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The Transportation Problem is a fundamental problem widely studied in the Operational 

Research domain. The main objective of this paper is to contribute to a deeper study of the 

topics of fuzzy transportation problems of linear programming when the supply and demand 

are represented as a fuzzy set of type-2. Here, we are using a newly proposed method to solve a 

transportation problem with fuzzy sets type-2 of supply and demand to find a balanced 

solution. The membership function of a fuzzy set of type-2, which is the set of its feasible 

solutions, is constructed. The properties of this set are investigated, and the problems of 

choosing balanced solutions are considered. The newly proposed method of the fuzzy 

transportation problem is discussed with the help of an illustrative numerical example. 

Keywords: Fuzzy type-2, fuzzy transportation problem, multi-objective transportation 

problem, decision-making. 

 

INTRODUCTION 

Traditional Transportation Problems (TP) are particular Linear Programming Problems (LPPs) that arise in 

many critical applications. These problems usually describe the movement of some goods from points of 

departure (places of production) to points of destination (warehouses, shops). In a natural interpretation, it is 

considered the problem of the optimal transportation plan from suppliers to consumers with minimal costs. 

The main goal is to determine the volume of traffic from origins to destinations with the minimum cost of 

transportation, and this should take into account restrictions imposed on the volume of goods at the 

destination (supply constraints) and restrictions that take into account the need for goods at destinations 

(demand constraints). It is assumed in the TP that the cost of transporting cargo along a route is directly 

proportional to the volume of cargo transported along this route. Numerous generalizations of the TP are 

known, which are widely used in practice: a multicriteria TP, in which, along with cost minimization, other 

indicators (transportation time, reliability, delivery time, etc.) can be optimized (Senapati P.,2008); multi-

level hierarchical TP (Raskin L.G.,1982); multi-product TP, in which there are several types of cargo, a fuzzy 

TP, in which both various problem parameters (unit costs, volumes of stocks and needs) and constraint (for 

example, in the form of fuzzy inequalities) can be fuzzily specified (Zinmenoz F.,1999); single objective TP 

with mixed constraints, such that method has been developed on the basis of combinatorial procedure to solve 

the particular type of TP and also discovered a simple algorithm for solving maximum flow problem in 

transportation network (Hitchcock, F.,2016); an efficient solution of TP is found by using a new method called 

harmonic mean method (Palanievel, M.,2018); formulation a new model of multi-objective capacitated TP 

with mixed constraints, to choose the optimal order of the product quantity which is to be shipped from origin 

to the target based on the capacitated constraint on each route (Gupta,S.,2018); many practical ideas were 

presented to deal with a restricted fixed charge solid TP in an uncertain environment involving fuzzy type-2 

parameters (Das, A.,2019); analyze the multi-objective fixed-charge TP under rough programming with made 

a comparison of the obtained solution method (Midya, S.,2020); developing a method for solving a fully 
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intuitionistic fuzzy multi-objective fractional TP, in which the problem is transformed into a linear one using 

transformations using the accuracy function for each objective. Then the linear model is decreased to an 

apparent multi-objective TP (El Sayed, M.A.,2021). Propose Z-fuzzy numbers approach in TP with fuzzy unit 

costs, where assume that demand and supply are deterministic numbers and the uncertainty associated with 

the transportation costs and is modelled by using Z-fuzzy numbers (Gładysz, B.,2022). Optimization time–

cost trade-off decisions in an interval TP with multiple shipment options by proposing an efficient iterative 

algorithm for generating the Pareto frontier that solves a minimum cost flow problem at each iteration 

(Shalabh Singh,2023), using a fuzzy-based decision-making approach to select the warehouse site for the 

automotive industry. Well-located and well-designed warehouses can make reaching these aims for the 

automotive industry possible and more accessible. Hence, determining a location for a warehouse is a highly 

critical, tactical, and managerial resolution for the automotive industry, as there is a strong correlation 

between well-located warehouses and the well-structured logistics network in the automotive industry (Abhijit 

Saha,2023). In this paper, we will consider a generalization of the TP for the case of fuzzy sets type-2 of supply 

and demand. 

OBJECTIVES 

 The main objective of this paper is to contribute to a deeper study of the topics of fuzzy transportation 

problems of linear programming when the supply and demand are represented as a fuzzy set of type-2. 

