
Journal of Information Systems Engineering and Management 
2025, 10(30s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ECIS: EEG Based Classifier for Inner Speech 
 

Dr. Elizabeth Isaac1, Leya Elizabeth Sunny2, Rini T Paul3, Rotney Roy Meckamalil4, Rebeka Raju5,  Akash Ajayan6  

1 2 3 4 5 6 Department of computer science and engineeering, Mar Athanasius College of Engineering, India 

 1elizabethisaac@mace.ac.in, 2leyabejoy81@gmail.com, 3rinitpaul@mace.ac.in, 4rotney.rotney@gmail.com, 

 5rebekaraju6@gmail.com, 6akashajayan1123@gmail.com  

 

ARTICLE INFO ABSTRACT 

Received: 29 Dec 2024 

Revised: 12 Feb 2025 

Accepted: 27 Feb 2025 

Introduction: Inner speech, the silent stream of thoughts, offers a novel means of 

communication and control, particularly for individuals with motor impairments. The 

proposed EEG-based Communication and Interaction System (ECIS) leverages transfer 

learning and signal processing techniques to classify inner speech cues, enabling hands-free 

interactions. This research explores the usability of inner speech in various domains, including 

healthcare, education, and entertainment, by analyzing its effectiveness in EEG-based 

command execution. 

Objectives: This study aims to evaluate the feasibility of inner speech as a reliable 

communication modality using EEG signals. It seeks to classify directional cues (up, down, left, 

right) from inner, pronounced, and visualized speech while comparing their recognition 

accuracy. Additionally, the research examines the scalability of ECIS for more extensive 

datasets and its potential applications for assistive technologies. 

Methods: EEG signals were processed through segmentation and transformed using Mean 

Phase Coherence (MPC) and Magnitude Squared Coherence (MSC) analysis. A transfer 

learning approach was applied to classify the selected directional cues, and performance was 

compared across inner, pronounced, and visualized speech conditions. The system was 

evaluated on a selected dataset, with accuracy comparisons made against existing approaches 

and simplified cue sets.  

Results: The model demonstrated the highest classification accuracy for inner speech at 

73.05%, outperforming both visualized and pronounced speech. Accuracy comparisons with 

previous studies using the same cues showed an improvement in recognition rates. 

Additionally, using a simpler set of cues resulted in variations in accuracy, highlighting the 

impact of cue complexity on model performance.  

Conclusions: The findings confirm that inner speech is a viable modality for EEG-based 

communication, offering significant potential for hands-free interaction. ECIS provides a 

foundation for future research, particularly in developing scalable models with larger, high-

volume datasets. This work paves the way for enhanced human-computer interaction, 

benefiting individuals with disabilities and expanding applications in various fields. 
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INTRODUCTION 

Electroencephalogram monitoring measures the brain’s electrical activity through a series of electrodes placed on 

the scalp. This method provides valuable insights into the functioning of the brain and has been used extensively in 

various fields such as medicine, psychology, and neuroscience (Maganti & Rutecki, 2013) (Meng, Zhang, Ma, Gao, 

& Kong, 2023) (O’Shea, Lightbody, Boylan, & Temko, 2017) (Ullah, Hussain, ul Haq Qazi, & Aboalsamh, 2018). 

EEG monitoring has been used for emotion classification, in the treatment of ADHD, understanding stress and 
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attention levels and other neurological phenomenon directly and indirectly. Inner speech is the thought process or 

speech inside the mind, when mentally articulating words or imagining actions. There are various attempts to 

classify inner speech using the EEG data obtained during the process (Gasparini, Cazzaniga, & Saibene, 2022) 

(Panachakel & Ganesan, 2021) to name a few. Some of these methods use similar methodologies used for 

classifying emotions from EEG data. By analyzing the patterns of electrical activity in the brain, it is possible to data 

on mental processes, including inner speech. The healthcare, education, and entertainment sectors stand to gain 

much from the smooth integration of inner speech categorization technologies. By enabling hands-free device 

operation and information retrieval, it creates opportunities for the creation of more inclusive and accessible 

systems that improve people’s quality of life and contribute to societal well-being. 

