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ARTICLE INFO ABSTRACT

The Transportation Problem is a fundamental problem widely studied in the Operational
Research domain. The main objective of this paper is to contribute to a deeper study of the
topics of fuzzy transportation problems of linear programming when the supply and demand
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transportation problem with fuzzy sets type-2 of supply and demand to find a balanced
solution. The membership function of a fuzzy set of type-2, which is the set of its feasible
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transportation problem is discussed with the help of an illustrative numerical example.
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INTRODUCTION

Traditional Transportation Problems (TP) are particular Linear Programming Problems (LPPs) that arise in
many critical applications. These problems usually describe the movement of some goods from points of
departure (places of production) to points of destination (warehouses, shops). In a natural interpretation, it is
considered the problem of the optimal transportation plan from suppliers to consumers with minimal costs.
The main goal is to determine the volume of traffic from origins to destinations with the minimum cost of
transportation, and this should take into account restrictions imposed on the volume of goods at the
destination (supply constraints) and restrictions that take into account the need for goods at destinations
(demand constraints). It is assumed in the TP that the cost of transporting cargo along a route is directly
proportional to the volume of cargo transported along this route. Numerous generalizations of the TP are
known, which are widely used in practice: a multicriteria TP, in which, along with cost minimization, other
indicators (transportation time, reliability, delivery time, etc.) can be optimized (Senapati P.,2008); multi-
level hierarchical TP (Raskin L.G.,1982); multi-product TP, in which there are several types of cargo, a fuzzy
TP, in which both various problem parameters (unit costs, volumes of stocks and needs) and constraint (for
example, in the form of fuzzy inequalities) can be fuzzily specified (Zinmenoz F.,1999); single objective TP
with mixed constraints, such that method has been developed on the basis of combinatorial procedure to solve
the particular type of TP and also discovered a simple algorithm for solving maximum flow problem in
transportation network (Hitchcock, F.,2016); an efficient solution of TP is found by using a new method called
harmonic mean method (Palanievel, M.,2018); formulation a new model of multi-objective capacitated TP
with mixed constraints, to choose the optimal order of the product quantity which is to be shipped from origin
to the target based on the capacitated constraint on each route (Gupta,S.,2018); many practical ideas were
presented to deal with a restricted fixed charge solid TP in an uncertain environment involving fuzzy type-2
parameters (Das, A.,2019); analyze the multi-objective fixed-charge TP under rough programming with made
a comparison of the obtained solution method (Midya, S.,2020); developing a method for solving a fully
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intuitionistic fuzzy multi-objective fractional TP, in which the problem is transformed into a linear one using
transformations using the accuracy function for each objective. Then the linear model is decreased to an
apparent multi-objective TP (El Sayed, M.A.,2021). Propose Z-fuzzy numbers approach in TP with fuzzy unit
costs, where assume that demand and supply are deterministic numbers and the uncertainty associated with
the transportation costs and is modelled by using Z-fuzzy numbers (Gladysz, B.,2022). Optimization time—
cost trade-off decisions in an interval TP with multiple shipment options by proposing an efficient iterative
algorithm for generating the Pareto frontier that solves a minimum cost flow problem at each iteration
(Shalabh Singh,2023), using a fuzzy-based decision-making approach to select the warehouse site for the
automotive industry. Well-located and well-designed warehouses can make reaching these aims for the
automotive industry possible and more accessible. Hence, determining a location for a warehouse is a highly
critical, tactical, and managerial resolution for the automotive industry, as there is a strong correlation
between well-located warehouses and the well-structured logistics network in the automotive industry (Abhijit
Saha,2023). In this paper, we will consider a generalization of the TP for the case of fuzzy sets type-2 of supply
and demand.

OBJECTIVES

The main objective of this paper is to contribute to a deeper study of the topics of fuzzy transportation
problems of linear programming when the supply and demand are represented as a fuzzy set of type-2.

METHODS
1. Formulation of TP with fuzzy sets of supply & demand

First, we present a traditional crisp of the TP. Assume that homogeneous goods are concentrated at {m}
supply in capacity (a,,a,,...,a,,). Let us denote M = {1,2,...,m} be the universal set of supply. These goods
must be delivered to {n} demand in capacities (&4, &,,..., 4, ). Assume that N = {1,2,...,n} be the universal
set of demand. Also, we known (cﬁ >0iEM,jEN ), be the unit cost of transportation goods from each

{i*"} suppliers to each { 7"} demanders. It is required to draw up a transportation plan with minimization
total cost (MinTC). Denote that x(;;) = 0, {< € M}, { € N} be the quantities transportation from the (it}
suppliers for each { 7"} demanders. At that point, the objective function of the problem will take the form:

(MinTC) ¥ienm Zjen €ij% ;- In the general case of unbalanced TP, the problem constraint system consists of
two groups of inequalities. The first group of {sm} inequalities describe the condition that transportation
quantities don’t exceed the inventories of all {zn} supply and has the pattern: ¥ ;e x(;) < a,, {4 € M}. And,
second group of {n} inequalities express the requirement to satisfy the needs of all {n} demand and has the
mode: Yen *ij) = 4, {7 € N'}. Suppose that the Decision-Maker (DM) cannot certainly say which supply and

demand are actually ready to work at the time of making the decision but can only set the Membership
Functions (MFs) as follows:

. u(4), {i € M}, a fuzzy set of indices M € M of supply who intend to ship goods;
. 5(4), {7 € N}, fuzzy set of indices N' € V" of demand who are ready to receive shipment.

