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ARTICLE INFO ABSTRACT

Recurrent seizures are an indicator of epilepsy, a complicated neurological illness that
requires prompt and precise diagnosis for successful treatment. Electroencephalogram (EEG)
Revised: 09 Dec 2024 signals are critical in identifying seizure types and patterns, yet the analysis of these signals
poses significant challenges. The variability in brain activity, the presence of noise and
artifacts, and the complexity of differentiating between epileptic and non-epileptic seizures
complicate accurate classification. Conventional methods often fall short, leading to
misdiagnoses and inadequate treatment plans. To address these challenges, this study
proposes a robust classification model for detecting and classifying EEG epilepsy data. The
methodology begins with rigorous data preprocessing, which includes data cleaning and
normalization to enhance the signal quality and ensure consistency across the dataset. Next,
use dynamic and statistical feature extraction techniques to obtain key EEG signal
parameters, which are necessary for accurately differentiating between seizure types.
Furthermore, implement a Hybrid Red Piranha Cuckoo Search (HRPCS) algorithm for
feature selection, allowing us to identify the most relevant features while reducing
dimensionality. Finally, hybrid deep learning techniques HCRNN are utilized, incorporating
Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) for
classification and prediction tasks. Blockchain technology is used to secure EEG data,
ensuring integrity and patient privacy. After classification, the model also incorporates
predictive analytics to forecast potential future seizures, enhancing patient management
strategies.
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1. INTRODUCTION

Epilepsy is a chronic neurological condition marked by recurrent and unpredictable seizures, affecting millions
of individuals globally and significantly challenging patient management and quality of life. Abnormal electrical
discharges in the brain induce seizures, which can range in severity from short-term loss of consciousness to
severe convulsive bouts including involuntary movements [1,2]. These unpredictable events disrupt daily
activities, pose risks of injury, and in severe cases, can lead to disability or death. While advancements in
epilepsy treatment have improved seizure management to some extent, the inability to predict seizures
accurately remains a critical gap [3]. This limitation exacerbates patient anxiety, restricts the effectiveness of
preventive interventions, and impairs overall quality of life [4]. The early prediction of epileptic seizures holds
tremendous promise in revolutionizing epilepsy care. By identifying pre-seizure patterns, proactive strategies
such as timely medication adjustments, lifestyle changes, or caregiver alerts could be implemented to mitigate
risks [5,6]. In addition to lessening the number and intensity of seizures, this strategy may provide useful
information for improved management to those who have epilepsy and those who care for them. In addition,
seizure prediction offers the potential to improve autonomy, safety, and confidence for patients, allowing them
to regain control over their lives [7].

Over the years, research on epileptic seizure prediction has expanded across multiple domains, including
neurophysiology, signal processing, and machine learning. The advent of advanced neuroimaging methods and
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wearable EEG devices has facilitated the collection of large-scale brain activity data, providing unprecedented
opportunities to analyze seizure dynamics [8]. These data have paved the way for the development of predictive
models that use machine learning algorithms and computational techniques to identify pre-seizure patterns
with higher precision [9]. Despite notable progress, developing clinically reliable and robust prediction systems
remains a formidable challenge. The complexity and variability of epilepsy contribute significantly to these
challenges. Seizures vary greatly in type and frequency, even within the same patient, and EEG signals exhibit
high variability due to patient-specific factors and environmental influences [10]. Additionally, the dynamic and
intricate nature of brain activity further complicates the prediction process. This research proposes a novel
approach using advanced signal processing and machine learning algorithms to extract meaningful features
from EEG data, enhancing seizure prediction accuracy and reliability [11]. This research specifically aims to
create a data-driven model that incorporates advanced methods for extraction of features, reducing
dimensionality, and classifications. The goal is to identify pre-seizure patterns in EEG signals effectively while
ensuring scalability and adaptability across diverse patient profiles [12].

The proposed model employs advanced feature extraction techniques to capture relevant information from EEG
signals, focusing on key characteristics that distinguish pre-seizure states from normal activity [13].
Dimensionality reduction methods are used to eliminate noise and retain critical features, enhancing
computational efficiency. Finally, a robust classification framework is applied to forecast seizures with precision,
addressing the inherent variability of EEG data through personalized modeling strategies. By fostering
interdisciplinary collaboration and utilizing state-of-the-art technologies, this research aims to advance the field
of epileptic seizure prediction. The ultimate objective is to provide individuals living with epilepsy and their
caregivers with reliable tools for managing the condition proactively, improving patient outcomes, and
enhancing their quality of life [14,15]. Through innovative methodologies, this study strives to bridge the gap in
epilepsy care, offering hope for a safer and more independent future for those affected.