Classifying inner speech from EEG data is relatively more difficult compared to using EEG data for identifying 

emotions. While emotion classification can be done to certain degree of accuracy by passing raw data to basic 

neural networks, similar methods might not yield good results when used for inner speech classification. It can be 

due to the overall lack of information in EEG that can be used for inner speech classification. There have also been 

differences on opinion on selection of channels, with increase in accuracy sometimes of increase in overall number 

of channels and sometimes on selection of a suitable subset of channels. Using techniques like SVM, XGBoost and 

even neural networks like LSTM and BiLSTM (Gasparini et al., 2022) might yield accuracy values that are 

borderline random. Various processing or transformation of the raw data can be done to produce more suitable 

data for training models. Transforming the data to the frequency domain is possible method that is shown to 

increase the accuracy of classifying other information using EEG data. More mathematical transformations 

including calculation of Mean Phase Coherence and Magnitude Squared Coherence (Panachakel & Ganesan, 2021) 

can be made and their properties can be made use of to increase the context of the input within the same input 

shape.  

ECIS investigates the variation in the accuracy of thought under different conditions including inner speech where 

each participant imagines their voice giving direct commands to device, pronounced speech where the participant 

tries to pronounce the cues and visualized speech in which the participant mentally imagines moving a circle in the 

direction of the cue. Mean Phase Coherence and Magnitude Squared Coherence(citing transfer) and their inherent 

symmetry allows the construction of image counterparts of the EEG data which can be used for classification. 

"Thinking Out Loud" dataset (Nieto, Peterson, Rufiner, Kamienkowski, & Spies, 2022) used of this study contains 

the inner speech of 10 subjects through three sessions. It has 128-channel data with four directional classes of up, 

down, left and right. The dataset primarily gives importance to inner speech, with pronounced speech having lesser 

number of trials recorded. The variation of the performance degree of similarity of cues were also analyzed, 

supported by previous works employing similar methods (Panachakel & Ganesan, 2021). This will provide a 

foundation for developing systems to classify EEG data under larger set of cues, on the availability of higher volume 

datasets. 

OBJECTIVES 

The purpose of this study is to investigate whether inner speech may be used as a hands-free communication 

medium with EEG signals. The study uses preprocessing techniques like segmentation and coherence evaluation 

through Mean Phase Coherence (MPC) and Magnitude Squared Coherence (MSC) to classify directional cues (up, 

down, left, and right) from EEG signals associated with inner, pronounced, and visualised speech. To improve 

classification accuracy, a transfer learning strategy is used, and its effectiveness is evaluated under various speech 

situations. The study also looks at the impact of analysing differences in model accuracy using a more basic set of 

directional signals. The study also looks into how ECIS might be used in assistive technology, specifically in the 

fields of entertainment, education, and healthcare. Finally, the study aims to assess the scalability of the system for 

larger datasets and provide insights into improving EEG-based human-computer interaction for accessibility and 

usability. 

METHODS 

Training an advanced inner speech classification model is the goal, and it will be done using ’Thinking Out Loud’ 

that was acquired by using 128 EEG channels.  
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DATASET EMPLOYED IN THE WORK  

The dataset utilized in the study, known as "Thinking Out Loud" (Nieto et al., 2022) plays a crucial role in the 

creation of the EEG-based inner speech classification model. Using the BioSemi ActiveTwo high-resolution bio-

potential measurement equipment, 128-channel EEG recordings were acquired for the dataset, which aims to 

capture the brain activity related to inner speech creation. In order to avoid actual physical articulation, 

participants were taught to mentally simulate pronouncing directional commands such as up, down, left and right. 

In order to gain important insight into the neurological correlates of cognitive processes without overt speech 

production, this imagery task sought to extract the brain activity patterns associated with inner speech production. 

Specific conditions were set to further analyse in detail how variations in the procedure applied during thought can 

affect the result of the classification.  

To guarantee that participants consistently visualized the directional signals at predetermined intervals, timed 

beats and visual cues on a screen directed them throughout the data collection procedure for certain subset of trails. 

The consistency of the participants’ cognitive activities was made possible by the standardizing the procedure, 

which improved the repeatability and dependability of the EEG data that was gathered. Additionally, Independent 

Component Analysis (ICA) was used to remove undesired artifacts, including noise, in order to improve the quality 

of the EEG recordings. Through careful preprocessing of the obtained EEG signals and removal of highly coherent 

parts, the dataset was fine-tuned to highlight the key brain patterns linked to inner speech, providing a strong basis 

for further analysis and classification tasks. 

