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Urban green cover plays a pivotal role in sustainable urban development by providing 

environmental and socio-economic benefits. Accurate mapping of urban green cover is essential 

for developing urban greening strategies and managing urban green spaces in smart cities. 

Remote sensing, particularly Sentinel-2 imagery, offers high-resolution multispectral data 

suitable for vegetation analysis. Machine learning algorithms, such as Random Forest, have 

proven effective in classifying land cover, including urban green spaces. This research 

investigates the accuracy of Random Forest in mapping urban green cover in Baguio City, 

Philippines, utilizing Sentinel-2 imagery and spectral indices. The study utilized spectral indices, 

such as NDVI, SAVI, NDWI, and NDBI to train and validate the Random Forest model. The 

performance of the Random Forest classifier is evaluated using standard accuracy assessment 

metrics, such as overall accuracy, producer's accuracy, user's accuracy, F1-score, and Kappa 

coefficient. The Random Forest model proved to enhance the classification of urban green cover 

with 85.71%, 86%, and 86% for the overall accuracy, producer’s accuracy for urban green cover, 

and consumer’s accuracy for urban green cover, respectively. The F1-score of 0.92308 and Kappa 

coefficient of 0.7790927 showed that the Random Forest model accurately classified the urban 

green cover. By utilizing remote sensing and machine learning techniques, this research seeks to 

contribute to the development of accurate and up-to-date urban green cover maps. The findings 

shall provide valuable insights for urban planners and policymakers in Baguio City, enabling 

them to implement effective strategies for urban greening and sustainable urban development. 

Keywords: Machine Learning, Random Forest, Remote Sensing, Sentinel-2 Imagery, Spectral 

Indices, Urban Green Cover Mapping, SDG 11 Access to Green Space. 

 

INTRODUCTION 

Urban green covers are essential for improving the quality of life in cities, as they offer a variety of economic, social, 

and environmental advantages [1], [2], [3], [4]. Urban green cover encompasses the urban green space or vegetative 

land in the urban environment, including a wide variety of vegetation types ranging from large parks and forests to 

small patches of trees and even individual trees [5], [6]. These urban green spaces are instrumental in biodiversity 

preservation [5], climate mitigation [7], air purification [8], and satisfactory human well-being. Effective urban 

planning, environmental management, and public health initiatives compel precise and current information 

regarding urban green spaces [9]. 

Many cities are currently striving to achieve sustainable development, and urban green spaces are integral in 

achieving sustainability [3], [5]. Achieving the United Nations Sustainable Development Goals, SDG11, targeting the 

provision of universal access to safe, inclusive, and accessible, green and public spaces is essential [2], [42]. Cities 

can enhance the quality of life for the residents, reduce pollution, and increase their resilience to climate change by 

promoting sustainable land use practices and incorporating green spaces.  

Baguio City, located in the northern part of the Philippines, is currently in the process of transforming into a smart 

city. The objective of this initiative is to enhance the quality of life for its residents, as well as the city's efficacy and 

sustainability, by utilizing technology [10], [11]. Baguio's smart city development is centered on the following key 



445  

 
 J INFORM SYSTEMS ENG, 10(30s) 

areas such as smart governance, which is the integration of digital systems to optimize administrative procedures, 

increase transparency, and improve citizen engagement; smart infrastructure deals with the creation of intelligent 

infrastructure, including energy-efficient buildings, smart transportation systems, and waste management solutions; 

smart mobility is the promotion of sustainable transportation options, such as pedestrian-friendly infrastructure, 

bike-sharing programs, and electric vehicles; smart environment with the implementation of technology to monitor 

environmental conditions, manage natural resources, and encourage sustainability; and smart living deals with 

improving the quality of life for residents by utilizing smart services, including e-health, e-education, and smart home 

technologies. Baguio City endeavors to establish itself as a paradigm for sustainable urban development in the 

Philippines by adopting smart city initiatives [10], [11]. 

Smart cities are increasingly incorporating advanced technologies to enhance sustainability, efficiency, and viability. 