The contributions of this paper are manifested below,

. In order to increase the accuracy of seizure diagnosis, this study addresses the difficulties in processing
complex and noisy EEG signals by introducing a strong classification model for identifying and categorizing
EEG epilepsy data.

. This work incorporates HRPCS algorithm for effective feature selection, enabling the identification of
relevant EEG signal parameters while reducing dimensionality for enhanced computational efficiency.

. This work employs hybrid deep learning techniques, HCRNN including CNN and RNN, to achieve
accurate classification and prediction of epileptic seizures.

o By integrating blockchain technology, our study protects patient privacy and offers a solid basis for data-
driven healthcare solutions by guaranteeing the confidentiality and integrity of EEG data.

This paper's remaining sections are structured as follows. A selection of pertinent works and a problem
statement are provided in Part 2. In Section 3, the proposed procedure is presented and explained. Section 5
presents the conclusion, whereas Part 4 presents the findings and discussion.

2. LITERATURE REVIEW

Emara et al. [16] published three frameworks for processing EEG signals in 2022. The first employed Scale-
Invariant Feature Transform (SIFT) for automated seizure identification. In the second, epileptic seizures were
predicted using an artificial neural network (ANN) and the Fast Fourier Transform (FFT). The third provided
an automated, patient-specific framework for seizure prediction and channel selection, and it employed FFT for
feature extraction. Gao et al. [17] introduced a temporal-spatial multi-scale convolutional neural network (CNN)
with dilated convolutions for seizure prediction. This framework systematically extracted multi-scale properties
in temporal and spatial phases using dilated convolutions to improve receptive fields and prediction accuracy.

Tamanna et al. [18] in 2021 aimed to advance seizure prediction from EEG signals using time-frequency feature
extraction and classification techniques. Discrete Wavelet Transform (DWT) was applied to extract features,
followed by the use of Support Vector Machine (SVM) and post-processing techniques to predict seizures with
high accuracy.
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A technique for eliminating motion-related distortions from EEG recordings in epilepsy situations was created
in 2020 by Islam et al. [19]. In order to guarantee clean data for additional analysis, this method entailed
employing a wearable headset to collect EEG signals and then applying Independent Component Analysis (ICA)
to remove artifacts.

In 2021, Zhao et al. [20] developed to enhance quality of life for drug-refractory epilepsy patients, seizure
prediction methods strive for energy efficiency and hardware friendliness. Through neural architecture search,
a compact model was obtained and evaluated across multiple datasets. Model compression techniques further
reduced its size, facilitating low-power operation for wearable and implantable devices.

Five deep learning models for predicting epileptic episodes from intracranial electroencephalogram (iEEG)
datasets were proposed by Ouichka et al. [21] in 2022. A Convolutional Neural Network (CNN) was one of these
models, along with many fusion techniques such combining two CNNs (2-CNN), three CNNs (3-CNN), and four
CNN s (4-CNN). The efficiency of these models in seizure prediction tasks was further demonstrated by the use
of transfer learning with ResNet50.

Mahmoodian et al. [22] used the cross-bispectral technique to extract nonlinear multivariate factors in order to
study the prediction of epileptic episodes in 2020. The study distinguished between pre-ictal and interictal
stages using ten statistical factors. After that, a Support Vector Machine (SVM) classifier was given these
characteristics. Ra et al. [23] developed an effective epileptic seizure prediction system in 2021. The method
focused on EEG feature extraction and classification by selecting EEG channels using an optimization strategy
based on permutation entropy (PE). The classifier used a Genetic Algorithm (GA) in combination with K-
Nearest Neighbors (KNN) to assess the CHB-MIT Scalp EEG Database.

Singh and Malhotra [24], in 2022, proposed a two-layer Long Short-Term Memory (LSTM) network model
based on spectral features for predicting epileptic seizures. The model utilized spectral power and mean
spectrum amplitude features from multiple EEG frequency bands, evaluated over 5 to 50-second segments of
EEG data. The two-layer LSTM model demonstrated high accuracy when processing 30-second EEG segments.