Thus, a TP appears with fuzzy sets of supply and demand in the following formulation:
(MinTC) Yienm Xjen Cij* i) (1)

YienXupy S a (i €EMY; x4 20, {i e M}, {FEN}; (2)

Zjen X > 0, {i e M}; (3)

ZiEMx(/Lj) 2 b, {f € ]\7} (4)
Where fuzzy set M of constraints (3) corresponds to non-zero supply quantities of those suppliers who intend
to release goods, and fuzzy set V of constraints (4) meets the requirement to satisfy the needs of consumers
who are ready to receive shipment. In more detail, the meaning of the model from (1) to (4). Indeed, if for

some supply < € M the corresponding condition (3) is not satisfied (i.e., Yjen %) < 0) with a membership
degree of (1 — u(4)), then from (2), it follows that the transportation volumes: x(;; = 0, Vj € NV, with the
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same membership degree. Then, the quantities of goods transported from the supply i< € M to different
demanders will be non-zero with the degree of membership u(4) if and only if the inequality (¥ ex %(j) > 0) is
satisfied with the same degree of membership. Likewise, for the demanders. Suppose that the corresponding
condition (3) (i.e., Xenr #(;j) = 4;) with the membership degree (1 — (7)) is not satisfied for some demand
# € V. Thus, since the coefficients of the objective function (1) are positive, it is clear that in the optimal
solution x* problem from (1) to (2) under the condition (¥;ea X)) < 1&,) we get the values of transportation
quantities x(;; = 0, V4 € M; with the same degree of membership. Therefore, the quantities of transportation
of goods to the demander 7 € V from all suppliers will be non-zero with the degree of membership §(4) if and
only if the inequality (X;ep %) = ;) is satisfied with the same degree of membership. Let X be the set of
feasible solutions for a system of inequalities (2), which we will further call the universal set of solutions to the
TP from (1) to (4) with fuzzy sets of supply and demand; f; = {x € X|X,cx %, > 0} be the set of feasible
solutions from the universal set X, that satisfy a constraint of the form (3) with index < € M, and h; = {x €
X |Z¢EM x5 < 4;} is a similar set for the constraint ;7 € V' of the form (4). Then problems from (1) to (4) can
be represented as: (MinTC) Yienr Xjen Cij% iz, S-to: x € F, where: F = f n h. That is, f =0 f; represents the

set of feasible solutions of systems (2) and (3), which is the intersection of the fuzzy set M of crisp sets f;, 1 €

M. Moreover, h = n]\7 h; is the set of feasible solutions to systems (2) and (4), which is the intersection of the
j€
fuzzy set V' of crisp sets, h;, 7 € NV F = f n h, be the set of feasible solutions to the system from (2) to (4). Let

us define the concept of the intersection of a fuzzy set of crisp sets under the approach proposed in
(Mashchenko S.0.,2013).

2, The intersection of a fuzzy set of crisp sets

Assume that Q,, + € T, is some finite collection of crisp sets that are subsets of some universal set Q. Let T be
some fuzzy subset of the index set T with MF: A(¢), £ € 7. On the universal set of {7, V# € T}, we define the
MF of the crisp set @, as follows: ¢.(x) = ¢.(x) =[0] & {x ¢ Q,}and [1] & {x € Q.}. Consider now the
intersection Q =tQT Q, of a fuzzy set of T crisp sets Q,, + € T. The classical generalization of operation

intersection leads to the fact that the set T will be given by the MF:
x €9Q, g(x) = Min{¢,(x)}.  (5)
teT

The value of MF: g(x), for each fixed x € Q will be determined as the value of the objective function of the
Fuzzy Linear Programming Problem (FLPP):

g = Min{¢.}.  (6)
teT

According to (Orlovsky S.A.,1981), a solution to the problem (6) is a fuzzy set {7*}, whose vector is the set of
Non-Dominated Optimal (NDO) alternatives (we denote it by 7{4%}) of a bi-objective discrete optimization
problem:

Minimization(Min) ¢, Maximization (Max) B (£),t €T. (7)

The MF: 8 of a fuzzy set {7*} is the constraint of the MF: B(t), t € T, from the universal set of indices 7 to the
set TWPO c 7. In other words, this MF will look like this: f(¢) = [0] & {¢t ¢ TN A B(¥) = B(t) &
{t € 7@} The set of solutions to a problem (6), which is the fuzzy set {7*} with the MF: §(¢), t €T,
according to (Orlovsky S.A.,1981), corresponds to the fuzzy set 2 < {0,1} of optimal values of the objective
function of this problem with the MF: w(g) = d{\/l a;c}{ﬁ (®)}, w:{0,1} > [0,1] A g € {0,1}. It should be noted that

=1
the universal set of the fuzzy set 2 of optimal values of the objective function of problem (6) will be the set
{0,1}, consisting of two elements: g = [0] A g = [1]. Here is explained by the fact that the variable g can take
values equal only to the values of ¢.(x), £ € T, which in turn can be equal to either: {0} v {1} for any fixed x €
7. Thus, for each fixed x € T, the values g(x) of the MF: (5) of the fuzzy set 0 =t2f Q. also form a fuzzy subset