Smart green cities that are more resilient, sustainable, and equitable can be established by integrating smart 

technologies with urban green spaces [12]. The use of machine learning algorithms, in conjunction with remote 

sensing techniques, provides an efficient and scalable method for the evaluation and monitoring of urban green 

spaces [2]. Random forest, a machine learning algorithm, is well-suited for urban green space mapping due to its 

ability to manage intricate relationships between spectral indices and land cover classes [13], [14], [15]. In remote 

sensing techniques, the distinctive spectral signatures of various land cover categories, such as urban built-up areas, 

bare soil surfaces, water bodies, and urban green cover, can be captured by spectral indices that are derived from 

multispectral or hyperspectral imagery. These indices, combined with machine learning, offer significant insights 

into the health, density, and composition of vegetation [16]. 

This research paper explores the application of spectral indices and random forest machine learning to map urban 

green spaces in Baguio City. The objectives of this paper are as follows: (1) evaluate the effectiveness of various 

spectral indices in differentiating urban green spaces from other land cover categories in Baguio City; (2) develop a 

random forest model for classifying urban green spaces based on spectral index values; and (3) assess the random 

forest model's performance and accuracy in classifying urban green space. This research endeavors to advance urban 

green space mapping, investigate the potential applications of the model, and offer valuable insights to policymakers 

and urban planners in Baguio City establishing a more sustainable and resilient city by addressing these objectives. 

RELATED WORK 

Sustainable urban development, a paradigm that seeks to balance economic growth, social equity, and environmental 

protection [43], is a key driver for the integration of urban green spaces into urban planning. Urban green spaces 

play a vital role in promoting sustainable urban development by providing a variety of ecosystem services. To create 

an accurate map of urban green spaces, machine learning techniques can be employed. Machine learning is a subset 

of artificial intelligence that has become a powerful tool for analyzing large, complex data sets. The random forest 

model is a popular algorithm of machine learning that has been widely used in remote sensing technology. The 

random forest's ability to process high-dimensional data, robustness to noise, and interpretability make it a 

promising candidate for urban green space mapping. 

The random forest is a powerful machine learning model well-suited for classifying urban green space due to its 

ability to handle high-dimensional data, robustness to noise, and capacity to provide insights into variable 

importance [13], [17], [18]. Random Forest operates as a machine learning method that constructs various decision 

trees, and each decision tree is trained on a different random subset of the data [19]. The final classification is 

determined by a majority vote among all the trees. 

Many studies have confirmed the effectiveness of Random Forest for urban vegetation mapping. Reference [13]  in 

Augsburg, Germany, successfully identified various types of green spaces with a 97% accuracy using Random Forest 

on Sentinel-2 imagery and explored the use of single spectral bands, vegetation indices, and a combination of both 

as input variables, finding that while all models performed well, the inclusion of vegetation indices significantly 

improve the accuracy. 

Research in China further demonstrates the efficacy of Random Forest in urban green space mapping. A study 

mapping urban forests across the country using Sentinel-2 images and the Random Forest model on the Google Earth 

Engine platform achieved an overall accuracy of 92.30%. The study highlighted the importance of using appropriate 

spectral indices, such as NDBI, NDVI, and NDWI, as supplementary information for classification [14]. Another study 
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in Beijing successfully classified urban green space using Random Forest and Sentinel-2 imagery, demonstrating the 

algorithm's ability to handle complex urban environments [9]. 

Further research has explored the integration of Random Forest with other data sources for enhanced classification 

accuracy. A study in Xuzhou, China, found that combining Sentinel-1 SAR and Sentinel-2 MSI data with Random 

Forest and an object-oriented approach classification improved the accuracy of aboveground biomass estimation for 

different urban vegetation types [15]. A study in Europe showed the importance of multi-temporal data having a 

significant impact on improving accuracy in urban vegetation mapping using Random Forest, which is a top 

performer in the study, specifically in handling large datasets and complex classification tasks in urban environments 

[20]. This further supports the effectiveness of Random Forest for handling the complexities of urban environments 

and multi-temporal data [6]. Another study's findings of using advanced methods for extracting meaningful features 

from both image and non-image data, capturing the complexity of urban land use, offered a promising approach for 

leveraging multi-source data to improve classification accuracy in urban land use mapping and inform urban 

planning efforts [21]. These studies emphasized the potential of multi-source data fusion for improved classification 

accuracy. 

