputs that are dependent on correlations and patterns
found in the data. The input layer, hidden layers, and output layer are the layers of linked
nodes, or neurons, that make up these networks and collaborate to learn and make predictions
or judgments. Figure 11 (a) and (b) demonstrate ANN had approx 84 % training and validation
accuracy and high validation loss. This indicate that ANN is not fit for this dataset.
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Figure 11 a) training and validation Figure 11 b) Training and validation loss
accuracy

KNN: A straightforward yet effective machine learning approach for classification and
regression problems is K-Nearest Neighbors (KNN). When predicting a new data point, the
"K" in KNN stands for the number of nearest neighbors to take into account. Figure 12 a)
demonstrate the confusion matrix score, b)train data set result achieved a high accuracy of
0.960, indicating that it correctly classified 96.0% of the samples. The MCC of 0.932 suggests
a strong correlation between predicted and actual values, and the F1 score of 0.959 reflects a
good balance between precision and recall and test data set result, KNN achieved an accuracy
of 0.927, an MCC of 0.870, and an F1 score of 0.927. This ROC curve indicates performance
across all metrics, especially in terms of accuracy, F1-score and MCC.

Confusion Matrix - KNN ' "
e TR Model performance for Training set

- Accuracy: ©8.9592548145085481
- MCC: 8.9316296160752734
- F1 score: 8.9591822026226062

Actual

Model performance for Test set
- Accuracy: 8.9272727272727272
- MCC: ©.8699024888436459

- F1 score: 8.92668458200814956

| i
0 1
Predicted

a) KNN Confusion matrix b) Training and Testing results of KNN
model

1011



J INFORM SYSTEMS ENG, 10(28s)
1012

One-vs-Rest ROC Curves - KNN Classifier

True Positive Rate
o

=

L

s

0.2 1 -

e —— ROC curve of class 0 (AUC = 0.97)
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0.0

T T T T
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False Positive Rate

¢) ROC curve for KNN

Figure 12: Overall KNN results

Decision Tree (DT): A Decision Tree is a hierarchical structure where each internal node
represents a decision based on a feature, and each leaf node represents the outcome or class
label.Figure 13 a) demonstrate the confusion matrix score, b)train data set result, DT
performed well with an accuracy of 0.875, an MCC of 0.786, and an F1 score of 0.872. This
suggests that the decision tree model was effective in capturing the underlying patterns in the
data and making accurate predictions and test result achieved an accuracy of 0.840, an MCC
of 0.716, and an F1 score of 0.843. It shows reasonable performance but falls short compared
to KNN and the stacked model in terms of MCC and F1 score. This ROC curve indicates
performance across all metrics, especially in terms of accuracy, F1-score and MCC.

Confusion Matrix - Decision Tree Classifier

Model performance for Training set
16 s - Accuracy: 8.8746958637469586

- MCC: 8.73863234794158923

- F1 score: 8.8715634718242212

Actual
1
I
=
[N

Model performance for Test set
- Accuracy: 8.84

- MCC: 8.71615986089852885

- F1 score: 8.8429531112217962

i I
0 1 2
Predicted

a) DT Confusion matrix b) Training and Testing results of DT model
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One-vs-Rest ROC Curves - Decision Tree Classifier
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False Positive Rate
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Figure 13: Overall DT results

SVM: The data points that are closest to the decision border are known as support vectors,
and they are essential in determining the margin. SVMs are memory-efficient for big datasets
because they only use a subset of training data points (called support vectors) that are close to
the decision border. Figure 14 a) demonstrate the confusion matrix score, b)train data set
result, had a lower accuracy of 0.831 compared to KNN. The MCC of 0.715 and F1 score of
0.783 also indicate comparatively lower performance in terms of both correlation and balance
between precision and recall and test dataset result had an accuracy of 0.869, an MCC of
0.769, and an F1 score of 0.832. While the accuracy is decent, the MCC and F1 score are slightly
lower compared to KNN. This ROC curve indicates performance across all metrics, especially
in terms of accuracy, F1-score and MCC.

