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Recurrent seizures are an indicator of epilepsy, a complicated neurological illness that 
requires prompt and precise diagnosis for successful treatment. Electroencephalogram (EEG) 
signals are critical in identifying seizure types and patterns, yet the analysis of these signals 
poses significant challenges. The variability in brain activity, the presence of noise and 
artifacts, and the complexity of differentiating between epileptic and non-epileptic seizures 
complicate accurate classification. Conventional methods often fall short, leading to 
misdiagnoses and inadequate treatment plans. To address these challenges, this study 
proposes a robust classification model for detecting and classifying EEG epilepsy data. The 
methodology begins with rigorous data preprocessing, which includes data cleaning and 
normalization to enhance the signal quality and ensure consistency across the dataset. Next, 
use dynamic and statistical feature extraction techniques to obtain key EEG signal 
parameters, which are necessary for accurately differentiating between seizure types. 
Furthermore, implement a Hybrid Red Piranha Cuckoo Search (HRPCS) algorithm for 
feature selection, allowing us to identify the most relevant features while reducing 
dimensionality. Finally, hybrid deep learning techniques HCRNN are utilized, incorporating 
Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) for 
classification and prediction tasks. Blockchain technology is used to secure EEG data, 
ensuring integrity and patient privacy. After classification, the model also incorporates 
predictive analytics to forecast potential future seizures, enhancing patient management 
strategies. 
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1. INTRODUCTION 

Epilepsy is a chronic neurological condition marked by recurrent and unpredictable seizures, affecting millions 

of individuals globally and significantly challenging patient management and quality of life. Abnormal electrical 

discharges in the brain induce seizures, which can range in severity from short-term loss of consciousness to 

severe convulsive bouts including involuntary movements [1,2]. These unpredictable events disrupt daily 

activities, pose risks of injury, and in severe cases, can lead to disability or death. While advancements in 

epilepsy treatment have improved seizure management to some extent, the inability to predict seizures 

accurately remains a critical gap [3]. This limitation exacerbates patient anxiety, restricts the effectiveness of 

preventive interventions, and impairs overall quality of life [4]. The early prediction of epileptic seizures holds 

tremendous promise in revolutionizing epilepsy care. By identifying pre-seizure patterns, proactive strategies 

such as timely medication adjustments, lifestyle changes, or caregiver alerts could be implemented to mitigate 

risks [5,6]. In addition to lessening the number and intensity of seizures, this strategy may provide useful 

information for improved management to those who have epilepsy and those who care for them. In addition, 

seizure prediction offers the potential to improve autonomy, safety, and confidence for patients, allowing them 

to regain control over their lives [7]. 

Over the years, research on epileptic seizure prediction has expanded across multiple domains, including 

neurophysiology, signal processing, and machine learning. The advent of advanced neuroimaging methods and 
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wearable EEG devices has facilitated the collection of large-scale brain activity data, providing unprecedented 

opportunities to analyze seizure dynamics [8]. These data have paved the way for the development of predictive 

models that use machine learning algorithms and computational techniques to identify pre-seizure patterns 

with higher precision [9]. Despite notable progress, developing clinically reliable and robust prediction systems 

remains a formidable challenge. The complexity and variability of epilepsy contribute significantly to these 

challenges. Seizures vary greatly in type and frequency, even within the same patient, and EEG signals exhibit 

high variability due to patient-specific factors and environmental influences [10]. Additionally, the dynamic and 

intricate nature of brain activity further complicates the prediction process. This research proposes a novel 

approach using advanced signal processing and machine learning algorithms to extract meaningful features 

from EEG data, enhancing seizure prediction accuracy and reliability [11]. This research specifically aims to 

create a data-driven model that incorporates advanced methods for extraction of features, reducing 

dimensionality, and classifications. The goal is to identify pre-seizure patterns in EEG signals effectively while 

ensuring scalability and adaptability across diverse patient profiles [12].  

The proposed model employs advanced feature extraction techniques to capture relevant information from EEG 

signals, focusing on key characteristics that distinguish pre-seizure states from normal activity [13]. 

Dimensionality reduction methods are used to eliminate noise and retain critical features, enhancing 

computational efficiency. Finally, a robust classification framework is applied to forecast seizures with precision, 

addressing the inherent variability of EEG data through personalized modeling strategies. By fostering 

interdisciplinary collaboration and utilizing state-of-the-art technologies, this research aims to advance the field 

of epileptic seizure prediction. The ultimate objective is to provide individuals living with epilepsy and their 

caregivers with reliable tools for managing the condition proactively, improving patient outcomes, and 

enhancing their quality of life [14,15]. Through innovative methodologies, this study strives to bridge the gap in 

epilepsy care, offering hope for a safer and more independent future for those affected. 

The contributions of this paper are manifested below, 

• In order to increase the accuracy of seizure diagnosis, this study addresses the difficulties in processing 

complex and noisy EEG signals by introducing a strong classification model for identifying and categorizing 

EEG epilepsy data. 