Comparative studies have consistently shown Random Forest’s superior performance and consistently high accuracy 

in urban green space classification over other machine learning models, such as Support Vector Machine (SVM), 

Artificial Neural Networks (ANN), and K-Nearest Neighbours (KNN). In China, [14] determined that the urban forest 

cover is between 10% and 20% by using the Random Forest machine learning algorithm on Google Earth Engine to 

classify urban forests from Sentinel-2 images. In Africa, [22] highlighted that Random Forest demonstrably 

outperformed Support Vector Machine in terms of accuracy, and significantly excelled in classifying mixed land cover 

classes, particularly well-suited for mapping large areas using coarse-resolution imagery. In one study [8], the 

Random Forest algorithm was found to be more accurate and faster than the K-Nearest Neighbours (KNN) algorithm 

for urban footprint extraction, showing overall accuracies of 82.08% and 77.89%, respectively. Another study found 

that the Random Forest model was better than both the SVM and Artificial Neural Network models for classifying 

urban land use, achieving a validation accuracy of 79.88% for Level I and 71.89% for Level II land use [23]. Finally, 

[15] showed that an object-based Random Forest classification had higher overall accuracy (86.59%) than KNN 

(82.68%) for identifying urban green space types, and also showed the highest classification accuracy with a value of 

89.62% as its producer accuracy for coniferous forests.  

While Random Forest has proven highly effective for classifying urban green space, research suggests the importance 

of careful parameter tuning and training data selection for optimal performance [24].  Studies [7],  [25] also suggest 

that integrating spatial metrics and texture analysis with Random Forest can further enhance classification accuracy 

in urban environments. Similarly, [26] discussed evaluating hundreds of input parameter combinations and 

identifying the combination resulting in the highest accuracy based on overall accuracy and the Kappa index. [27] 

also investigates the effect of the number of trees in the Random Forest classifier, concluding that using more trees 

improves accuracy. Finally, the Random Forest classifier demonstrated robustness in handling high-dimensional 

datasets and its ability to provide insights into feature importance in classifying land cover [28].  

MATERIALS AND METHODS 

This section discusses the focused study area, the dataset used, and the workflow of the Random Forest model 

development starting with data preprocessing, feature extraction, and feature engineering. Figure 1 shows the 

workflow of developing the Random Forest model. 
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Figure 1. Workflow of Random Forest Model 

A. Study Area  

Baguio City, a highly urbanized city in the Philippines located at latitude 16.41639 and longitude 120.59306 [29], is 

selected as the study area. The city has a land area of 57.51 square kilometers and its population as determined by the 

2020 Census was 366,358 [30]. The city is geographically situated within the province of Benguet and is part of the 

Cordillera Administrative Region (see Figure 2).  

 

Figure 2. The Cordillera Administrative Region (a), located in the northern part of the Philippines, is home to the 

picturesque province of Benguet, which in turn boasts the charming chartered city of Baguio (b). 

The city is ranked 12th in the 2024 Rankings of Highly Urbanized Cities in the Philippines by the Department of Trade 

and Industries [31] with a 48.1823 score in terms of economic dynamism, government efficiency, infrastructure, 

resiliency, and innovation. The built-up areas of Baguio City are continuously expanding as a result of the city's 

economic development, the thriving tourism industry, and the rapid growth of the urban population.  



448  

 
 J INFORM SYSTEMS ENG, 10(30s) 

B. Dataset 

In this study, the Harmonized Sentinel-2 MSI: Multispectral Instrument, Level 1C dataset, provided by the European 

Union through the European Space Agency and Copernicus, is utilized. The access and use of the Copernicus Sentinel 

Data and Service Information is regulated under the European Law. The dataset is a collection of harmonized 

sentinel-2 remote sensing data which is a wide-swath, high-resolution, multi-spectral imaging supporting Copernicus 

Land Monitoring studies, including monitoring of vegetation, soil and water cover, as well as of inland waterways 

and coastal areas [34]. The Sentinel-2 satellite series provides diverse spatial resolutions (10m, 20m, and 60m), 

enabling a wide range of applications, including atmospheric and geophysical corrections, vegetation analysis, and 

land classification. The 13 spectral bands captured by Sentinel-2, spanning the visible, near-infrared, and shortwave 

infrared regions, offer comprehensive data for detailed Earth surface analysis [24]. The study focused on the Sentinel-

2 high-resolution multispectral satellite imagery of Baguio City, Philippines from January 1, 2023 to December 31, 

2023. 