Table 1. Types of trials in the dataset 

Trial Type Description 

Inner Speech Each participant imagines their voice giving direct commands to device 

Pronounced Speech Each participant tries to pronounce the cue 

Visualized Speech Each participant mentally imagines moving a circle in the direction of the cue 

 

FEATURE EXTRACTION 

Since the final structure of the data that is used for classification is an image, it was preferred that all 

channels of the data be kept for maximum resolution in the image generated. The final image array is 

composed of two features: 

1. Mean Phase Coherence  

2. Magnitude Squared Coherence 

 

Mean Phase Coherence 

Mean Phase Coherence (MPC) is a measure used in EEG signal analysis to assess the synchronization or 

phase consistency between pairs of EEG channels, expressed as Equation (1). It quantifies the degree of 

phase locking or coordination of neural activity between different brain regions. MPC is particularly 

useful for studying functional connectivity and neural communication patterns during cognitive tasks 

such as inner speech processing. 

𝑀𝑃𝐶𝑖,𝑘 =
1

𝑁
| ∑ 𝑒−𝑗(𝛷𝑖(𝑛)− 𝛷𝑘(𝑛))|𝑁−1

𝑛=0                          (1) 

Magnitude-Squared Coherence 

It measures the linear relationship between the channels in the spectral domain, using respective power 

spectral densities S(ω). It lies between 0 and 1, captured using Welch’s periodogram with hamming 

window. The MSC between i and k channels are given by Equation (2). 

𝑀𝑆𝐶𝑖,𝑘(𝜔) = |𝑆𝑖,𝑘(𝜔)|2/𝑆𝑖,𝑖(𝜔)𝑆𝑘,𝑘(𝜔)                            (2) 
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FINAL FORMATTING OF DATA 

Mean Phase Coherence (MPC) and Magnitude Squared Coherence (MSC), two retrieved characteristics, 

must be carefully transformed into a structured array that can be used as the classification model’s input 

in the final formatting of the data in EEG signal processing for inner speech classification. By creating a 

thorough representation of the brain dynamics collected by MPC and MSC, this crucial step will improve 

the model’s capacity to reliably and effectively classify inner voice commands. Researchers establish a 

unified representation of brain activity patterns by merging MPC and MSC values, which reflect neuronal 

synchronization and coherence. By utilizing the complimentary information offered by both 

characteristics, researchers are able to improve the input data for the classification model. 

The MPC and MSC values are subjected to a band pass filter, which limits the data to particular 

frequency bands like the alpha, beta, and gamma ranges in order to assure data quality and concentrate 

on pertinent frequency ranges. In order to prepare the data for further processing, this filtering phase 

improves the neural information pertinent to inner speech classification. After that, the structured data 

is grouped into an array that resembles an image, with the MPC and MSC values placed in a certain way 

to maintain the spectral and spatial correlations between the EEG channels. A single array encapsulating 

the combined neuronal coherence and synchronization information in a format appropriate for deep 

learning-based classification models is constructed by superimposing the upper triangular portion of the 

MPC values and the lower triangular part of the MSC values. The complex brain dynamics involved in 

inner speech activities are captured by this image-like representation, which guarantees that the crucial 

information represented as the MPC and MSC features is retained. After formatting, it can be used to 

classify the features that were extracted using inner speech commands accurately. This method helps the 

model learn and differentiate between various directed signals with high accuracy. 

 

Figure 1. The final array created by superimposing the lower triangular part of the MSC and upper 

triangular part of the MPC. 

METHOD USED TO INCREASE EFFECTIVE DATASET SIZE 

In an effort to increase the volume of available samples, data augmentation strategies have been 

investigated in response to the problem of limited data in training datasets(Nieto et al., 2022), a number 

of data augmentation techniques have been investigated, including overlapping or sliding window 

approaches (O’Shea et al., 2017) (Kwak, M"uller, & Lee, 2017) (Ullah et al., 2018) (Majidov & Whangbo, 

2019) and generative adversarial networks(GAN) (Luo & Lu, 2018) (Wei, Zou, Zhang, & Xu, 2019) 

(Chang & Jun, 2019). However, because of the restricted amount of data available, GANs are not thought 

to be the best solution for our particular issue. Also, the possibility of overfitting the model to the 

training data was identified when sliding windows were used. 