1 of the universal set G = {0,1}. That implies the fuzzy set § is the so-called fuzzy set type-2 (we denote it by
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FST2) [13]. According to [13], we formalize the concept of the intersection =0 Q, of a fuzzy set T of crisp
(S

sets Q,, t € T. For an arbitrary x € Q, consider the dominance relation generated by the functions ¢,(x) and
B (%) on the index set 7. We will say that the index < € T dominates the index ;7 € T for the solution x € Q and
denote it by (4 s #) if the following inequalities hold: Min ¢,: (¢,(x) < b; (%)) A Max B (£): (B(4) = B(#)), and
at least one of them is strict. This concept allows us to define the set of NDO alternatives of the bi-objective
problem (7), which will be the vector of the fuzzy set of solutions to the problem (6). For x € Q, we denote this

x
vector; 749} (x) = {¢ € T|j *+ t,Vj € T}. For arbitrary x € X, ¢ € T, we define the MF of the fuzzy set of
solutions to the problem (7): B(x,1) = [0] & t & T} (x) A f(x,1) = B(t) & t € T (1), The intersection
of a fuzzy set T of crisp sets Q,, * €T, is called 0 =tnf Q, an FST2, which is given by triples relations
€

(x,w(x,¢)), such that: w: X x G - [0,1] is a fuzzy mapping that plays the role of a fuzzy MF and is specified by:

P(x,9) =[0] © ¢p,(x) # g, VL ET Ap(x,9) = I\ggx{ﬁ(x, g (x) =g} &It €T:¢,(x) =g. Such that: x
represent the element of the universal set 9, and g: is an element of the universal set G = {0,1} of values of the
MF: ¢(x,g) of the FST2 Q. The values of the MF: ¢(x, g) for a fixed {x° € 0} form a fuzzy subset 24(x°) of the
set G = {0,1} with the MF: ¢(x° ¢), ¢ € {0,1}. The value of ¢(x°, 1) can be understood as the degree to which
the solution x° € Q belongs to the set §. Accordingly, the value of ¢(x° 0) means the degree of does not
belong of {x° € @ } in the set 0. On the other hand, if we fix ¢ = {1} in the MF: ¢(x, ¢), we obtain a fuzzy set of
solutions x € Q belonging to the set § with the MF: ¢ (x, 1). We denote this set by 2,(1). Similarly, for a fixed
value g = {0}, we obtain a fuzzy set of alternatives x € Q that does not belong to the set §, with the MF:
¢(x,0). Denote it by 02,(0). Interestingly, in the general case, (1 —2y(1) # 24(0)), and, accordingly, (1 —
w(x,1) # w(x,0)). Therefore, both a fuzzy set 2,(0) and 24(1) are fuzzy sets of sections for g = {0} A g = {1}
of the FST2 J; and are its integral components. The following theorem makes it possible to simplify the
construction of the MF w(x, g).

Theorem [13]. Let Q,, £ € T, be a crisp set that is defined on the universal set Q by the corresponding MFs:

¢Pe(x), x €Q,t €T; A(t), t €T, of fuzzy set 7. In order for the FST2 §, which is given by the MF: w(x, ¢), x €

9, ¢ € {0,1}, to be the intersection of a fuzzy set T to the crisp sets Q,, t € T, (i.e., 9 =tﬁf~ Q,) it is essential and
€

acceptable Vx € Q:

> w(x,0)={0} = ¢, (x) ={1}Vi e T Aw(x,1) ={0},34 € Argll;leafx/l(j) e ¢ (x) = {0}
> w(x,0) = ¢1}/1519§{0}/1(t) S ILET: ¢ (x) ={0}Aw(x,1) = MaTxl(t) = ¢ (x) ={1} vt e ArgMaTx/l(j).
c(x)= te 7€

3. FST2 feasible solutions TP with fuzzy sets of supply & demand

It follows from the above theorem that the set F = f n h of feasible solutions to the system from (2) until (4) is
the intersection of FST2 f A h. The intersection f = r}? f: is the set of feasible solutions to inequalities (3) that
i€

the MF gives wi(x,¢), g €{0,1}, where:

! (0); Vi € M: Yjen X@ij) > 0.
Such that wf(x, 0) represents the reliability of the infeasible solution (x) for inequalities (3);
Maxu(i); Vi€ ArgMaxu(i): Z;iEN Xy >0,
wf(x, 1) = 1EM ] €M ©
(0); € ATQ%%C[[(/L): Z;’EN %y < 0.

Where wf(x, 1) represents the reliability of its feasibility.

Since inequalities (3) describe the set of goods transportation plans in which all suppliers participate non-zero,
the value of ws(x,0) can be explained as the reliability of non-participation of all suppliers in the goods
transportation plan (x). Furthermore, w¢(x, 1) can be understood as the reliability of their participation. The
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FST2 h = n_h; is the set of feasible solutions to inequalities (4), which is given by the MF w;(x,¢), - g €

JEN
{0,1}, where:
Maxi6 (5 e Xon <ty AFEN: Yiewm Xon < b
(Ufl(x, 0) _ {je]\f{ (7)|Z4,EM (€7)] 7} 7 ZiEM (i) 7 (10)

That is wy(«x, 0) represents the reliability of the infeasibility of the solution (x) for inequalities (4);
Max5(7); V§ € ArgMaxé(§): Yiem %) = 64

ws(x,1) =17 . e (11)

(0); EF S Arg%%‘“ﬂi Yiem X < b

Where wj(x,1) represents the reliability of its feasibility.