C. Data Preprocessing 

The study used Sentinel-2 imagery covering latitude 16.41639 and longitude 120.59306 for urban green cover 

classification. The Sentinel-2 Level 1C dataset has undergone radiometric and geometric corrections within a global 

orthogonal rectification and spatial registration [14] and is accessible via the Google Earth Engine image collection. 

Baguio City is characterized by frequent rainfall throughout the year, and due to its high elevation, the city is often 

enveloped in cloud cover, necessitating the implementation of cloud masking techniques. Cloud masking pertains to 

developing a dependable cloud masking algorithm to eradicate cloud-contaminated pixels from the Sentinel-2 

imagery. Cloud detection is a necessary phase in satellite image processing to retrieve atmospheric parameters which 

includes classifying pixels into thick clouds, thin clouds, and the background [35]. An atmospheric correction using 

the quality band (QA60) from Sentinel-2 in Google Earth Engine was implemented to mask cloud and pick optimal 

images with low cloud cover. See Figure 3 for the cloud mask image of Baguio City. 

 

Figure 3. Cloud-covered Baguio City Satellite Imagery 

D. Feature extraction 

Relevant spectral and spatial features were extracted from the Sentinel-2 Level 1C imagery, such as vegetation indices, 

texture metrics, and elevation data for obtaining vegetation information. The use of vegetation indices is a valuable 

feature for identifying urban green cover by helping to reduce soil and atmospheric effects while enhancing the 

information present in single spectral bands, leading to a better understanding of vegetation characteristics by 

calculating NDVI, SAVI, NDBI, and MNDWI from Sentinel-2 spectral bands. Section IV-A provides a detailed 

discussion on NDVI, SAVI, NDBI, and MNDWI and how it affects feature engineering methods. 

E. Feature engineering  

New features may be created by combining existing features or applying mathematical transformations to improve 

classification performance. Pixels in the imagery are grouped together with similar characteristics. Replacing the 

isolated pixels with the value of neighboring pixels to have connected pixels then generates a smoothed, segmented 

polygon. 
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RESULTS 

A. Effectiveness of Spectral Indices in Differentiating Urban Green Space 

Spectral indices are mathematical combinations of reflectance values from various spectral bands that are employed 

to emphasize particular features of interest in a remote-sensing image [13]. These indices are intended to distinguish 

vegetation cover from other land cover categories and emphasize it in the context of green space mapping. The 

researcher chose the following spectral indices from the Sentinel-2 index database to distinguish urban green cover: 

Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Normalized Difference 

Built-Up Index (NDBI), and Modified Normalized Difference Water Index (MNDWI). The next section discusses the 

description of the selected indices as well as the equations to calculate them.  

The Normalized Difference Vegetation Index (NDVI) is a remote sensing technique that utilizes light reflectance in 

the visible and near-infrared (NIR) spectra to assess vegetation quantity and health in a given area. It utilizes the 

disparity between near-infrared (NIR) and red reflectance to distinguish vegetation from other land cover categories. 

NDVI values generally span from -1 to 1, wherein elevated positive values signify denser and more robust vegetation, 

while lower or negative values denote barren soil or places devoid of vegetation [36]. Utilizing NDVI on urban imagery 

enables the identification and mapping of diverse green spaces, including parks, gardens, trees, and urban forests. 

NDVI may be associated with urban heat island phenomena. Regions with elevated NDVI values frequently 

experience reduced temperatures because of the cooling influence of vegetation [37]. Furthermore, NDVI can 

facilitate the identification of optimal sites for new green spaces and evaluate the effects of development initiatives 

on existing vegetation See Figure 4 (b) for the graphical calculation of NDVI with reference to the raw composite of 

Baguio City in Figure 4 (a). 

The NDVI is calculated by 

                                          (1) 

where NIR[Band8] and RED[Band4] represent the near-infrared and the red band of the Sentinel-2A imagery, 

respectively. 

The Soil-Adjusted Vegetation Index (SAVI) is a modified version of NDVI that is specifically designed to reduce the 

impact of soil luminosity on vegetation index calculations, particularly in regions with reduced vegetation cover or 

bare soil. SAVI includes a soil brightness correction factor that accounts for the influence of soil reflectance on the 

calculated vegetation index. This is particularly critical in urban settings, where soil variability can be substantial. By 

adjusting for soil brightness, SAVI can provide more precise estimates of vegetation cover and health in areas with 

mixed land covers, such as urban-agriculture interfaces or areas with exposed soil [38].  