In 2022, Xu et al. [25] presented a technique for early seizure prediction that combined Gradient Boosting
Decision Trees (GBDT) with nonlinear characteristics of EEG data. In order to extract nonlinear characteristics
including approximation entropy, sample entropy, and wavelet entropy, the EEG signals were first denoised
using complementary ensemble empirical mode decomposition (CEEMD) and wavelet threshold denoising. A
random forest-initialized GBDT classifier successfully differentiated between seizure onset and non-seizure
periods.

2.1. Problem Statement

Improving patient treatment and quality of life requires the early and precise prediction of epileptic episodes.
People who have epilepsy, a common neurological illness marked by frequent and unexpected seizures, have
many difficulties, as do those who care for them. Current seizure prediction methods often lack the precision
and reliability needed for timely intervention, increasing risks of injury and complications for patients.
Additionally, existing approaches frequently fail to capture the intricate dynamics and variability of EEG signals
associated with seizure onset. Addressing these limitations requires the development of advanced predictive
models capable of analyzing EEG data in real-time, extracting critical features, and accurately forecasting
seizures. By integrating sophisticated signal processing techniques with machine learning algorithms, these
models can achieve high sensitivity and specificity while reducing false alarms. Such advancements promise to
revolutionize epilepsy management, enabling proactive, personalized care and improving outcomes for
individuals living with epilepsy.

3. PROPOSED METHODOLOGY

Epileptic seizure prediction involves utilizing signal processing and DL methods to forecast seizures in epilepsy
patients, facilitating timely intervention and enhanced patient care. However, challenges such as diverse seizure
patterns among individuals, scarcity of dependable long-term EEG data, the risk of false alarms and the
necessity for real-time prediction pose obstacles. Overcoming these challenges requires robust algorithms,
comprehensive data collection, and validation procedures to ensure accurate and reliable prediction models.
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Addressing these hurdles can significantly improve seizure management and enhance the quality of life for
epilepsy patients.

3.1. Data Pre-Processing
In this work, the collected data is pre-processed and carried out using data cleaning and normalization.
3.1.1. Data Cleaning

Data-cleaning corrects errors and inconsistencies, addressing missing values through imputation or deletion.
Second, removing duplicates is necessary because duplicate records can inflate the dataset and skew the
analysis. Detecting and removing these duplicates ensures that each customer feedback is unique and only
contributes once to the analysis. Third, correcting inconsistencies involves standardizing formats, such as dates
or categorical values. A date might be entered in different formats by different users, and standardizing it to a
common format is essential. Finally, outlier detection and correction are important as outliers are abnormal
data points that can skew the results. While some outliers may be valid data, others might result from errors.
Outlier detection methods are used to identify these, and corrective measures are taken accordingly.

3.1.2. Normalization

In order to standardize the magnitude of characteristics within a dataset, normalization is an essential step in
the preparation of data. Regardless of their initial sizes or units, it guarantees that every variable makes an equal
contribution to the study. Converting feature numerical data to a standard scale—typically between 0 and 1 or -
1 and 1—is the process. Figure 1 shows the general suggested architecture.
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Figure 1: Overall Prosed Methodology

By converting values to a predetermined range, removing the minimum, and dividing by the range, min-max
scaling normalizes features. By subtracting the mean and dividing by the standard deviation, Z-score
normalization (standardization) centres the data around zero with a standard deviation of 1. Both strategies
enhance algorithm performance and convergence by preventing the dominance of features with bigger sizes.

3.2. Feature Extraction

In order to capture important signal properties, statistical and dynamic features are calculated using pre-
processed EEG data in the feature extraction phase of this study. The selected features include statistical
measures such as Mean, Variance, Skewness, and enhanced Kurtosis, which provide insights into signal
distribution and variability. Dynamic features like Lyapunov Exponent, Hjorth Activity, Mobility, and
Complexity quantify signal stability and complexity. Additional metrics such as Approximate Entropy, PSD
Mean, PSD Variance, Spectral Centroid, and Zero-Crossing Interval Mean reflect signal periodicity, frequency
domain properties, and temporal transitions. These features collectively ensure a comprehensive representation
of EEG data for accurate analysis and classification.
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3.2.1 Statistical Features
. Mean

The mean, or average, is a statistical measure representing the central tendency of a dataset. It's calculated by
summing all values and dividing by the total count. While useful for summarizing data, outliers can skew results.
Therefore, it's essential to consider other measures like median and mode for a comprehensive analysis. The
formula for calculating the mean (x) of a dataset is given using Eq. (1).