Since inequalities (4) define a set of goods transportation plans in which all demanders take non-zero
cooperation. Moreover, the value wj(x,0) can be interpreted as the reliability of non-cooperation of all
demanders in the goods transportation plan (x), and wy(x, 1) can be understood as the reliability of their
cooperation. From (8) to (11), it follows that the set £ = f n h of feasible solutions to a system of (2) until (4) is
an FST2. Denote its MF: wz(x,¢), ¢ € {0,1}. Now, we can use the operation of the intersection of FST2 to
obtain the following; wz(x, ¢) = x,ee%gf Min{ ws(x, k), wi(x, €)}.

min{k,£}=(g)

From here: wz(x,0) = K‘fel{\/g%f Min{ wz(x, k), wi(x, £)} = Max{ Min{ w¢(x, 0), wz(x, 0)},
min{k,£}=(0)
Min{ w;(x,0), wz(x, 1)}, Min{ wz(x, 1), wg(x, 0)}}; where wz(x, 0) represents the reliability of the infeasibility of
the solution (x) for the system of (2) till (4), and wz(x, 1) = ME% ax Min{ wp(x, k), wg(x, )} =
min{k,£}=(1)
Min{ w(x,1), wz(x,1)}; that is wz(x, 1) represents the reliability of its feasibility. Let us build these functions.

To do this, consider the three possible options shown below:
1) Suppose that ¥, ey x(;;) > 0 Vi € M, hence ws(x,0) = (0), wi(x, 1) = Aé%cu(i). Therefore wz(x,0) =
1
Max{0,0, Min{ Maxu (1), wz(x,0)}} = Min{ Maxu(i), wz(x,0)}, wz(x,1) = Min{ Maxu(4), wz(x, 1)}. The
iEM PEM iEM

following cases are possible:

a) If Yienwxujy =4; V4 €N, then wr(x,0) = (0), wr(x, 1) = I\(IEc]lfcd(j), wz(x,0) = Max{0,0,0} = (0),
Fa
wg(x,1) = Min{ %%#@)%%CM#)B (12)
7

Max(8()|Lieap < b7} 0p(®1) =Maxs(@), so  wp(x,0) = Min{ Maxu(), Max(8()|Lier ip <

&) w5 (x, 1) = Min{Maxu(i), Maxs(?)}; (13)

c) If 3j€ Arg]l{{e%cd(;') Yiem Xp < B;, then wj(x,0) = 1\{{5%6(;'), wp(x,1) = 0. Also, we get wz(x,0) =
7 i

Min{ %%Cﬂ(i),%c]l\?c(s(j)}, wg(x,1) = Min{ Iﬁ%u@), 0} =0. (14)
2) Assume that Y ,cpx¢; >0 Vi€ ArgMe%cu(/i) A FLEM Yjen*upy <0. Either wp(x,0)=
1

Max(u(D)[Syen #ip < 0}, @7(x,1) = Maxu(d). That is why wz(x,0) = Max{ Min{ Max{u())|Sen %y <
0}, w5 (x, 0)}, Min{ Max{n(D)|Len #epy < 0}, Min{Maxu(d), wg(x,0)}}, wz(x,1) = Min{ Maxu(d), 0z (x, 1)}.

The following cases are possible:

a) If Z/LE]V[x(ij) = &;’ Vj € N7 then wﬁ(x, 0) = 07 (Uﬁ(x, 1) = ]\46%6(7)7 O.):;E(x, 0) =
7
Min{ Max(u(0)|Sjex ip < 03, MaxS(2)}, wp(x,1) = Min{ Maxu(i), Maxs (). (15)

b)  If Yiemxuy =4, Vi E Argl;/[E%c&(j) A 3F EN: Yien Xy < 4y, then wg(x,0) = %%{Miﬂ&em Xy <

&3, wp(x,1) = I;(Iecjz\?cé‘(j). Therefore, we get w#(x,0) = Max{ Min{ ll(le%c{u(fi)mje]\f X <
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0}, %%{5(7') |2 iene 20ipy ;1) Min{ %‘ﬂl}f{#(’i) 1% en 2y <

03 Max§ ()3}, Min{ Maxu(4), Max{s DXiere xup i} 0g(x,1) Min{ Maxu(d), Max5(7)};(16)

) If 3¢ Argl;{{gc]z\;cd(j): Yiem Xy < b, then  wgp(x,0) = %%6(7'),
wr(x,1) =0, w7 (#,0) = Max{ Min{ Max{n(0)| S jex () < 0} Max5(7)},0, Min{ Maxu(s), Maxs(7)}) =
M in{%%cu(i).%t};cc? @)} wr(x,1) = Min{ Maxu(4),0} = 0. (17)

3) Let 34 € Arg%%‘“(i): Yjen %@ < 0. Then wz(x,0) = %%cy(i), wf(x,1) = 0. Therefore wz(x,0) =
max{min{ %%cu(i),w,;(x, 0)}, Min{ %%cu(i),wﬁ(x, 1D}L0}; wz(x, 1) = Min{f wp(x, 1), wg(x, 1)} = 0. (18) There

are the following cases:
a) If Yiemwxupy =6,V €N, then wj(x,0)=0, wzx1)= I\(IECJL\?CS(j), that's why wz(x,0)=
i

Max{ 0, Min{ Maxu(4), Max5(§)},0} = Min{ Maxu(i), Max5(7)}; (19)

7
Max(8()|Liese 2 < b}, @i 1) = Maxs(p), so ws(x,0) = Max{Min{ Maxu(i), Max(8(A)|Lier x(ip <
433 Min{ Maxp(4), Max5(7)},0} = Min{ Maxu(4), Max5(7)}. - (20)

c) If 3¢ Argl\{le%cd(j): Yienm Xy < 4;, then wz(x,0) = Ilfle%cc?(j), w5 (x,1) = 0. Additionally we get
7 i
wg(x,0) = Max{ Min{ %%cu(¢),1;\;1€%c6(7)},0,0} = Min{ Iﬁ%cu@), 1;(16%6(;)}. (21)