The SAVI is calculated by  

                               (2) 

where NIR[Band8] is the reflectance in the near-infrared range, RED[Band4] is the reflectance of red light, and L is 

the correction factor for soil luminance, which is typically set between 0.1 and 0.5. The researcher enhanced the 

accuracy of green space mapping and analysis by obtaining more reliable vegetation information in urban 

environments where soil conditions can vary substantially, through the use of SAVI. See Figure 4 (c) for the graphical 

calculation of SAVI with reference to the raw composite of Baguio City in Figure 4 (a). 

The Normalized Difference Built-Up Index (NDBI) is a remote sensing technique used to identify and quantify built-

up areas. By analyzing satellite images, NDBI capitalizes on the spectral differences between developed and 

undeveloped land to distinguish between built-up and non-built regions [39]. With an accuracy rate often exceeding 

80%, NDBI is a valuable tool for assessing urban growth, land use changes, and population estimation in various 

geographical areas. By deducting NDBI from NDVI, one can isolate green zones that are unassociated with developed 

regions. NDBI can be utilized to observe alterations in urban land cover over time, offering critical insights for urban 

planning and development [40] [41].  
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The NDBI is calculated by  

                                       (3) 

where NIR [Band8] is the near-infrared reflectance and SWIR[Band11] is the short-wave infrared reflectance. 

Utilizing NDBI enabled the researcher to acquire precise and dependable data regarding built-up regions in urban 

settings, facilitating many applications in urban planning, environmental management, and disaster response. See 

Figure 4 (d) for the graphical calculation of NDBI with reference to the raw composite of Baguio City in Figure 4 (a). 

The Modified Normalized Difference Water Index (MNDWI) is a spectral index specifically formulated to augment 

the sensitivity of the Normalized Difference Water Index (NDWI) to water bodies, especially in urban settings where 

buildings and other structures may disrupt conventional water indices. 

MNDWI is superior to NDWI in detecting water bodies in urban environments, including ponds, lakes, and irrigation 

canals, despite the presence of developed regions and various land cover types. By precisely identifying water bodies 

inside urban green spaces, MNDWI can facilitate the assessment of the ecological integrity of these regions, as water 

bodies are frequently essential elements of urban ecosystems. MNDWI can be utilized to track temporal variations in 

water bodies, offering critical insights for urban water resource management and planning. 

The MNDWI is calculated by 

                                  (4) 

where GREEN[Band3] is the green reflectance and NIR [Band8] is the near-infrared reflectance. Since MNDWI has 

less susceptibility to urban regions, the researcher calculated the result with enhanced accuracy in detecting water 

bodies within intricate metropolitan settings. MNDWI exhibited heightened sensitivity to shallow water bodies, 

which may be challenging to identify using conventional water indices. Utilizing MNDWI enabled the researcher to 

acquire more precise and dependable data regarding water bodies in urban green spaces, facilitating many 

applications in urban planning, environmental management, and water resource management. See Figure 4 (e) for 

the graphical calculation of MNDWI with reference to the raw composite of Baguio City in Figure 4 (a).  
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Figure 4 (a) A very high-resolution composite image of Baguio City from Google Earth is in reference with the 

visual calculation of the selected spectral indices such as (b) Normalized Difference Vegetation Index (NDVI), (c) 

Soil-Adjusted Vegetation Index (SAVI), (d) Normalized Difference Built-Up Index (NDBI), and (e) Modified 

Normalized Difference Water Index (MNDWI). 