Siaxi (1)

n

=
Where, x; represents each individual value in the dataset, n is the total number of values in the dataset.

. Median

When a dataset is sorted in either ascending or descending order, the median, a statistical metric, indicates the
midway value. It is resilient to outliers since it is unaffected by extreme values. The median is the midway value
when the number of observations is odd. The median is the mean of the two middle values if the number of
observations is even. Whether the dataset's number of observations (n) is odd or even determines the formula
used to get the median:

If n is odd, the median is the value at position (n + 1)/2 when the data is arranged in ascending or descending
order. If n is even, the median is the average of the values at positions (n/2) + 1 when the data is arranged in
ascending or descending order.

° Skewness

Skewness is a metric used to quantify how asymmetrically values are distributed within a collection. The
following is the formula to determine skewness:

3% —medi
Skewness = ~X(mean—median) (2)

standard deviation
Eq. (2) involves multiplying the difference between the mean and the median by three and then dividing the
result by the standard deviation.

o Enhanced Kurtosis

The fourth-order moment is divided by the population's standard deviation raised to the fourth power to
determine kurtosis, a measure of a distribution's tailedness. It reflects how often outliers occur, with excess
kurtosis indicating tailedness relative to a normal distribution. The formula for calculating kurtosis (K) is given
as per Eq. (3).

1yn =4

=iz (xXi—X)
k=100 () 3)
Where, n is the number of data points, x; represents each individual data point, x is the sample mean. o is the
standard deviation, Shannon Entropy H(a) assesses the randomness or information content of the dataset.

Adding Shannon entropy to kurtosis provides a more subtle understanding of your dataset, especially for tasks
requiring detailed pattern recognition or feature differentiation.

3.2.2. Dynamic Features
o Lyapunov Exponent

The Lyapunov Exponent is a measure of the sensitivity of a system to initial conditions, commonly used to
quantify chaos and signal stability. In the context of EEG analysis, it captures the rate at which trajectories in
the EEG signal space diverge or converge over time. A positive LE suggests chaotic behavior, typical during
seizure episodes, while a negative or zero LE implies a stable or predictable state.
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. Hjorth Activity

Hjorth Activity is a statistical parameter that evaluates the signal's power or variance, providing insight into its
overall energy. High activity levels in EEG signals often indicate abnormal brain activity, such as during seizures.
It is particularly useful for identifying regions of heightened neural activity, which could signify a seizure onset.

. Hjorth Mobility

Hjorth Mobility measures the signal's frequency characteristics by computing the ratio of the standard deviation
of the first derivative to the original signal. This feature quantifies the rate of change or oscillation in the signal,
making it a valuable tool for detecting abrupt changes in brain activity. Increased mobility often corresponds to
heightened neural activity or seizure episodes.

. Hjorth Complexity

Hjorth Complexity evaluates the regularity of the signal, capturing its intricacy by analyzing how the signal's
mobility changes over time. It provides insights into the structure and organization of the EEG signal, with
higher values indicating more complex and unpredictable activity. This feature is crucial for differentiating
normal brain activity from pathological conditions, as epileptic seizures often result in a marked increase in
signal complexity.

o ApproximateEntropy (ApEn)

One statistical metric for assessing the consistency and prediction of time-series data, like EEG signals, is
approximate entropy. It evaluates the likelihood of similar patterns recurring over time. Lower ApEn values
suggest more regular signals, often associated with normal brain activity, while higher values indicate
irregularity, which is characteristic of seizure episodes.

. Power Spectral Density (PSD) Mean

PSD Mean represents the average power of a signal across its frequency spectrum, calculated from its Power
Spectral Density. It provides insights into the distribution of signal energy among different frequency bands. In
EEG analysis, PSD Mean can reveal dominant brain wave activity, such as alpha, beta, or gamma waves, and
help identify abnormalities like excessive power in specific bands during seizures.