• This work incorporates HRPCS algorithm for effective feature selection, enabling the identification of 

relevant EEG signal parameters while reducing dimensionality for enhanced computational efficiency. 

• This work employs hybrid deep learning techniques, HCRNN including CNN and RNN, to achieve 

accurate classification and prediction of epileptic seizures. 

• By integrating blockchain technology, our study protects patient privacy and offers a solid basis for data-

driven healthcare solutions by guaranteeing the confidentiality and integrity of EEG data. 

This paper's remaining sections are structured as follows. A selection of pertinent works and a problem 

statement are provided in Part 2. In Section 3, the proposed procedure is presented and explained. Section 5 

presents the conclusion, whereas Part 4 presents the findings and discussion. 

2. LITERATURE REVIEW 

Emara et al. [16] published three frameworks for processing EEG signals in 2022. The first employed Scale-

Invariant Feature Transform (SIFT) for automated seizure identification. In the second, epileptic seizures were 

predicted using an artificial neural network (ANN) and the Fast Fourier Transform (FFT). The third provided 

an automated, patient-specific framework for seizure prediction and channel selection, and it employed FFT for 

feature extraction. Gao et al. [17] introduced a temporal-spatial multi-scale convolutional neural network (CNN) 

with dilated convolutions for seizure prediction. This framework systematically extracted multi-scale properties 

in temporal and spatial phases using dilated convolutions to improve receptive fields and prediction accuracy. 

Tamanna et al. [18] in 2021 aimed to advance seizure prediction from EEG signals using time-frequency feature 

extraction and classification techniques. Discrete Wavelet Transform (DWT) was applied to extract features, 

followed by the use of Support Vector Machine (SVM) and post-processing techniques to predict seizures with 

high accuracy. 
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A technique for eliminating motion-related distortions from EEG recordings in epilepsy situations was created 

in 2020 by Islam et al. [19]. In order to guarantee clean data for additional analysis, this method entailed 

employing a wearable headset to collect EEG signals and then applying Independent Component Analysis (ICA) 

to remove artifacts. 

In 2021, Zhao et al. [20] developed to enhance quality of life for drug-refractory epilepsy patients, seizure 

prediction methods strive for energy efficiency and hardware friendliness. Through neural architecture search, 

a compact model was obtained and evaluated across multiple datasets. Model compression techniques further 

reduced its size, facilitating low-power operation for wearable and implantable devices. 

Five deep learning models for predicting epileptic episodes from intracranial electroencephalogram (iEEG) 

datasets were proposed by Ouichka et al. [21] in 2022. A Convolutional Neural Network (CNN) was one of these 

models, along with many fusion techniques such combining two CNNs (2-CNN), three CNNs (3-CNN), and four 

CNNs (4-CNN). The efficiency of these models in seizure prediction tasks was further demonstrated by the use 

of transfer learning with ResNet50. 

Mahmoodian et al. [22] used the cross-bispectral technique to extract nonlinear multivariate factors in order to 

study the prediction of epileptic episodes in 2020. The study distinguished between pre-ictal and interictal 

stages using ten statistical factors. After that, a Support Vector Machine (SVM) classifier was given these 

characteristics. Ra et al. [23] developed an effective epileptic seizure prediction system in 2021. The method 

focused on EEG feature extraction and classification by selecting EEG channels using an optimization strategy 

based on permutation entropy (PE). The classifier used a Genetic Algorithm (GA) in combination with K-

Nearest Neighbors (KNN) to assess the CHB-MIT Scalp EEG Database. 

Singh and Malhotra [24], in 2022, proposed a two-layer Long Short-Term Memory (LSTM) network model 

based on spectral features for predicting epileptic seizures. The model utilized spectral power and mean 

spectrum amplitude features from multiple EEG frequency bands, evaluated over 5 to 50-second segments of 

EEG data. The two-layer LSTM model demonstrated high accuracy when processing 30-second EEG segments. 

In 2022, Xu et al. [25] presented a technique for early seizure prediction that combined Gradient Boosting 

Decision Trees (GBDT) with nonlinear characteristics of EEG data. In order to extract nonlinear characteristics 

including approximation entropy, sample entropy, and wavelet entropy, the EEG signals were first denoised 

using complementary ensemble empirical mode decomposition (CEEMD) and wavelet threshold denoising. A 

random forest-initialized GBDT classifier successfully differentiated between seizure onset and non-seizure 

periods. 

2.1. Problem Statement 

Improving patient treatment and quality of life requires the early and precise prediction of epileptic episodes. 

People who have epilepsy, a common neurological illness marked by frequent and unexpected seizures, have 

many difficulties, as do those who care for them. Current seizure prediction methods often lack the precision 

and reliability needed for timely intervention, increasing risks of injury and complications for patients. 