B. Random Forest Model Development 

The initial step in the land cover classification process involved collecting training samples directly from the Google 

Earth Engine code editor using high-resolution imagery sourced from Google Maps. This method proved effective in 

generating high-quality classification samples for a specific area without requiring any additional training data. Using 

the raw composite imagery of Baguio City, the objective was to classify each pixel into one of four categories: built-

up area, bare soil, water, or urban green cover. Using the drawing tools within the code editor, four distinct feature 

collections were created, each representing one of the aforementioned land cover classes. Each feature collection was 

assigned a numerical value (0, 1, 2, or 3) to denote its corresponding class. Subsequently, a Random Forest classifier 

was trained using these feature collections to construct a model that could classify all pixels in the image into one of 

the four classes. To implement the Random Forest classifier in Google Earth Engine, the Java statistical machine 

intelligence and learning engine (SMILE) library was utilized. The trained Random Forest classifier employed 

initially 10 trees, then hyper-tuned into 50 trees for the classification process. The number of trees parameter in the 

Random Forest model determined the number of decision trees that were combined to create the final classification. 

The Random Forest model categorized each pixel of the raw composite image of Baguio City into four classes: built-

up area, bare soil, water, or urban green cover. The resulting classification map provided a color palette for each class 

such that built-up areas are in pink color, bare soil areas in yellow color, bodies of water in blue color, and the urban 

green cover in green color, as shown in Figure 5. 

 

Figure 5. The Random Forest model categorizes each pixel of the raw composite image of Baguio City into four 

classes: built-up area (pink), bare soil (yellow), water (blue), or urban green cover (green). 
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C. Random Forest Model Classification Accuracy 

To evaluate the model's performance, several accuracy metrics were computed. These include overall accuracy, which 

measures the overall correctness of the classification; producer's accuracy, which assesses the model's ability to 

correctly identify a particular class; consumer's accuracy, which measures the reliability of the model's predictions 

for a given class; F1-score, which provides a balanced measure of a model's performance by combining precision and 

recall; and the kappa coefficient, which evaluates the agreement between the predicted and actual classifications, 

accounting for random assignment 

The confusion matrix in Table 1 provides a concise summary of the performance of a random forest model in the 

classification of land cover. The Random Forest model accurately classified 85.71% of the samples, as evidenced by 

the overall accuracy level of 0.85714. This is an accuracy that is relatively high, which implies that the model is 

performing well in general.  

Table 1. Confusion Matrix 
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Consumer's Accuracy Overall Accuracy 

For class-specific metrics, the producer's accuracy showed that the model accurately predicted 73% of the samples 

that were actually classified as built-up areas. Similarly, 75% of the samples that were genuinely bare soil areas were 

correctly classified. For the water areas, a value of 1.00 was computed indicating that all samples that were classified 

as water areas were accurately predicted. Lastly, the classification of 0.86 - 86% of the samples that were genuinely 

urban green cover was accurate. On the other hand, the consumer’s accuracy showed that 73% of the samples that 

were predicted as the built-up area were correctly classified, 75% of the samples predicted as bare soil area, all 

samples that were predicted to be in water area were correctly classified, and 86% of the samples that were predicted 

as urban green cover were correctly classified. 

Furthermore, F1-score and Kappa coefficient should be considered dealing with the random forest model’s accuracy. 

The F1-score metric is particularly valuable when dealing with datasets where the classes are imbalanced, as it 

considers both false positives and false negatives, while the kappa coefficient quantifies the agreement between 

predicted and actual classifications, accounting for chance agreement. A kappa value of 0 indicates no agreement 

beyond random chance, while a value of 1 signifies perfect agreement. 

The F1-score of 0.84211 suggests that the model is capable of accurately classifying built-up area while also 

maintaining a high level of recall and precision. A faultless F1-score for water area indicates that the model is capable 

of accurately classifying all instances of this class. Another high F1-score of 0.92308 indicates that urban green cover 

classification is performing well. Although the F1-score of 0.66667 for bare soil area is lower than that of built-up 

area and urban green cover, it still indicates a reasonable level of performance. This kappa coefficient value of 

0.7790927 is relatively high, suggesting a strong agreement between the predicted and actual classifications which 

implies that the model is outperforming the random variable by a substantial margin. 

DISCUSSIONS 

The results of this study demonstrate the effectiveness of machine learning techniques for urban green space mapping 

in the context of sustainable urban development. NDVI, NDBI, SAVI, and MNDWI have been used to improve the 

accuracy of urban green space mapping using random forest models. These indices provide additional spectral 
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information that helps distinguish between various land cover categories, such as vegetation, built-up areas, water 

bodies, and bare soils. By merging multiple indices, the model's ability to distinguish complex urban land cover types 

can be further improved. Therefore, integrating the spectral index and the traditional spectral bands as input features 

in the random forest model can significantly improve the accuracy of urban green space mapping. However, the 

optimal choice of an index may vary depending on the specific study area characteristics and satellite sensor 

capabilities. Therefore, it is important to experiment with various index combinations to determine the most efficient 

configuration for a given application.  