. Power Spectral Density (PSD) Variance

PSD Variance quantifies the variability in power distribution across the frequency spectrum of EEG signals. It
helps identify shifts or inconsistencies in brain wave activity, which can be critical for detecting transient
anomalies such as seizures. Increased PSD Variance often corresponds to irregular neural activity, making it a
valuable feature for seizure classification.

o Spectral Centroid

The Spectral Centroid indicates the "center of mass" of the frequency spectrum, providing a measure of where
the majority of the signal energy is concentrated. It is often associated with the perceptual "brightness" of a
signal. In EEG analysis, a shift in the spectral centroid can signify abnormal brain activity, such as a transition
from normal to preictal or ictal states.

o Zero-Crossing Interval Mean (ZCIM)

Zero-Crossing Interval Mean measures the average duration between successive zero-crossings in the signal,
reflecting its oscillatory behavior and periodicity. EEG signals with frequent zero-crossings typically correspond
to higher frequency activity, while longer intervals indicate slower waveforms. Variations in ZCIM can highlight
transitions in brain activity, such as the onset of a seizure, making it an effective metric for time-domain analysis.

. Frequency-Domain Properties

Frequency-domain properties focus on the distribution of signal energy across various frequency bands. Metrics
like PSD Mean, PSD Variance, and Spectral Centroid are used to analyze how EEG signals behave in the
frequency domain. These properties help identify dominant neural rhythms, such as delta or gamma waves, and
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detect anomalies like abnormal power spikes, providing crucial insights into seizure activity and overall brain
health.

. Temporal Transitions

Temporal transitions refer to the changes in signal patterns over time, capturing the dynamic nature of neural
activity. Metrics such as Approximate Entropy and ZCIM are essential for understanding these transitions, as
they reflect how brain states evolve. For instance, the shift from interictal to preictal or ictal states is
characterized by temporal changes in EEG signals. Accurately capturing these transitions is critical for seizure
prediction and monitoring.

3.3. Feature Selection
In this study, the data extracted undergo feature selection using HRPCS as input.
3.3.1. HRPCS

The HRPCS algorithm integrates the strengths of the Cuckoo Search (CS) and Red Piranha Optimization (RPO)
algorithms. CS is inspired by the brood parasitic behavior of cuckoo birds and employs Lévy flights for efficient
exploration of the search space. Lévy flights allow the algorithm to take both short steps for local search and
long jumps for global exploration, ensuring a balance between exploration and exploitation. CS excels at finding
promising regions in the search space with minimal computational effort, making it effective for global
optimization tasks. RPO draws inspiration from the cooperative hunting behavior of red piranhas. This swarm-
based algorithm focuses on intense local search and dynamic adaptation, refining solutions in regions with
higher fitness values. RPO’s ability to adjust search intensity and avoid premature convergence makes it effective
for local optimization and exploitation. By combining these algorithms, HRPCS leverages the global search
efficiency of CS with the local refinement capabilities of RPO. This hybrid approach ensures robust feature
selection, allowing the model to focus on the most impactful features while minimizing redundant or irrelevant
data.

3.3.1.1. Mathematical Modelling
3.3.1.1.1. Initialization

Functioning as a population-based metaheuristic algorithm, the RPO technique employs red pandas as symbolic
representations of individual members. Mathematically, each red panda is depicted as a vector, forming a
matrix where rows represent potential solutions and columns hold values for associated problem variables.
Initially, red panda coordinates within the search space are randomly initialized using Eq. (4) and Eq. (5). This
approach facilitates exploration and exploitation of the solution space to find optimal solutions.

Y, CYyg Yy Yin
Y=|. = ’
Y, Vis o Yij o Yim 4)
_YM_MXTL 7YM,1 YM,] YM,TL

MXxn
yi,j = lOb} + Ti,j ' (upb} - lObj) (5)
The population matrix holding the red panda locations is represented by Y in the RPO technique, where ¥; stands

for the ith red panda (possible solution) and Y;; for its jth dimension (problem variable), random integers
7;j inside the interval [0,1] are used.

The positions of each red panda act as potential solutions, making it possible to assess the objective function
associated with each one. A matrix of the form provided by Eq. (6) can be used to represent the final set of
evaluated objective function values.
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The value obtained by the ith red panda is indicated by f;, and f represents the vector of values of the objective
function. These values of the objective function are essential for evaluating the caliber of potential solutions.
The greatest and lowest values of the objective function are used to identify the best and worst potential
solutions, respectively. These potential solutions are modified appropriately during every iteration. Iterative
upgrades to potential solutions for the best possible problem-solving are part of the RPO's exploration and
exploitation phases.