4. Find a balanced solution for TP with FST2 of supply & demand

When searching for a Balanced Solution (BS), the DM will try to minimize the objective function (1) as well as
maximize the reliability of objective functions (2) and (3), respectively, of non-participation and participation
of supply and demand in terms of goods transportation. In other words, the DM faces the following multi-
objective programming problem:

Objective function (1): (MinTC) Xien Zjen €ij% i)
Objective function (2): (MaxR) w# (x,0);
Objective function (3): (MaxR) ws (x, 1);

s.to:x €D. (22)

Let (WNDO) denote the set of Weakly Non-Dominated Optimal solutions to this problem. Recall that a
solution x* > 0 is called Slater's optimal solution for a problem of the form (22) if Zx > 0, for which the
following inequalities hold:

> Yien Ljen CijX(ip) > Dienm Dgen €% (ij)»
> wg(x,0) > wz(x”,0),
> wg(x,1) > we(x", 1).

It is pretty clear that the definition of a BS to problem for (1) to (4) should include only solutions from the set
of WNDO. These considerations lead to the following definition.

The general BS to the TP from (1) until (4), with fuzzy sets of supply and demand, will be an FST2 D with the
MF: wi(x,¢) = wy(x,¢9),x € WNDO: g € G ={0,1} Awz(x,¢) =0,x € WNDO.

When the DM is interested in a specific BS x*, it can be selected from the set of WNDO using one or another
method of multi-objective optimization by solving a problem (22). Then we will call it a BS to the TP for (1) till
(4) with certainties w(x, 0) and wz(x, 1), respectively, of non-participation and participation of supply in the
plan of goods transportation. Let us denote the functions:
Rldemand) () %%{SQNZieM Xij) < 0}; FFEN: Yiemwxup <0, (23)

(0); Vj €N Yienm xqj > 0.
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, (24)

RiswPPY}(x) = {¢

We can allow denoting that {7*} = ArgME(]\z}cu(m’) AT} = Argl\({E cJt\;«S (#). Multi-objective programming problem
i 7

(22) can be simplified if and only if the MFs u(4) of the fuzzy set of indices M € M of suppliers intending to

release goods and &§(7) of the fuzzy set of indices N' € N of consumers ready to receive goods, are standard,

ie., Me %cu(/i) =1 and Me (]1\?(5 (#) = 1, then for each given value of the parameter R € (0,1], at which the problem
i i

(25) and (26) has an optimal solution, this solution will be balanced for the TP of (1) until (4) with the
reliability of the participation of supply in the plan of transportation of goods equal to (one), and the reliability
of their non-participation is not less than R, i.e.,

(MinTC) Tien e Cij¥eip) » Max){ Rl@emandl (x), REWPPLI ()} > R, x € D, (25)

Let be now see how we can simplify the solution to the problem (25) and (26). Indicate that M* = {i €
M|u(i) = R} and MR = {j € M|5(4) = R} sets of supply and demand indices, respectively, have degrees of
membership in the corresponding fuzzy sets M and N of at least R € (0,1]. Thus, the problem (25) and (26)
can be written as follows:

{UEM%%NR} (MinTC) Yienm Xjen €ij% @z * € D;

Yien Xwp) < 0, Xien Xaw) < b3 (27)
YienXwj) >0 VI €T, Yienxujy =4; VFET. (28)
Since Iyec]\z}cu(/i) =1 and Iye%&(j) =1, it is evident that for (R = 1) V v € 7*, w € J*, constraints (27) and (28)
will be a priori inconsistent. Therefore, we can obtain the following final result from the theorem above.

L.Signify by M® ={i € M|1 > u(i) = R} and N*® = {j € V|1 > 6(4) = R} the sets of supply and demand
indices, which have a certainty of membership degrees, not less than R € (0,1), but not equal to one.

I1.If the MFs of u(4), the fuzzy set of indices M' € M of supply who intend to release goods, and §(7), the fuzzy
set of indices V' € V" of demand ready to receive goods, are typical. Then for each given value of the parameter
R € (0,1), for which the problem has an optimal solution. It will be BS for TP from (1) to (4), with the
reliability of the participation of supply in the plan for transportation goods equal to one. Furthermore, the
reliability of their non-participation is at least R.

{VEM%%NR}(ML.”TC) Yiem Ljen Cijxij); % € D;

Yien Xy < 05 Xien Xy > 05 Yjew %) < ay Vi €77 (29)
Yienm Xaw) < bws Diem X = b; VG €T 5 x4 = 0,1 EM, jEN. (30)

Based on what was stated in the previous theorem and its subsequent properties. It is now possible to propose
a new method consisting of five steps, to obtain the optimal BS of a TP with a fuzzy set of supply and demand
indices that finally satisfies the DM, as displayed below:

1) Choose the number of R} € (0,1), which according to (I) and (II), characterizes the maximum
reliability for the DM of the infeasibility of the goods transportation plan.

2) Compose a set of supply M* = {(4) € 7|u(i) < R}, which have a membership degree of the fuzzy set of
supply indices not greater than R} € (0,1).

3) For indices, M* = {(4) € J|6(4) < R} constructs the set of supply with a degree of membership to the
fuzzy set of supply indices not greater than R} € (0,1).