The Random Forest model exhibits exceptional accuracy in classifying water areas and urban green cover, with water 

areas being classified with faultless precision. The model's ability to accurately predict and classify built-up and bare 

soil areas is supported by the fact that their producer's and consumer's accuracies are comparable. The model's 

effectiveness in classifying urban green cover is suggested by its relatively high overall accuracy. 

However, the classification errors for built-up and bare soil areas could be addressed in order to accomplish further 

improvements, despite the model's overall impressive performance. This may entail the investigation of various 

feature engineering techniques, the modification n of hyperparameters, or the integration of supplementary data 

sources. If the class distribution is significantly imbalanced, it may be advantageous to implement strategies such as 

cost-sensitive learning or class balancing. In general, the random forest model exhibits optimistic performance in the 

mapping of urban green cover. The model's accuracy and effectiveness can be further improved by addressing the 

identified areas for enhancement.  

The Random Forest model exhibits robust overall performance in the classification of urban green cover, as 

demonstrated by the high F1-scores and kappa coefficient. The model's capacity to precisely identify and prevent 

misclassification of built-up area, water area, and urban green cover is particularly evident. The model's capacity to 

classify bare soil area is indicated by a slightly lower F1-score, which implies that there may be room for advancement. 

Nonetheless, it may be beneficial to investigate methods such as class balancing or modifying the hyperparameters 

of the random forest algorithm in order to improve the model's performance for bare soil areas. It may be beneficial 

to employ supplementary features or data sources that are more informative for bare soil areas and assess the model's 

efficacy in relation to various feature engineering techniques, including feature selection and normalization. In 

general, the F1-score and kappa coefficient values indicate that the random forest model is a highly effective model 

for urban green cover mapping. However, there is still room for further development, particularly in bare soil area 

classification.  

While the Random Forest model performed well in this study, there are limitations to consider. The accuracy of the 

results depends on the quality of the remote sensing data and ground truth information. Factors such as cloud cover, 

sensor calibration, and the accuracy of field surveys can influence the overall performance of the model. 

Thus, this study demonstrated the potential of Random Forest for accurate and efficient urban green space mapping 

in sustainable cities. The findings contribute to a better understanding of the role of urban green space in urban 

development and sustainability, providing valuable information for decision-makers and planners. Future research 

is needed to further refine urban green space mapping methods and explore their applications in addressing the 

challenges of urbanization and climate change. 

CONCLUSIONS 

This study successfully demonstrated the potential of machine learning techniques, particularly Random Forest, in 

accurately mapping urban green cover using Sentinel-2 imagery and spectral indices. By combining the strengths of 

remote sensing and machine learning, the researcher was able to generate a Random Forest model to be used to 

provide precise and up-to-date information on Baguio City's green spaces. The Random Forest model achieved high 

accuracy and precision in identifying and classifying urban green cover, providing valuable awareness into their 

distribution, extent, and characteristics. The results highlight the importance of urban green spaces in enhancing 

urban sustainability and resilience for the development of smart city in Baguio City, Philippines. The accurate 

mapping of these areas offers significant insights for urban planners, policymakers, and environmental scientists to 

make informed decisions regarding green space management, conservation, and expansion. 
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Future research could explore the use of advanced machine learning models, such as deep learning, for urban green 

space mapping. Incorporating additional data sources, such as LiDAR or drone imagery and hyperspectral data could 

enhance the accuracy and spatial resolution of urban green space maps. Furthermore, investigating the dynamics of 

urban green space and their response to climate change and urbanization patterns would provide valuable insights 

for sustainable urban planning. Additionally, future research directions may include developing effective methods 

for time-series analysis of urban green cover using remote sensing data, and quantifying the impact of urban green 

space loss in the ecosystem. 

By capitalizing on the power of machine learning models and remote sensing technologies, coupled with sophisticated 

analytical techniques, will further enhance our capacity to effectively monitor, manage, and conserve urban green 

spaces, contributing to the development of sustainable and resilient cities. 
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