3.3.1.1.2. Phase 1: Exploration Strategy - Foraging

During the initial phase of RPO, red pandas' positions mimic their foraging behavior in the wild. Leveraging
their adeptness in detecting food sources, each red panda evaluates the locations of others with better objective
function values as potential feeding grounds. These prospective food positions are identified through
comparisons of objective function values, with each red panda randomly selecting one position using Eq. (7).
This process simulates the exploration for optimal solutions in the search space.

pfsi = {Yklk € {1,2,.., M}and fi < f;} U {Ypes} (7)

Based on a comparison with the location of the best candidate solution Y, the suggested food sources for each
red panda pf's;are identified. Approaching these sources causes large positional shifts that improve ability of
algorithm to globally search and explore. By determining new locations in relation to the food source (best
candidate solution), red pandas' foraging behavior can be replicated. The proposed Eq. (8) to Eq. (10) are used
to update the red panda's location.

Yipllyfjl = yi,j + 7. (SfS,:’j - Is'yi,j) -S (8)
S== 9)
lv|#

Integrating the step size (S) from CS into RPO can enhance its performance by improving exploration and
exploitation balance. The step size in CS controls the magnitude of solution perturbations, promoting better
exploration of the solution space. By adding this concept to RPO, it can prevent premature convergence by
making larger moves in the early stages and refining the search later. This dynamic step adjustment helps RPO
avoid local optima and improves convergence. The step size can be implemented using a scaling factor during
position updates, inspired by Lévy flights in CS.

pl ,pl '

v, = % Ji < (10)
Y;, else

The new location of the ith red panda as ascertained from the RPO's first phase is represented by Yf’l. Objective

function is denoted by fipl, and its position in the jth dimension is indicated by yfjl. For the ith red panda, sf's;

denotes the preferred food source, and sfs; ; denotes its location in the jth dimension. Is is a randomly chosen

number from the set {1, 2}, and the variable r is a random value between o and 1.

3.3.1.1.3. Phase 2: Proficiency in ascending and perching on trees (exploitation)

During the second phase of RPO, red pandas' tree-climbing behavior guides their positioning. These animals
typically rest on trees for extended periods and move to nearby trees for food after ground foraging. In promising
regions, this behavior results in minor positioning tweaks that improve the RPO algorithm's exploitation and
local search capabilities. Mathematically, this behavior entails computing new positions for each red panda and
updating previous positions if the objective function improves, as described in Eq. (11) and Eq. (12). This process
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mimics the iterative refinement of solutions as red pandas navigate the search space in pursuit of optimal
solutions.

2 ,p2
Y5 PT < Sy
Y, else

VP2 =y, + “’bf”i'f'(?”bf_l"bf) Si=12.,Mj=12.,nt=12.,T @11 Y= {

(12)
The ith red panda's modified position, obtained from the second phase of RPO, is represented by Yipz. Objective

function is shown by fipz, and its position in the jth dimension is indicated by ijz. A random number between

0 and 1 represents the variable r. The symbol ¢ denotes the algorithm's iteration counter, whereas T stands for
the maximum iterations. Algorithm 1 illustrates how HRPCS integrates the CS into the RPO, adjusting red panda
positions during both exploration and exploitation phases.

Algorithm 1: HRPCS

Initialize population of red pandas Y with random positions in the search space
Initialize the step size S using Lévy flight
Evaluate the objective function for each red panda
For each iteration t = 1 to T do:
# Phase 1: Exploration Strategy (Foraging)
For each red panda
Find the best solution and potential food sources using Eq. (7)
Update position of red panda based on food sources
Select new position
Update position using Eq. (8)
Calculate the step size (S) using the CS step size using Eq. (9)
If the new position improves the objective function
Update the position to the new one Eq. (10)
# Phase 2: Exploitation Strategy (Tree Climbing)
For each red panda
For each dimension
Update position using Eq. (11)
Evaluate the new objective function
Update the position to the new one using Eq. (12)
Update the best solution found so far
Update if a better solution is found in this iteration

Return (best solution found)

3.4. Data Security-Blockchain

To ensure the security, integrity, and effective utilization of sensitive EEG data, blockchain technology is
seamlessly integrated into the proposed model. This combination secures data storage, manages access rights,
and streamlines the reuse of key features for classification tasks. A key feature of blockchain integration is the
generation of cryptographic keys for secure data access. When EEG data is uploaded to the blockchain, public-
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private key pairs are generated using cryptographic algorithms. The public key is used to encrypt data, ensuring
only authorized users with the corresponding private key can decrypt and access it. For healthcare providers
and researchers, smart contracts validate access requests, allowing only authenticated entities to retrieve
specific EEG data or derived features. This mechanism safeguards against unauthorized access, ensuring
compliance with data protection regulations.