Confusion Matrix - SVM

Model performance for Training set
° : - Accuracy: ©.83898082433898025
- MCC: 0.71486343093641425

- F1 score: 8.73829141892355723

Actual
1
~
~
=]
~

Model performance for Test set
- Accuracy: ©.86982089898%989091
- MCC: 0.76933888948793326

- F1 score: 8.8323331513652955

i |
0 1 2
Predicted

a) SVM Confusion matrix b) Training and Testing results of SVM model
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One-vs-Rest ROC Curves - SVM with RBF Kernel
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Figure 14: Overall SVM results

MLP: An artificial neural network with many layers of nodes (neurons) comprising an input
layer, one or more hidden layers, and an output layer is called a multilayer perceptron (MLP).
Figure 15 a) demonstrate the confusion matrix score, b)train data set result, r performance to
SVM RBF, with an accuracy of 0.830, an MCC of 0.709, and an F1 score of 0.780. While MLP
is a powerful model, it seems to have slightly underperformed in this context compared to
other models and test dataset result had an accuracy of 0.873, an MCC of 0.771, and an F1
score of 0.780. It performs well in terms of accuracy but shows a lower F1 score compared to
other models.This ROC curve indicates performance across all metrics, especially in terms of
accuracy, F1-score and MCC.

Confusion Matrix - MLP Classifier

Model performance for Training sef
’ ’ - Accuracy: 8.829683698296837

- MCC: 8.708984478170347

- F1 score: 8.73081088186516696

g — 20 0 N
Model performance for Test set
- Accuracy: 8.8727272727212727
" “ ° - MCC: 8.7767345820286626
: ; ’ - F1 score: 8.834883822258978
a) MLP Confusion matrix b) Training and Testing results of MLP

model
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One-vs-Rest ROC Curves - MLPClassifier
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Figure 15:0verall MLP results

Proposed Model: Proposed stack model: stacked models are a powerful technique in
machine learning ensembles, offering enhanced predictive performance by leveraging the
strengths of multiple base models and effectively combining their predictions through a meta-
model. Figure 16 a) demonstrate the confusion matrix score, b)train data set result
demonstrated exceptional performance across all metrics, with an accuracy of 0.998, an MCC
of 0.996, and an F1 score of 0.998. This indicates near-perfect classification and a very strong
correlation between predicted and actual values and test dataset result outperformed all other
models with an accuracy of 0.949, an MCC of 0.909, and an F1 score of 0.948. It demonstrates
superior performance across all metrics, indicating the effectiveness of ensemble methods or
stacked models in improving predictive accuracy and robustness. This ROC curve indicates

performance across all metrics, especially in terms of accuracy, F1-score and MCC.

Confusion Matrix - Stack Model

Model performance for Training set

- Accuracy: @.9975660009075L6691
- MCC: 8.9958787687163469
- F1 score: @.99755795408646868

§H 5 18 1 Model performance for Test set
- AcCcuracy: @.94989808962a80891
- MCC: B8.9837935273926542
- F1 score: 8.9484847438p50242
’ Predil[ted
a) Proposed Model Confusion matrix b) Training and Testing results of Proposed

Model
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One-vs-Rest ROC Curves -Proposed Stack Model
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Figure 16: Overall proposed model results

The results analysis reveals in figure 17, the proposed model significantly outperforms
individual machine learning models in terms of accuracy, Matthews Correlation Coefficient
(MCC), and F1 score. The proposed model achieved an outstanding accuracy of 0.998, a high
MCC of 0.996, and an impressive F1 score of 0.998, indicating near-perfect classification and
a strong correlation between predicted and actual values. In comparison, while KNN showed
high accuracy and MCC, the proposed model surpassed it significantly. Similarly, SVM and
MLP exhibited lower performance metrics, highlighting the superior predictive capabilities of
the proposed model. These results underscore the effectiveness of ensemble methods,
particularly the hybrid stacked model approach, in enhancing predictive accuracy and
robustness in lung cancer classification tasks.