4) Minimizing the total cost of transportation z(x) = X,crtsuppiy) Xjen(@emana) €% (;z) for each supply and

demand with index (k,I) € M® on the set of feasible transportation plans W{swry.demand} ynder additional
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constraints: Y ey, ;) > 0 Vi € {7\M*} and Yiem; Xij) = U; VG € {J"\M*} on supply who release goods
and on active demand respectively. Moreover, two additional constraints: ey, %6y < 0 and Yiear, (i) <

&, which determines the zero goods of products from the supply and associated with an inactive demand
respectively, with index (k, 1), i.e., to solve the problem:

(ﬂgglg}yz‘_dzgg%) 3(x) = Yiem Ljen Cij*(ij)s
2jen Xy < @iy i € M Yiew, xék;) < 05X en, Xy >0 Vi € {7\Mm*}; (31
ey, xéi;’) < by; Yiem; Xujp 2 4; V4 € {T\M*Y; 2,5 =2 0,i €M, EN. (32)

(We indicate its solution by x®),

5) From the obtained solutions x*Y, . (k,1) € M'®, choose (£) the record one in terms of the value of the
objective function, i.e., # = Arg Min 206D,

j 9 Min o 5(x ")
5. Ilustrative numerical example:

Consider a single-product TP as described below:

(MinTC) z (X114, -, Xg7) =

5X(111) + 8X(1‘2) + 7X(1_3) + 3X(1_4) + 3X(1_5) + 9X(1‘6) + SX(1‘7) +
+8x(2,1) T 4x22) + 2Xx(23) + 8X(24) + 7X(25) + 10X 6) + 16X, 7) +
+10x(31) + 2X(32) + 6X(33) + 3x(34) + X35 + 10x(56) + 18x57) + } (1)
+6x(4,1) T 6X(a2) + 2X(43) + x40y + 12X(45) + BX(46) + 10x47) +
+3x(5,1) T 6X(52) T 5X(53) + 7X(5,4) + 4X(55) + 10X(56) + 8X(57) +

+9X(6’1) + 8.X'(6‘2) + 1OX(6’3) + 6X(6’4) + 14X(6,5) + 6x(6,6) + SX(6,7)
Subject to constraints of supply:

X11 + X1z + X453 + X14 + X415 + X6 + X7 < 18000,
X1+ Xgp + Xo3 + Xog + Xo5 + Xo6 + X572 < 10000,
X31 t X35 + X33 + X34 + X35 + X36 + X37 < 6000,
X41 + Xgp + X4z + Xggq + X455 + X4 + x47 < 12000,
X51 + X55 + X53 + X54 + X55 + X56 + X57 < 8000,
Xg1 T Xz + Xg3 + Xgq + Xg5 + Xg6 + Xg7 < 6000;

(2

Subject to constraints of demand:

X11 + Xoq + X371 + X4q + X51 + X617 = 11000,
X1z + Xg3 + X35 + X4p + X5 + X6, = 12000,
X13 + Xo3 + X33 + X43 + Xs53 + X3 = 8000,
X14 + Xp4 + X34 + X44 + X54 + X4 = 10000, ; (3)
X15 + X5 + X35 + X45 + X55 + X5 = 7000,
X1 T X2 + X36 T X4 + X56 + Xg6 = 15000,
X17 + Xg7 + X37 + X47 + X57 + Xg7 = 5000;

Non-negativity of variables: x(;;y = 0; (i = 1,2,---,6); (7 = 1,2,--,7).

Let us denote: 7 = {1,2,3,4,5,6} is the set of supply, and J = {1,2,3,4,5,6,7} represents the demand set. Suppose
that the DM cannot clearly say which supply will exactly release products but can only set a fuzzy set {7} with
MFs: pgy = 0.65; Uy = 0.90; pesy = 0.35; 4y = 1.0; pes) = 0.70; pey = 0.40. Furthermore, suppose that the
DM cannot clearly say which demand will be precisely active (accept products in the stated amount) but can
only set a fuzzy set {J} with MFs: 8ay = 0.60; 52y = 0.80; 83y = 0.75; 84y = 1.0; &5y = 0.90; &6y = 0.85; §(7) =
1.0. Let's now perform the procedure of choosing a BS.

1. Choosing the maximum reliability for the DM of the infeasibility of the transportation plan, for
example: Rma¥} = (%)
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2, Then the set of indices of supply and demand, which have a degree of membership in the fuzzy set {7}
and {J} not more than R} = (é)’ will take the form M*) = {(i) € 7 Ky < G)} ={1,356}A{(4) €

9o < () = 0.
a. For {(i) = 1; () = 1} we solve the TP as follows:

+ 8x(21) + 4X(22) T 2x(23) + 8X(24) T TX(z5) + 10Xz 6y + 16X(5 7y +
+ 10x(3,1) + 2x(32) + 6X(33) + 3x(34) + IX(35) + 10x(36) + 18x(57) +
+6x(4,1) + 6x(4,2) + 2x(4,3) + 9x(4‘4) + 12x(4‘5) + 8x(4‘6) + 10x(4,7) +
+3%(5.1) + 6X(52) + 5X(53) + 7X(5.4) + 4X(55) + 10X(56) + Bx(57) +
+9%6,1) + 8X(62) + 10X(63) + 6X(64) + 14X(65) + 6X(66) + 5X (57

(MlnTC) Vg (xll, ...,x67) = SX(L]_) + 8x(1,2) + 7X(1’3) + 3X(1’4_) + 3X(1’5) + 9X(1’6) + SX(1’7) +]

Subject to constraints of supply:

X1+ X1p + Xq13 + Xq4 + X5 + X6 + X717 < 18000,
X(2,1) T X2z + Xa3 + Xp4 + Xp5 + X6 + X7 < 10000,
X371 + X35 + X33 + X34 + X35 + X34 + X37 < 6000,
Xg1 + Xgp + X4z + Xggq + X455 + X4 + X47 < 12000,
X5q + Xs5p + X53 + X54 + X55 + X56 + X357 < 8000, 3 (4)
Xg1 + Xgp + Xg3 + Xgq + X5 + Xg6 + Xg7 < 6000,
Xp1 + Xop + Xp3 + Xoy + X5 + Xgg + X7 > 0.000,
X41 + Xap + X43 + Xagq + X45 + Xg6 + X47 > 0.000,
X1 %12 + X3 + X4 + X45 + %46 + %17 < 0.000;

Subject to constraints of demand:

X1y + Xop + X35 + X4p + X55 + X6, = 12000,
X13 + X33 + X33 + X43 + X53 + x43 = 8000,

X4 + Xog4 + X34 + Xg4 + X54 + X64 = 10000,
X15 + X5 + X35 + X45 + X55 + Xg5 = 7000,  (5)
X16 T X26 T X36 T X46 + X56 + Xg6 = 15000,
X17 + Xp7 + X37 + X47 + X57 + Xg; = 5000,

X171 + Xp1 + X371 + X4q9 + X51 + X617 < 11000;

Subject to Non-negativity of variables: x(;;) = 0; (4 = 1,2,--,6); (7 = 1,2,-+,7).

The optimal solution of this problem: x{j, 7~ =10000,x{33 = 6000,x}3) = 2000, x(}&} = 4000, x5 =

1000, xg;)} = 7000, x({i:;)} = 3000, x({;"g = 11000, all other variables have the value of zero. The optimal value of

the objective function: z(ymrcyx == = 221000.

b. For {(i) = 3; () = 1} we solve the TP as follows:
(MinTC) z (X114, -+, Xg7) = 5X(1,1) + 8x(1,2) + 7X(1,3) + 3x(1,4) + 3x(1,5) + Ix(1,6) + 5x(1,7) +
+ 8x(2,1) + 4x(2_2) + 2x(2_3) + 8x(2‘4) + 7x(2‘5) + 10x(2‘6) + 16x(2_7) +
+ 10x(3,1) + 2x(3_2) + 6x(3_3) + 3x(3‘4) + 9x(3‘5) + 10x(3_6) + 18x(3_7) +
+6X(41) + 6X(a2) + 2X(a3) + IXaa) + 12X45) + 8X(46) + 10x(47) +
+3x(5,1) + 6x(52) + 5X(53) + 7X(5,4) + 4X(5,5) + 10X(56) + 8X(57) +
+9x(6,1) + 8x(6,2) T 10X(63) + 6X(64) + 14X 5) + 6X(66) + 5X(67)

Subject to constraints of supply:
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X11 + X12 + X413 + Xq4 + X5 + X6 + X7 < 18000,
X(2,1) T X2z + Xa3 + Xp4 + X5 + Xp6 + X7 < 10000,
X31 + X35 + X33 + X34 + X35 + X36 + X37 < 6000,
X41 F Xgp + X43 + Xgq + Xg5 + X4 + X47 < 12000,
Xsq + Xgp + Xg3 + Xsg4 + Xg5 + X5 + X57, < 8000, ;(6)
Xg1 T Xgo T Xg3 + Xga + X5 + X6 + Xg7 < 6000,
Xp1 + Xoy + Xp3 + Xoy + X5 + Xo6 + X7 > 0.000,
X41 F X4 + X43 + Xgq + Xg5 + X46 + X457 > 0.000,
X31 + X35 + X33 + X34 + X35 + X36 + x37 < 0.000;

Subject to constraints of demand:

X1p + Xz + X35 + X4p + X5z + X5 = 12000,y
X13 + X33 + X33 + X43 + X53 + X463 = 8000,

X14 + X4 + X34 + X4y + X54 + x4 = 10000,
X15 + X35 + X35 + X45 + X55 + x65 = 7000, 3 (5)
X16 t X26 + X36 + X46 + X56 + X6 = 15000,
X17 + X27 + X37 + X47 + X57 + X467 = 5000,

X111+ Xg1 + X371 + X4q + X571 + X1 < 11000;

Subject to Non-negativity of variables: x(;;) = 0; (4 = 1,2,--,6); (7 = 1,2,+,7).

{i=3,4=1}

a7 =10000, x5 = 7000, x55) = 10000, x50 = 2000, x74) =

(1,5) (2,.2) (4,2) (4,6) —
1000,x§22)} = 14000, all other variables have a value of zero. The optimal value of the objective function:
Bminrc)x ==Y = 195000.

The optimal solution to this problem: x

c. For {(4) = 5; () = 1} we solve the TP as follows:
(MinTC) 3 (X114, -+, Xg7) = 5X(1,1) + 8X(1,2) + 7x(1,3) + 3x(1,4) + 3x(1,5) + Ix(1,6) + 5x(1,7) +
+ 8x(5,1) + 4X(22) + 2X(23) + 8X(2.4) + TX(25) + 10x(56) + 16X(57) +
+ 10x(3,1) + 2X(32) + 6X(33) + 3X(34) + IX(35) + 10x(36) + 18x(37) +
+6x(41) + 6Xs2) + 2x(3) + IX4aa) + 12X 5) + 8X(46) + 10x(47) +
+3x(5,1) + 6x(52) + 5X(53) T 7X(5,4) + 4X(55) T 10X(56) + 8X(57) +
+9x(6,1) + 8X(6,2) T 10X(63) + 6X(64) + 14X 5) + 6X(66) + 5X(67)