The EEG classification process involves selecting critical features from pre-processed data to optimize
classification accuracy. Features such as statistical and dynamic features are extracted during the feature
extraction stage. These features are prioritized based on their relevance using the HRPCS algorithm, which
reduces dimensionality by identifying the most discriminative attributes. Selected features are then securely
stored on the blockchain. Each feature vector is hashed using a cryptographic hash function and appended to
the blockchain as a transaction. The hash ensures data integrity, while the blockchain's distributed nature
provides fault tolerance and immutability. Alongside the features, metadata such as patient IDs (anonymized)
and timestamps are stored for future reference.

Storing features on the blockchain enables their secure reuse for subsequent classification or research tasks.
When the EEG classification model is retrained or updated, the blockchain is queried to retrieve the stored
features. Smart contracts streamline this process, ensuring that only authorized entities can access the data.
Additionally, the retrieved features can be combined with new EEG data for longitudinal studies, predictive
analysis, or personalized treatment plans. By leveraging blockchain, this approach not only enhances the
reliability of data storage and access but also empowers healthcare providers with a transparent and tamper-
proof system. This integration ensures robust security, data privacy, and efficient resource utilization, making
it a cornerstone of proactive and personalized epilepsy management solutions.

3.5. Classification
In this study, the selected data is classified using HCRNN for enhanced accuracy.
3.5.1. HCRNN

CNN are a subset of deep learning models that are skilled in identifying and deriving meaningful patterns from
unprocessed input, such as images. Convolutional, pooling, activation, completely connected, and an output
layer are among them. While pooling layers down sample features, convolutional layers use filters to extract
features. Fully connected layers produce predictions, and activation functions incorporate non-linearities. CNN
are trained to minimize a selected loss function by optimizing their parameters using methods like gradient
descent and backpropagation. CNN are able to adjust and enhance their recognition and classification skills of
objects in images through this iterative process. Three different sorts of layers commonly make up ANN
architecture: input, hidden, and output layers. There are neurons, or nodes, in every layer, and information is
carried by the connections between these neurons. A neural network built for sequential data is called an RNN.

RNN, in contrast to feedforward neural networks, have connections that form directed cycles, which allow them
to handle sequential input and store hidden state information. Because the order of the input pieces matters,
they are especially useful for jobs involving time series data or natural language processing. Recurrent units,
such Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), are used by RNNs to update hidden
states over time and manage long-term dependencies. They use methods such as Backpropagation through Time
(BPTT) to update parameters according to the data's sequential structure. Furthermore, RNNs are used in
security frameworks to continually monitor incoming data and identify anomalies or departures from predicted
patterns that could point to system faults or security risks. The hidden state hs; at time ¢ in an RNN is computed

using Eq. (13).
hsy = 0(Wpsile + WisnshSe—1 + bips) (13)
The output o.at time t is computed based on the hidden state and expressed as per Eq. (14).
0; = softmax(wypshs; + bi,) (14)

The RNN processes sequences by iterating through time steps, updating the hidden state at each step based on
the current input and the previous hidden state. Algorithm 2 illustrates how HCRNN integrates the CNN into
the RNN.
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Algorithm 2: HCRNN for Classification