Additionally, existing approaches frequently fail to capture the intricate dynamics and variability of EEG signals 

associated with seizure onset. Addressing these limitations requires the development of advanced predictive 

models capable of analyzing EEG data in real-time, extracting critical features, and accurately forecasting 

seizures. By integrating sophisticated signal processing techniques with machine learning algorithms, these 

models can achieve high sensitivity and specificity while reducing false alarms. Such advancements promise to 

revolutionize epilepsy management, enabling proactive, personalized care and improving outcomes for 

individuals living with epilepsy. 

3. PROPOSED METHODOLOGY 

Epileptic seizure prediction involves utilizing signal processing and DL methods to forecast seizures in epilepsy 

patients, facilitating timely intervention and enhanced patient care. However, challenges such as diverse seizure 

patterns among individuals, scarcity of dependable long-term EEG data, the risk of false alarms and the 

necessity for real-time prediction pose obstacles. Overcoming these challenges requires robust algorithms, 

comprehensive data collection, and validation procedures to ensure accurate and reliable prediction models. 
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Addressing these hurdles can significantly improve seizure management and enhance the quality of life for 

epilepsy patients.  

3.1. Data Pre-Processing 

In this work, the collected data is pre-processed and carried out using data cleaning and normalization. 

3.1.1. Data Cleaning 

Data-cleaning corrects errors and inconsistencies, addressing missing values through imputation or deletion. 

Second, removing duplicates is necessary because duplicate records can inflate the dataset and skew the 

analysis. Detecting and removing these duplicates ensures that each customer feedback is unique and only 

contributes once to the analysis. Third, correcting inconsistencies involves standardizing formats, such as dates 

or categorical values. A date might be entered in different formats by different users, and standardizing it to a 

common format is essential. Finally, outlier detection and correction are important as outliers are abnormal 

data points that can skew the results. While some outliers may be valid data, others might result from errors. 

Outlier detection methods are used to identify these, and corrective measures are taken accordingly. 

3.1.2. Normalization 

In order to standardize the magnitude of characteristics within a dataset, normalization is an essential step in 

the preparation of data. Regardless of their initial sizes or units, it guarantees that every variable makes an equal 

contribution to the study. Converting feature numerical data to a standard scale—typically between 0 and 1 or -

1 and 1—is the process. Figure 1 shows the general suggested architecture. 

 

Figure 1: Overall Prosed Methodology 

By converting values to a predetermined range, removing the minimum, and dividing by the range, min-max 

scaling normalizes features. By subtracting the mean and dividing by the standard deviation, Z-score 

normalization (standardization) centres the data around zero with a standard deviation of 1. Both strategies 

enhance algorithm performance and convergence by preventing the dominance of features with bigger sizes. 

3.2. Feature Extraction 

In order to capture important signal properties, statistical and dynamic features are calculated using pre-

processed EEG data in the feature extraction phase of this study. The selected features include statistical 

measures such as Mean, Variance, Skewness, and enhanced Kurtosis, which provide insights into signal 

distribution and variability. Dynamic features like Lyapunov Exponent, Hjorth Activity, Mobility, and 

Complexity quantify signal stability and complexity. Additional metrics such as Approximate Entropy, PSD 

Mean, PSD Variance, Spectral Centroid, and Zero-Crossing Interval Mean reflect signal periodicity, frequency 

domain properties, and temporal transitions. These features collectively ensure a comprehensive representation 

of EEG data for accurate analysis and classification.  
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3.2.1 Statistical Features 

• Mean 

The mean, or average, is a statistical measure representing the central tendency of a dataset. It's calculated by 

summing all values and dividing by the total count. While useful for summarizing data, outliers can skew results. 

Therefore, it's essential to consider other measures like median and mode for a comprehensive analysis. The 

formula for calculating the mean (𝑥̅) of a dataset is given using Eq. (1). 

𝑥̅ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
         (1) 

Where, 𝑥𝑖 represents each individual value in the dataset, 𝑛 is the total number of values in the dataset. 

• Median 

When a dataset is sorted in either ascending or descending order, the median, a statistical metric, indicates the 

midway value. It is resilient to outliers since it is unaffected by extreme values. The median is the midway value 

when the number of observations is odd. The median is the mean of the two middle values if the number of 

observations is even. Whether the dataset's number of observations (n) is odd or even determines the formula 

used to get the median: 

If n is odd, the median is the value at position (𝑛 + 1)/2 when the data is arranged in ascending or descending 

order. If n is even, the median is the average of the values at positions (𝑛/2) + 1 when the data is arranged in 

ascending or descending order. 

• Skewness 

Skewness is a metric used to quantify how asymmetrically values are distributed within a collection. The 

following is the formula to determine skewness: 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
3×(𝑚𝑒𝑎𝑛−𝑚𝑒𝑑𝑖𝑎𝑛)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
      (2) 

Eq. (2) involves multiplying the difference between the mean and the median by three and then dividing the 

result by the standard deviation. 