Subject to constraints of supply:

X11 t Xq12 + X913 + Xq4 + X5 + X6 + X717 < 18000,
X(2,1) T X2z + X33 + X254 + X5 + X6 + %57 < 10000,
X31 + X35 + X33 + X34 + X35 + X36 + X37 < 6000,
X41 F X4 + X43 + Xgg + X455 + Xg6 + X47 < 12000,
X51 + Xgo + Xg3 + X54 + X5z + X56 + X357 < 8000, (7)Subject to constraints of demand:
Xe1 t Xg2 + Xg3 + Xgq4 + Xg5 + Xg6 + Xg7 < 6000,
Xp1 + Xop + X3 + Xoy + X5 + Xog + X7 > 0.000,
Xg1 F X4 + X43 + Xgg + Xg5 + Xg6 + X457 > 0.000,
X51 + X55 + X53 + X54 + X55 + X56 + X57 < 0.000;

X1z + X35 + X35 + X4y + X553 + X6, = 12000,
X3 + X3 + X33 + X453 + X553 + X3 = 8000,

X14 t X4 + X34 + X44 + Xs54 + X4 = 10000,
X5 + Xo5 + X35 + Xu5 + X55 + X5 = 7000, (5)
X16 T X26 + X36 T X4 + X56 + Xgg = 15000,
X17 + Xo7 + X37 + X47 + X57 + Xg7 = 5000,

X117 + X1 + X371 + X490 + X519 + X671 < 11000;

Subject to Non-negativity of variables: x(;;) = 0; (< = 1,2,--,6); (7 = 1,2,-+,7).
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The optimal solution for this problem is: x{1 "~ = 10000, x4 = 7000, x4} = 6000, x5 = 6000, x{3a) =

1000, x(;¢) = 14000, all other variables have zero value, and the optimal value of the objective function is:
Bminreyx =31 = 179000.

d. For {(4) = 6; (4) = 1} we solve the TP as follows:

(MinTC) z (X11, -, Xg7) = Sx(l‘l) +8x(1,2) + 7X(1,3) + 3x(1,4) + 3%(1,5) + Ix(16) + 5x(1,7) +
+ 8x(21) + 4X(22) T 2x(23) + 8X(24) T TX(z5) + 10Xz 6y + 16X(5 7y + ]
+ 10x(3,1) + 2x(32) + 6X(33) + 3x(34) + IX(35) + 10x(36) + 18x(57) +

+6X(41) + 6X(42) + 2x(43) + IxXaa) + 12X 5) + 8X(46) + 10x¢47) +

+3%(s5.1) + 6X(52) + 5X(53) + 7X(5.4) + 4X(55) + 10X(56) + Bx(57) +

+9%6,1) + 8X(62) + 10X(63) + 6X(64) + 14X(65) + 6X(66) + 5X (57

Subject to constraints of supply:

X11 + X1z + X135 + X4 + X5 + X1 + X7 < 18000,
X(2,1) T X2z + Xa3 + Xp4 + Xp5 + X6 + X7 < 10000,
X31 + X35 + X33 + X34 + X35 + X3¢ + x37 < 6000,
Xg1 + Xgp + Xg3 + Xggq + X5 + X4 + X47 < 12000,
Xsq + X5y + Xs3 + Xeq + Xss + X5 + X7 < 8000, ¢ (8)
Xg1 + Xgp + Xg3 + Xgg + Xg5 + Xgg + Xg7 < 6000,
Xoq + Xop + Xo3 + Xoy + X5 + Xgg + X537 > 0.000,
Xg1 + Xgp + Xg3 + Xggq + Xy45 + X4 + X475 > 0.000,
Xg1 + Xgz T Xg3 + Xgq + Xg5 + Xgg + X67 < 0.000;

Subject to constraints of demand:

X1p + Xz + X35 + X4p + X5 + X6, = 12000,
X13 + X3 + X33 + X43 + Xs53 + x43 = 8000,

X1 + X4 + X34 + X4y + X54 + X4 = 10000,
X15 + X35 + X35 + X45 + X55 + x65 = 7000,  (5)
X16 T X326 + X36 T X46 + X56 + Xg6 = 15000,
X17 + Xg7 + X37 + X47 + X57 + X7 = 5000,

X11 + X921 + X317 + X4q + X51 + X617 < 11000;

Subject to Non-negativity of variables: xup =0; (1=12,-,6); (G =12,--,7).
RESULTS
The optimal solution of this problem: x({izg" =Y = 10000, xg_';)} = 7000, x({f:é)} = 1000, x({;';)} = 6000, xg’:é)} =

2000,x({§:21)} = 6000, x({f_'g)} = 12000, all other variables have a value of zero. The optimal value of the objective

function is: Z(yinrcyx*=%=1 = 212000. Since x''=67'=1 has the smallest value of the objective function:
zE‘Ml-nTC)x“*zﬁf =1} = 212000, it will be the solution to the problem with the reliability of the feasibility of the

obtained solution equal to one, and the reliability of infeasibility is not more than (i)

CONCLUSION

In conclusion, it should be noted that the proposed method extends the scope of fuzzy mathematical
programming to the case of a transportation problem of linear programming with a fuzzy set of type-2 for
supply and demand. The new method showed its effectiveness in optimal decision-making by obtaining a
balanced solution with a fuzzy environment for supply and demand indexes for the transportation problem.
Furthermore, it can provide a new approach to solving other optimization problem formulations under fuzzy
information.
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