 

Figure 2. Data augmentation with non-overlapping windows. 
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DETAILS OF THE CLASSIFIER 

A ResNet101 neural network, with its weights trained on the ImageNet dataset is used for transfer 

learning. For the purpose of this classification, the preexisting layers were frozen and to be used only for 

feature extraction. Additional set of two convolution layers along with pooling were added for the 

purpose of classification and dense layers to generate a classifier for two classes. Multiple iterations of 

the model were made based on different set of cues. 

 

Figure 3. Description of the layers of the model. 

A learning rate of 1e −4 using the Adam optimizer is used for training the model. A 10 fold cross-

validation over 20 epochs is carried out. The accuracy metric was measured as the average of the 

accuracy values during each crossvalidations and other metrics and convolution matrix was created using 

separate data kept for evaluation which was in the ratio of 1:18 to the overall dataset. The smaller amount 

of data for evaluation is due to the overall decrease in training data size on allotting more data for 

evaluation. Furthermore, the model was run on AWS Sagemaker ml.g4dn.xlarge notebook instances.  

EXPERIMENTS 

 Multiple experiments were conducted using the available EEG data. Initially, the raw EEG data was used 

for the purpose of classification. The data, fed to a 1D model of the specifications listed in the previous 

section. The raw data was segmented using the MNE(Gramfort et al., 2013) library, in the useful region 

from raw data i.e., 1.5.-3.5 sec was segmented. Since the dataset consists of visualized, inner and 

pronounced speech, for the purpose of the experiment, only the inner speech data was considered. 

Further, to use the model with reasonable accuracy and EEG data being complex, to reduce the overall 

ambiguity in classifying the data, only the up and down prompts were used. This method was mostly 

used to infer how much the CNN model could infer from the raw data and to essentially give a base to 

how much relatively the other models are performing. The second experiment involved processing the 

EEG data into image-like arrays with the superimposed Mean Phase Coherence and Magnitude-squared 

coherence as mentioned in the methodology. This, along with the reasonable performing ResNet101 
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model with weights trained from ImageNet with additional convolution layers for classification. Finally, 

the data after segmentation was used as increasing the amount of data is essential to increase the 

performance of this model. The third experiment involved making making multiple comparisons on (up, 

down) and (left, right) set of cues and the fourth experiment involved comparisons on how the 

performance of the model is different on inner speech, visualized speech and pronounced speech. 

 

Figure 4. The process of creating the image for the classifier. The end image is of 128 x 128 x 3 

dimensions. 

RESULTS 

On comparing the performance of the model on pronounced, visualized and inner speech, the model 

performed best when inner speech was used. The relative drop in performance in pronounced speech can 

be related to the comparatively less amount of trials of pronounced speech that was recorded. 

Table 3. Metrics for inner speech considering a small subset of data from all subjects for evaluation 

Prompt TP FP TN FN Precision Recall 

Up 69 7 48 0 90.79 1 

Down 48 0 69 7 1 87.27 

 

Table 4. Metrics for visualized speech considering a small subset of data from all subjects for evaluation 

Prompt TP FP TN FN Precision Recall 

Up 63 24 38 1 98.44 72.41 

Down 38 1 63 24 97.44 37.62 
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Figure 5. Accuracy of models when using different speech types.  

Table 5. Metrics for pronounced speech considering a small subset of data from all subjects for 

evaluation 

Prompt TP FP TN FN Precision Recall 

Up 26 0 34 2 94.44 1 

Down 34 2 26 0 1 94.44 

 

DISCUSSION 

When using the left and right cues instead of up and down, the model performed slightly better although 

the verbal similarity is higher for the latter case. It could be due to the channel wise correlation to the 

hemispheres of the brain. Further comparison with works using long words(independent and cooperate) 

and long-short words(in and cooperate) shows how the similarity between words affects the ability of the 

model for distinguish the cues(Panachakel & Ganesan, 2021) as in Fig.10. The proposed methods were 

used on the partial up and down subset of the data. The accuracy obtained initially bordered the 

probability of random guess at 50%. Later, further fine-tuning of the model for the first experiment 

allowed further increase in accuracy to 58%. The model peaked at this amount number, which can be due 

to the considerably low amount of data available for classification. However, using the ResNet + Transfer 

Learning model allowed accuracy values up to 78% with is reasonably good when compared to previous 

works using the same dataset. After segmentation, the performance of the model dropped to 73%. But it 

can be attributed to better adjustment of the model to unseen data and the ability of the model to use 1 

second EEG data instead of 2 seconds thereby increasing the practical usability of the model for real-

world use cases. It is to be noted that the current work uses only two of the cues and the work used for 

comparison used four classes, thus the baseline accuracy has been shifted to adjust for the difference in 

classes(Gasparini et al., 2022). 