• Enhanced Kurtosis  

The fourth-order moment is divided by the population's standard deviation raised to the fourth power to 

determine kurtosis, a measure of a distribution's tailedness. It reflects how often outliers occur, with excess 

kurtosis indicating tailedness relative to a normal distribution. The formula for calculating kurtosis (K) is given 

as per Eq. (3). 

𝑘 =
1

𝑛
∑ (𝑥𝑖−𝑥̅)4𝑛

𝑖=1

𝜎4 ∙ 𝐻(𝛼)       (3) 

Where, n is the number of data points, 𝑥𝑖  represents each individual data point, 𝑥̅ is the sample mean. 𝜎 is the 

standard deviation, Shannon Entropy 𝐻(𝛼) assesses the randomness or information content of the dataset. 

Adding Shannon entropy to kurtosis provides a more subtle understanding of your dataset, especially for tasks 

requiring detailed pattern recognition or feature differentiation. 

3.2.2. Dynamic Features 

• Lyapunov Exponent 

The Lyapunov Exponent is a measure of the sensitivity of a system to initial conditions, commonly used to 

quantify chaos and signal stability. In the context of EEG analysis, it captures the rate at which trajectories in 

the EEG signal space diverge or converge over time. A positive LE suggests chaotic behavior, typical during 

seizure episodes, while a negative or zero LE implies a stable or predictable state. 
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• Hjorth Activity 

Hjorth Activity is a statistical parameter that evaluates the signal's power or variance, providing insight into its 

overall energy. High activity levels in EEG signals often indicate abnormal brain activity, such as during seizures. 

It is particularly useful for identifying regions of heightened neural activity, which could signify a seizure onset.  

• Hjorth Mobility 

Hjorth Mobility measures the signal's frequency characteristics by computing the ratio of the standard deviation 

of the first derivative to the original signal. This feature quantifies the rate of change or oscillation in the signal, 

making it a valuable tool for detecting abrupt changes in brain activity. Increased mobility often corresponds to 

heightened neural activity or seizure episodes.  

• Hjorth Complexity 

Hjorth Complexity evaluates the regularity of the signal, capturing its intricacy by analyzing how the signal's 

mobility changes over time. It provides insights into the structure and organization of the EEG signal, with 

higher values indicating more complex and unpredictable activity. This feature is crucial for differentiating 

normal brain activity from pathological conditions, as epileptic seizures often result in a marked increase in 

signal complexity. 

• ApproximateEntropy (ApEn) 

One statistical metric for assessing the consistency and prediction of time-series data, like EEG signals, is 

approximate entropy. It evaluates the likelihood of similar patterns recurring over time. Lower ApEn values 

suggest more regular signals, often associated with normal brain activity, while higher values indicate 

irregularity, which is characteristic of seizure episodes. 

• Power Spectral Density (PSD) Mean 

PSD Mean represents the average power of a signal across its frequency spectrum, calculated from its Power 

Spectral Density. It provides insights into the distribution of signal energy among different frequency bands. In 

EEG analysis, PSD Mean can reveal dominant brain wave activity, such as alpha, beta, or gamma waves, and 

help identify abnormalities like excessive power in specific bands during seizures. 

• Power Spectral Density (PSD) Variance 

PSD Variance quantifies the variability in power distribution across the frequency spectrum of EEG signals. It 

helps identify shifts or inconsistencies in brain wave activity, which can be critical for detecting transient 

anomalies such as seizures. Increased PSD Variance often corresponds to irregular neural activity, making it a 

valuable feature for seizure classification.  

• Spectral Centroid 

The Spectral Centroid indicates the "center of mass" of the frequency spectrum, providing a measure of where 

the majority of the signal energy is concentrated. It is often associated with the perceptual "brightness" of a 

signal. In EEG analysis, a shift in the spectral centroid can signify abnormal brain activity, such as a transition 

from normal to preictal or ictal states. 

• Zero-Crossing Interval Mean (ZCIM) 

Zero-Crossing Interval Mean measures the average duration between successive zero-crossings in the signal, 

reflecting its oscillatory behavior and periodicity. EEG signals with frequent zero-crossings typically correspond 

to higher frequency activity, while longer intervals indicate slower waveforms. Variations in ZCIM can highlight 

transitions in brain activity, such as the onset of a seizure, making it an effective metric for time-domain analysis.  

• Frequency-Domain Properties 

Frequency-domain properties focus on the distribution of signal energy across various frequency bands. Metrics 

like PSD Mean, PSD Variance, and Spectral Centroid are used to analyze how EEG signals behave in the 

frequency domain. These properties help identify dominant neural rhythms, such as delta or gamma waves, and 
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detect anomalies like abnormal power spikes, providing crucial insights into seizure activity and overall brain 

health. 

• Temporal Transitions 

Temporal transitions refer to the changes in signal patterns over time, capturing the dynamic nature of neural 

activity. Metrics such as Approximate Entropy and ZCIM are essential for understanding these transitions, as 

they reflect how brain states evolve. For instance, the shift from interictal to preictal or ictal states is 

characterized by temporal changes in EEG signals. Accurately capturing these transitions is critical for seizure 

prediction and monitoring. 