Input: EEG data, Labels, Epochs, Learning rate, Batch size
Output: Trained HCRNN model, Predictions
1. Initialize Model
a. Define CNN layers (convolution, pooling, activation)
b. Define RNN layers
c. Add output layer with Softmax for classification
2. Preprocess Data
a. Normalize input data
b. Split data into training and testing
c. Create batches of size
3. Train Model
FOR epoch=1to E
FOR each batch
a. Forward Pass
i. Extract features using CNN layers
ii. Process features sequentially with RNN layers
iii. Generate output using Softmax
b. Compute loss between predictions and labels
c. Backward Pass
i. Update model weights using gradient descent
END FOR
END FOR
4. Test Model
a. Pass through the trained model
b. Predict labels for test data
5. Evaluate Model
6. Output

a. Trained model and predictions

After classification, the model leverages predictive analytics to forecast potential future seizures, providing
valuable insights for proactive patient management. By analyzing patterns in preictal and interictal EEG data,
the system identifies trends and markers indicative of imminent seizures. This forecasting capability allows
healthcare providers to implement timely interventions, such as medication adjustments or alert systems, to
mitigate seizure risks. The integration of predictive analytics also supports personalized treatment plans,
enhancing the quality of care for epilepsy patients. This forward-looking approach not only improves patient
safety but also empowers individuals to better manage their condition with early warnings and actionable
insights.

4. RESULT AND DISCUSSION
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4.1. Experimental Setup

The experiments were conducted using Python. A high-performance computing environment was utilized to
handle the computational demands of training the HCRNN model on a large-scale dataset. The model was
trained for epochs and the learning rate was dynamically adjusted based on validation loss.

4.2. Dataset Collection

The American Epilepsy Society Seizure Prediction Challenge dataset [26] is designed to advance seizure
prediction methods using intracranial EEG (iEEG) data. The dataset contains iEEG recordings for human and
canine subjects, categorized into training and testing sets. Training data includes ten-minute clips labelled as
Preictal (pre-seizure) or Interictal (non-seizure). Preictal data represents one hour prior to a seizure onset with
a five-minute seizure horizon, ensuring sufficient warning time for intervention. Interictal segments are
collected from non-seizure periods, far from any seizure activity, minimizing contamination. Each clip is stored
in .mat format with fields like EEG signal matrix (electrode x time), duration, sampling frequency, electrode
names, and sequence index. This comprehensive structure aids in feature extraction and modeling. The dataset
also includes random testing data for evaluation. With over 113 GB of data, this resource supports the
development of accurate seizure prediction models using advanced machine learning techniques.
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Figure 2: Confusion Matrix (Prediction)

The confusion matrix in fig. 2 represents the predicted results of the model's classification of EEG data into
preictal (seizure-prone) and interictal (non-seizure) states. It provides a detailed comparison between the actual
and predicted outcomes. Key observations include:

o True Positives (TP): High values indicate the model effectively identifies seizure-prone periods.
o True Negatives (TN): A strong ability to classify non-seizure periods accurately.
. False Positives (FP): Minimal false alarms, showcasing the model’s robustness.
o False Negatives (FN): A low rate, demonstrating reliable sensitivity in detecting preictal states.

The matrix reflects the model’s excellent overall accuracy, supported by high precision and recall values.
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The model effectively learns to distinguish seizure-prone from non-seizure situations without overfitting, as
evidenced by the training accuracy's steady improvement with epochs. The model's generalizability to unknown
data is confirmed by the validation accuracy, which closely resembles the training curve. Figure 3 illustrates how
the training and validation loss curves steadily decline across epochs until stabilizing at low values. This pattern
indicates that the optimization algorithm is learning and convergent. These indicators' convergence
demonstrates the model's dependability and effectiveness. As seen in fig. 4, the suggested model performs
exceptionally well, exhibiting excellent accuracy, precision, recall, and F1-score.
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Figure 5: Comparison of Proposed and Existing Models

A comparison of the suggested and current models is shown in Fig. 5, which emphasizes gains in F1 scores,
recall, accuracy, and precision. The suggested model performs better than conventional methods, proving its
usefulness in tasks involving seizure categorization and prediction.

5. CONCLUSION
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This study developed a reliable classification technique for identifying and categorizing data related to EEG
epilepsy. To maintain consistency throughout the dataset and improve signal quality, the technique started with
thorough data preparation, which included data cleaning and normalization. To get important EEG signal
parameters like mean, median, skewness, and improved kurtosis that were necessary for precisely
distinguishing between seizure types, statistical feature extraction approaches were used. In order to choose the
most pertinent features while lowering dimensionality, the HRPCS algorithm was used. For tasks involving
classification and prediction, hybrid deep learning methods were applied, such as an HCRNN that combines
CNN and RNN. Blockchain technology was utilized to ensure the security and integrity of the EEG data in order
to safeguard patient privacy. By employing predictive analytics to foresee potential future seizures following
categorization, the method enhanced patient care practices.
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