Train result

1.2

1

0.8

0.6

0.4

0.2

0
KNN SVM DT MLP

Razaet.al. proposed
[ model

B Accuracy 0.9598540150.8309002430.8746958640.829683698 0.99 0.99756691
B MCC 0.9316296170.7148634890.7863234790.708984478 0 0.995878769
F1 0.9591022920.7829141090.8715634720.780198811 0 0.997557954

W Accuracy m MCC F1

Figure 17:comparative analysis of train data

The analysis of the results demonstrates in figure 18, that the proposed model outperforms
individual machine learning models. The proposed model achieved a high accuracy of 0.949,
a substantial MCC of 0.909, and an impressive F1 score of 0.948, indicating its capability for
accurate classification and strong correlation between predicted and actual values. Compared
to the baseline models, including KNN, SVM, and MLP, the proposed model demonstrates
superior performance across all metrics, highlighting the effectiveness of ensemble methods
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and the hybrid stacked model approach in enhancing predictive accuracy and robustness in
lung cancer classification tasks.

Test Result

1
09
0.8
0.7
0.6
0.5
0.4
0.3
O.é ||
Raza et al. Proposed
model
B Seriesl 0.9272727270.869090909 0.84 0.872727273 0.94 0.949090909
B Series? 0.8699024090.7693888950.7161598610.770784502 0 0.908798527
H Series3 0.9266045830.8323331510.8429531110.770784502 0 0.948404744

M Series]l mSeries? mSeries3

Figure 18:Comparative analysis of test data

Conclusion: The integration of contemporary data science techniques and artificial
intelligence into the interpretation of medical imaging scans marks a significant shift towards
more reliable and automated diagnostic tools. Unlike traditional methods reliant on subjective
visual examination by skilled radiologists, this advancement aligns with the core objective of
radiomics, merging personalized medicine with medical imaging. One of the main causes of
cancer-related fatalities worldwide, lung cancer, has a difficult environment. However,
advancements in lung cancer screening provide hope for improved treatment outcomes. The
survivability rates at different stages of lung cancer highlight the criticality of early detection
and intervention. Low dose computed tomography (LDCT), the recommended screening test
for lung cancer, utilizes X-ray technology to produce detailed images of the lungs, aiding in
the detection of abnormal tissue indicative of cancer. While LDCT offers life-saving potential,
it also poses risks such as false positives, overdiagnosis, and exposure to X-rays. Therefore,
screening is recommended primarily for individuals at high risk of lung cancer. New
Generation Information Technologies (New IT) play a pivotal role in driving the evolution of
Lung Cancer Classification. Leveraging LDCT in conjunction with AI-based Multilevel
Optimization through a hybrid stacked model addresses the aforementioned challenges
effectively. The proposed hierarchical reference architecture facilitates the extraction of
pertinent features from LDCT scans using GLCM techniques, further refined through IGWO
analysis to identify optimal features. This optimized solution, when integrated into a hybrid
stacked model, enables accurate classification of input images as normal or abnormal, thereby
enhancing diagnostic precision. The comparative analysis of different machine learning
models, including KNN, SVM, Decision Tree, MLP, and the proposed stacked model,
demonstrates the superiority of ensemble methods in improving predictive accuracy and
robustness. The stacked model, with its exceptional performance metrics including accuracy,
MCC, and F1 score, showcases the efficacy of leveraging multiple base models and a meta-
model for enhanced classification capabilities. The ROC curves further illustrate the strong
performance across all metrics, highlighting the stacked model's effectiveness in achieving
accurate and reliable predictions. In conclusion, the integration of advanced data science
techniques, Al, and ensemble learning methods holds immense potential in revolutionizing
lung cancer classification and diagnosis.
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