3.3. Feature Selection 

In this study, the data extracted undergo feature selection using HRPCS as input. 

3.3.1. HRPCS 

The HRPCS algorithm integrates the strengths of the Cuckoo Search (CS) and Red Piranha Optimization (RPO) 

algorithms. CS is inspired by the brood parasitic behavior of cuckoo birds and employs Lévy flights for efficient 

exploration of the search space. Lévy flights allow the algorithm to take both short steps for local search and 

long jumps for global exploration, ensuring a balance between exploration and exploitation. CS excels at finding 

promising regions in the search space with minimal computational effort, making it effective for global 

optimization tasks. RPO draws inspiration from the cooperative hunting behavior of red piranhas. This swarm-

based algorithm focuses on intense local search and dynamic adaptation, refining solutions in regions with 

higher fitness values. RPO’s ability to adjust search intensity and avoid premature convergence makes it effective 

for local optimization and exploitation. By combining these algorithms, HRPCS leverages the global search 

efficiency of CS with the local refinement capabilities of RPO. This hybrid approach ensures robust feature 

selection, allowing the model to focus on the most impactful features while minimizing redundant or irrelevant 

data. 

3.3.1.1. Mathematical Modelling 

3.3.1.1.1. Initialization 

Functioning as a population-based metaheuristic algorithm, the RPO technique employs red pandas as symbolic 

representations of individual members.  Mathematically, each red panda is depicted as a vector, forming a 

matrix where rows represent potential solutions and columns hold values for associated problem variables. 

Initially, red panda coordinates within the search space are randomly initialized using Eq. (4) and Eq. (5). This 

approach facilitates exploration and exploitation of the solution space to find optimal solutions. 

  𝑌 =

[
 
 
 
 
 
 
 
𝑌1

.

.

.
𝑌𝑖

.

.
𝑌𝑀]

 
 
 
 
 
 
 

𝑀×𝑛

=
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𝑌1,1 … 𝑌1,𝑗 …𝑌1,𝑛

.

.

.
𝑌𝑖,1 …𝑌𝑖,𝑗 … 𝑌𝑖,𝑛

.

.
𝑌𝑀,1 …𝑌𝑀,𝑗 … 𝑌𝑀,𝑛]

 
 
 
 
 
 
 

𝑀×𝑛

     (4) 

 𝑦𝑖,𝑗 = 𝑙𝑜𝑏𝑗 + 𝑟𝑖,𝑗 ∙ (𝑢𝑝𝑏𝑗 − 𝑙𝑜𝑏𝑗)       (5) 

The population matrix holding the red panda locations is represented by 𝑌 in the RPO technique, where 𝑌𝑖 stands 

for the 𝑖𝑡ℎ red panda (possible solution) and 𝑌𝑖,𝑗 for its 𝑗𝑡ℎ dimension (problem variable), random integers 

𝑟𝑖,𝑗  inside the interval [0,1] are used.  

The positions of each red panda act as potential solutions, making it possible to assess the objective function 

associated with each one. A matrix of the form provided by Eq. (6) can be used to represent the final set of 

evaluated objective function values. 
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 𝑓 =

[
 
 
 
 
 
 
 
𝑓1
.
.
.
𝑓𝑖
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.
𝑓𝑀]

 
 
 
 
 
 
 

𝑀×1

=

[
 
 
 
 
 
 
 
𝑓(𝑌1)

.

.

.
𝑓(𝑌𝑖)

.

.
𝑓(𝑌𝑀)]

 
 
 
 
 
 
 

𝑀×1

       (6) 

The value obtained by the 𝑖𝑡ℎ red panda is indicated by 𝑓𝑖, and 𝑓 represents the vector of values of the objective 

function. These values of the objective function are essential for evaluating the caliber of potential solutions. 

The greatest and lowest values of the objective function are used to identify the best and worst potential 

solutions, respectively. These potential solutions are modified appropriately during every iteration. Iterative 

upgrades to potential solutions for the best possible problem-solving are part of the RPO's exploration and 

exploitation phases. 

3.3.1.1.2. Phase 1: Exploration Strategy - Foraging 

During the initial phase of RPO, red pandas' positions mimic their foraging behavior in the wild. Leveraging 

their adeptness in detecting food sources, each red panda evaluates the locations of others with better objective 

function values as potential feeding grounds. These prospective food positions are identified through 

comparisons of objective function values, with each red panda randomly selecting one position using Eq. (7). 

This process simulates the exploration for optimal solutions in the search space. 