 

Figure 6. Accuracy comparison of the models (separate graphs are provided to represent the change in 

baseline). 
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Figure 7. Confusion matrix for (Up, Down) cues 

for inner speech. 

 

Figure 8. Confusion matrix for (Up, Down) cues 

for visualized speech. 

 

Figure 9. Confusion matrix for (Up, Down) cues 

for pronounced speech. 
 

Figure 10. Analysis of change in accuracy for 

different sets of cues. 

CONCLUSION  

 The paper uses a ResNet+Transfer Learning model which uses Mean Phase Coherence and Magnitude 

Squared Coherence for transforming the EEG data into image-like format for classifying various types of 

imagined cues. On the available set of data, data segmentation methods were used to increase the 

quantity of data available for training the model. On comparison with previous works, the model 

performs reasonably well. The performance of the model could be further improved using larger datasets 

On increasing the number of classes, similar methodology can be used for creating mobility devices like 

wheel-chairs for people. It could also be used in the gaming industry for providing more realistic 

experiences when paired with VR devices. 

REFRENCES 

[1] Chang, S., & Jun, H. (2019). Hybrid deep-learning model to recognise emotional responses of users towards 

architectural design alternatives. Journal of Asian Architecture and Building Engineering, 18(5), 381–391.  

[2] Gasparini, F., Cazzaniga, E., & Saibene, A. (2022). Inner speech recognition through electroencephalographic 

signals. Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., . . . Hamalainen, 

M. (2013). Meg and eeg data analysis with mne-python. Frontiers in Neuroscience, 7.  

[3] Kwak, N.-S., M"uller, K.-R., & Lee, S.-W. (2017). A convolutional neural network for steady state visual evoked 

potential classification under ambulatory environment. PLoS One, 12(2), e0172578. 

[4] Luo, Y., & Lu, B.-L. (2018). Eeg data augmentation for emotion recognition using a conditional wasserstein 

gan. In 2018 40th annual international conference of the ieee engineering in medicine and biology society 

(embc) (p. 2535-2538) 



332  

 

 

 J INFORM SYSTEMS ENG, 10(30s) 

[5] Maganti, R. K., & Rutecki, P. (2013, Jun). Eeg and epilepsy monitoring. Continuum (Minneapolis, Minn.), 19(3 

Epilepsy), 598–622.  

[6] Majidov, I., & Whangbo, T. (2019). Efficient classification of motor imagery electroencephalography signals 

using deep learning methods. Sensors, 19(7).  

[7] Meng, M., Zhang, Y., Ma, Y., Gao, Y., & Kong, W. (2023, feb). Eeg-based emotion recognition with cascaded 

convolutional recurrent neural networks. , 26(2), 783-795. 

[8] Nieto, N., Peterson, V., Rufiner, H. L., Kamienkowski, J. E., & Spies, R. (2022). Thinking out loud, an open-

access eegbased bci dataset for inner speech recognition. Scientific Data, 9(1), 52.  

[9] O’Shea, A., Lightbody, G., Boylan, G., & Temko, A. (2017). Neonatal seizure detection using convolutional 

neural networks. In 2017 ieee 27th international workshop on machine learning for signal processing (mlsp) 

(p. 1-6).  

[10] Panachakel, J. T., & Ganesan, R. A. (2021). Decoding imagined speech from eeg using transfer learning. IEEE 

Access, 9, 135371-135383. 

[11] Ullah, I., Hussain, M., ul Haq Qazi, E., & Aboalsamh, H. (2018). An automated system for epilepsy detection 

using eeg brain signals based on deep learning approach. Expert Systems with Applications, 107, 61- 71.  

[12] Wei, Z., Zou, J., Zhang, J., & Xu, J. (2019). Automatic epileptic eeg detection using convolutional neural 

network with improvements in time-domain. Biomedical Signal Processing and Control, 53, 101551  