        𝑝𝑓𝑠𝑖 = {𝑌𝑘|𝑘 ∈ {1,2, . . , 𝑀}𝑎𝑛𝑑 𝑓𝑘 < 𝑓𝑖} ∪ {𝑌𝑏𝑒𝑠𝑡}    (7) 

Based on a comparison with the location of the best candidate solution 𝑌𝑏𝑒𝑠𝑡, the suggested food sources for each 

red panda 𝑝𝑓𝑠𝑖are identified. Approaching these sources causes large positional shifts that improve ability of 

algorithm to globally search and explore. By determining new locations in relation to the food source (best 

candidate solution), red pandas' foraging behavior can be replicated. The proposed Eq. (8) to Eq. (10) are used 

to update the red panda's location. 

 𝑌𝑖
𝑝1

: 𝑦𝑖,𝑗
𝑝1

= 𝑦𝑖,𝑗 + 𝑟. (𝑠𝑓𝑠𝑖,𝑗 − 𝐼𝑠. 𝑦𝑖,𝑗) ∙ 𝑆     (8) 

𝑆 =
𝑢

|𝑣|
1
𝛽

         (9) 

Integrating the step size (𝑆) from CS into RPO can enhance its performance by improving exploration and 

exploitation balance. The step size in CS controls the magnitude of solution perturbations, promoting better 

exploration of the solution space. By adding this concept to RPO, it can prevent premature convergence by 

making larger moves in the early stages and refining the search later. This dynamic step adjustment helps RPO 

avoid local optima and improves convergence. The step size can be implemented using a scaling factor during 

position updates, inspired by Lévy flights in CS. 

 𝑌𝑖 = {
𝑌𝑖

𝑝1
, 𝑓𝑖

𝑝1
< 𝑓𝑖

𝑌𝑖 , 𝑒𝑙𝑠𝑒
        (10) 

The new location of the 𝑖𝑡ℎ red panda as ascertained from the RPO's first phase is represented by 𝑌𝑖
𝑝1

. Objective 

function is denoted by 𝑓𝑖
𝑝1

, and its position in the 𝑗𝑡ℎ dimension is indicated by 𝑦𝑖,𝑗
𝑝1

. For the 𝑖𝑡ℎ red panda, 𝑠𝑓𝑠𝑖  

denotes the preferred food source, and 𝑠𝑓𝑠𝑖,𝑗 denotes its location in the 𝑗𝑡ℎ dimension. 𝐼𝑠 is a randomly chosen 

number from the set {1, 2}, and the variable 𝑟 is a random value between 0 and 1. 

3.3.1.1.3. Phase 2: Proficiency in ascending and perching on trees (exploitation) 

During the second phase of RPO, red pandas' tree-climbing behavior guides their positioning. These animals 

typically rest on trees for extended periods and move to nearby trees for food after ground foraging. In promising 

regions, this behavior results in minor positioning tweaks that improve the RPO algorithm's exploitation and 

local search capabilities. Mathematically, this behavior entails computing new positions for each red panda and 

updating previous positions if the objective function improves, as described in Eq. (11) and Eq. (12). This process 
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mimics the iterative refinement of solutions as red pandas navigate the search space in pursuit of optimal 

solutions. 

𝑌𝑖,𝑗
𝑝2

= 𝑦𝑖,𝑗 +
𝑙𝑜𝑏𝑗+𝑟𝑖,𝑗∙(𝑢𝑝𝑏𝑗−𝑙𝑜𝑏𝑗)

𝑡
∙ 𝑆, 𝑖 = 1,2, … ,𝑀, 𝑗 = 1,2, … , 𝑛, 𝑡 = 1,2, … , 𝑇       (11) 𝑌𝑖 = {

𝑌𝑖
𝑝2

, 𝑓𝑖
𝑝2

< 𝑓𝑖

𝑌𝑖 , 𝑒𝑙𝑠𝑒
 

       (12) 

The 𝑖𝑡ℎ red panda's modified position, obtained from the second phase of RPO, is represented by 𝑌𝑖
𝑝2

. Objective 

function is shown by 𝑓𝑖
𝑝2

, and its position in the jth dimension is indicated by 𝑌𝑖,𝑗
𝑝2

. A random number between 

0 and 1 represents the variable 𝑟. The symbol 𝑡 denotes the algorithm's iteration counter, whereas 𝑇 stands for 

the maximum iterations. Algorithm 1 illustrates how HRPCS integrates the CS into the RPO, adjusting red panda 

positions during both exploration and exploitation phases. 

Algorithm 1: HRPCS 

Initialize population of red pandas Y with random positions in the search space 

Initialize the step size S using Lévy flight  

Evaluate the objective function for each red panda  

For each iteration t = 1 to T do: 

    # Phase 1: Exploration Strategy (Foraging) 

    For each red panda  

        Find the best solution and potential food sources using Eq. (7) 

        Update position of red panda based on food sources 

        Select new position  

        Update position using Eq. (8) 

        Calculate the step size (𝑆) using the CS step size using Eq. (9) 

        If the new position improves the objective function 

        Update the position to the new one Eq. (10) 

    # Phase 2: Exploitation Strategy (Tree Climbing) 

    For each red panda 

        For each dimension 

        Update position using Eq. (11) 

        Evaluate the new objective function  

        Update the position to the new one using Eq. (12) 

        Update the best solution found so far 

    Update if a better solution is found in this iteration 

Return (best solution found) 

 

3.4. Data Security-Blockchain  

To ensure the security, integrity, and effective utilization of sensitive EEG data, blockchain technology is 

seamlessly integrated into the proposed model. This combination secures data storage, manages access rights, 

and streamlines the reuse of key features for classification tasks. A key feature of blockchain integration is the 

generation of cryptographic keys for secure data access. When EEG data is uploaded to the blockchain, public-
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private key pairs are generated using cryptographic algorithms. The public key is used to encrypt data, ensuring 

only authorized users with the corresponding private key can decrypt and access it. For healthcare providers 

and researchers, smart contracts validate access requests, allowing only authenticated entities to retrieve 

specific EEG data or derived features. This mechanism safeguards against unauthorized access, ensuring 

compliance with data protection regulations. 

The EEG classification process involves selecting critical features from pre-processed data to optimize 

classification accuracy. Features such as statistical and dynamic features are extracted during the feature 

extraction stage. These features are prioritized based on their relevance using the HRPCS algorithm, which 

reduces dimensionality by identifying the most discriminative attributes. Selected features are then securely 

stored on the blockchain. Each feature vector is hashed using a cryptographic hash function and appended to 

the blockchain as a transaction. The hash ensures data integrity, while the blockchain's distributed nature 

provides fault tolerance and immutability. Alongside the features, metadata such as patient IDs (anonymized) 

and timestamps are stored for future reference. 

Storing features on the blockchain enables their secure reuse for subsequent classification or research tasks. 

When the EEG classification model is retrained or updated, the blockchain is queried to retrieve the stored 

features. Smart contracts streamline this process, ensuring that only authorized entities can access the data. 

Additionally, the retrieved features can be combined with new EEG data for longitudinal studies, predictive 

analysis, or personalized treatment plans. By leveraging blockchain, this approach not only enhances the 

reliability of data storage and access but also empowers healthcare providers with a transparent and tamper-

proof system. This integration ensures robust security, data privacy, and efficient resource utilization, making 

it a cornerstone of proactive and personalized epilepsy management solutions. 

3.5. Classification 

In this study, the selected data is classified using HCRNN for enhanced accuracy. 

3.5.1. HCRNN 

CNN are a subset of deep learning models that are skilled in identifying and deriving meaningful patterns from 

unprocessed input, such as images. Convolutional, pooling, activation, completely connected, and an output 

layer are among them. While pooling layers down sample features, convolutional layers use filters to extract 

features. Fully connected layers produce predictions, and activation functions incorporate non-linearities. CNN 

are trained to minimize a selected loss function by optimizing their parameters using methods like gradient 

descent and backpropagation. CNN are able to adjust and enhance their recognition and classification skills of 

objects in images through this iterative process. Three different sorts of layers commonly make up ANN 

architecture: input, hidden, and output layers. There are neurons, or nodes, in every layer, and information is 

carried by the connections between these neurons. A neural network built for sequential data is called an RNN.  

RNN, in contrast to feedforward neural networks, have connections that form directed cycles, which allow them 

to handle sequential input and store hidden state information. Because the order of the input pieces matters, 

they are especially useful for jobs involving time series data or natural language processing. Recurrent units, 

such Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), are used by RNNs to update hidden 

states over time and manage long-term dependencies. They use methods such as Backpropagation through Time 

(BPTT) to update parameters according to the data's sequential structure. Furthermore, RNNs are used in 

security frameworks to continually monitor incoming data and identify anomalies or departures from predicted 

patterns that could point to system faults or security risks. The hidden state ℎ𝑠𝑡 at time 𝑡 in an RNN is computed 

using Eq. (13). 

  ℎ𝑠𝑡 = 𝜎(𝑤ℎ𝑠𝑖𝑖𝑡 + 𝑤ℎ𝑠ℎ𝑠ℎ𝑠𝑡−1 + 𝑏𝑖ℎ𝑠)     (13) 

The output 𝑜𝑡at time 𝑡 is computed based on the hidden state and expressed as per Eq. (14). 

                          𝑜𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑜ℎ𝑠ℎ𝑠𝑡 + 𝑏𝑖𝑜)      (14) 

The RNN processes sequences by iterating through time steps, updating the hidden state at each step based on 

the current input and the previous hidden state. Algorithm 2 illustrates how HCRNN integrates the CNN into 

the RNN. 
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Algorithm 2: HCRNN for Classification 

Input: EEG data, Labels, Epochs, Learning rate, Batch size 

Output: Trained HCRNN model, Predictions 

1. Initialize Model 

    a. Define CNN layers (convolution, pooling, activation) 

    b. Define RNN layers  

    c. Add output layer with Softmax for classification 

2. Preprocess Data 

    a. Normalize input data  

    b. Split data into training and testing  

    c. Create batches of size  

3. Train Model 

    FOR epoch = 1 to E  

        FOR each batch  

            a. Forward Pass 

                i. Extract features using CNN layers 

                ii. Process features sequentially with RNN layers 

                iii. Generate output using Softmax 

            b. Compute loss between predictions and labels 

            c. Backward Pass 

                i. Update model weights using gradient descent 

        END FOR 

    END FOR 

4. Test Model 

    a. Pass through the trained model 

    b. Predict labels for test data 

5. Evaluate Model 

6. Output 

    a. Trained model and predictions 

 

After classification, the model leverages predictive analytics to forecast potential future seizures, providing 

valuable insights for proactive patient management. By analyzing patterns in preictal and interictal EEG data, 

the system identifies trends and markers indicative of imminent seizures. This forecasting capability allows 

healthcare providers to implement timely interventions, such as medication adjustments or alert systems, to 

mitigate seizure risks. The integration of predictive analytics also supports personalized treatment plans, 

enhancing the quality of care for epilepsy patients. This forward-looking approach not only improves patient 

safety but also empowers individuals to better manage their condition with early warnings and actionable 

insights. 

4. RESULT AND DISCUSSION  
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4.1. Experimental Setup 

The experiments were conducted using Python. A high-performance computing environment was utilized to 

handle the computational demands of training the HCRNN model on a large-scale dataset. The model was 

trained for epochs and the learning rate was dynamically adjusted based on validation loss. 

4.2. Dataset Collection 

The American Epilepsy Society Seizure Prediction Challenge dataset [26] is designed to advance seizure 

prediction methods using intracranial EEG (iEEG) data. The dataset contains iEEG recordings for human and 

canine subjects, categorized into training and testing sets. Training data includes ten-minute clips labelled as 

Preictal (pre-seizure) or Interictal (non-seizure). Preictal data represents one hour prior to a seizure onset with 

a five-minute seizure horizon, ensuring sufficient warning time for intervention. Interictal segments are 

collected from non-seizure periods, far from any seizure activity, minimizing contamination. Each clip is stored 

in .mat format with fields like EEG signal matrix (electrode × time), duration, sampling frequency, electrode 

names, and sequence index. This comprehensive structure aids in feature extraction and modeling. The dataset 

also includes random testing data for evaluation. With over 113 GB of data, this resource supports the 

development of accurate seizure prediction models using advanced machine learning techniques. 

 

Figure 2: Confusion Matrix (Prediction) 

The confusion matrix in fig. 2 represents the predicted results of the model's classification of EEG data into 

preictal (seizure-prone) and interictal (non-seizure) states. It provides a detailed comparison between the actual 

and predicted outcomes. Key observations include: 

• True Positives (TP): High values indicate the model effectively identifies seizure-prone periods. 

• True Negatives (TN): A strong ability to classify non-seizure periods accurately. 

• False Positives (FP): Minimal false alarms, showcasing the model’s robustness. 

• False Negatives (FN): A low rate, demonstrating reliable sensitivity in detecting preictal states. 

The matrix reflects the model’s excellent overall accuracy, supported by high precision and recall values. 

 

Figure 3: Accuracy vs Loss 
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The model effectively learns to distinguish seizure-prone from non-seizure situations without overfitting, as 

evidenced by the training accuracy's steady improvement with epochs. The model's generalizability to unknown 

data is confirmed by the validation accuracy, which closely resembles the training curve. Figure 3 illustrates how 

the training and validation loss curves steadily decline across epochs until stabilizing at low values. This pattern 

indicates that the optimization algorithm is learning and convergent. These indicators' convergence 

demonstrates the model's dependability and effectiveness. As seen in fig. 4, the suggested model performs 

exceptionally well, exhibiting excellent accuracy, precision, recall, and F1-score. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4: Performance Metrics Varying Epochs 

 

Figure 5: Comparison of Proposed and Existing Models 

A comparison of the suggested and current models is shown in Fig. 5, which emphasizes gains in F1 scores, 

recall, accuracy, and precision. The suggested model performs better than conventional methods, proving its 

usefulness in tasks involving seizure categorization and prediction. 

5. CONCLUSION 
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This study developed a reliable classification technique for identifying and categorizing data related to EEG 

epilepsy. To maintain consistency throughout the dataset and improve signal quality, the technique started with 

thorough data preparation, which included data cleaning and normalization. To get important EEG signal 

parameters like mean, median, skewness, and improved kurtosis that were necessary for precisely 

distinguishing between seizure types, statistical feature extraction approaches were used. In order to choose the 

most pertinent features while lowering dimensionality, the HRPCS algorithm was used. For tasks involving 

classification and prediction, hybrid deep learning methods were applied, such as an HCRNN that combines 

CNN and RNN. Blockchain technology was utilized to ensure the security and integrity of the EEG data in order 

to safeguard patient privacy. By employing predictive analytics to foresee potential future seizures following 

categorization, the method enhanced patient care practices. 
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