METHODS 

1. Formulation of TP with fuzzy sets of supply & demand 

First, we present a traditional crisp of the TP. Assume that homogeneous goods are concentrated at {𝓂} 

supply in capacity (𝒶1, 𝒶2, . . . , 𝒶𝓂). Let us denote ℳ = {1,2, . . . ,𝓂} be the universal set of supply. These goods 

must be delivered to {𝓃} demand in capacities (𝒷1, 𝒷2, . . . , 𝒷𝓃). Assume that 𝒩 = {1,2, . . . , 𝓃} be the universal 

set of demand.  Also, we known (𝒸𝒾𝒿 > 0, 𝒾 ∈ ℳ, 𝒿 ∈ 𝒩), be the unit cost of transportation goods from each  

{𝒾𝑡ℎ} suppliers to each { 𝒿𝑡ℎ} demanders. It is required to draw up a transportation plan with minimization 

total cost (𝑀𝑖𝑛𝑇𝐶).  Denote that 𝓍(𝒾𝒿) ≥ 0, {𝒾 ∈ ℳ}, {𝒿 ∈ 𝒩} be the quantities transportation from the  {𝒾𝑡ℎ} 

suppliers for each { 𝒿𝑡ℎ} demanders. At that point, the objective function of the problem will take the form:  

(𝑀𝑖𝑛𝑇𝐶)∑ ∑ 𝒸𝒾𝒿𝓍(𝒾𝒿)𝒿∈𝒩𝒾∈ℳ . In the general case of unbalanced TP, the problem constraint system consists of 

two groups of inequalities. The first group of {𝓂} inequalities describe the condition that transportation 

quantities don’t exceed the inventories of all {𝓂} supply and has the pattern:  ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 𝒶𝒾, {𝒾 ∈ ℳ}.  And, 

second group of {𝓃} inequalities express the requirement to satisfy the needs of all {𝓃} demand and has the 

mode:  ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿, {𝒿 ∈ 𝒩}.  Suppose that the Decision-Maker (DM) cannot certainly say which supply and 

demand are actually ready to work at the time of making the decision but can only set the Membership 

Functions (MFs) as follows: 

▪ 𝜇(𝒾), {𝒾 ∈ ℳ}, a fuzzy set of indices ℳ̃ ⊆ ℳ of supply who intend to ship goods; 

▪ 𝛿(𝒿), {𝒿 ∈ 𝒩}, fuzzy set of indices 𝒩̃ ⊆ 𝒩 of demand who are ready to receive shipment. 

Thus, a TP appears with fuzzy sets of supply and demand in the following formulation: 

(𝑀𝑖𝑛𝑇𝐶)∑ ∑ 𝒸𝒾𝒿𝓍(𝒾𝒿)𝒿∈𝒩𝒾∈ℳ ;                                      (1) 

∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 𝒶𝒾, {𝒾 ∈ ℳ}; 𝓍(𝒾𝒿) ≥ 0, {𝒾 ∈ ℳ}, {𝒿 ∈ 𝒩};     (2) 

∑ 𝓍(𝒾𝒿)𝒿∈𝒩 > 0, {𝒾 ∈ ℳ̃};                                                        (3) 

∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿, {𝒿 ∈ 𝒩̃}.                                                      (4) 

Where fuzzy set ℳ̃ of constraints (3) corresponds to non-zero supply quantities of those suppliers who intend 

to release goods, and fuzzy set 𝒩̃ of constraints (4) meets the requirement to satisfy the needs of consumers 

who are ready to receive shipment. In more detail, the meaning of the model from (1) to (4). Indeed, if for 

some supply 𝒾 ∈ ℳ̃  the corresponding condition (3) is not satisfied (i.e., ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 0) with a membership 

degree of (1 − 𝜇(𝒾)), then from (2), it follows that the transportation volumes: 𝓍(𝒾𝒿) = 0, ∀𝒿 ∈ 𝒩, with the 



149  

 

 

Barraq Subhi Kaml et al./ J INFORM SYSTEMS ENG, 10(4s) 

same membership degree. Then, the quantities of goods transported from the supply 𝒾 ∈ ℳ to different 

demanders will be non-zero with the degree of membership 𝜇(𝒾) if and only if the inequality (∑ 𝓍(𝒾𝒿)𝒿∈𝒩 > 0) is 

satisfied with the same degree of membership. Likewise, for the demanders. Suppose that the corresponding 

condition (3) (i. e. , ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿) with the membership degree (1 − 𝛿(𝒿)) is not satisfied for some demand 

𝒿 ∈ 𝒩. Thus, since the coefficients of the objective function (1) are positive, it is clear that in the optimal 

solution 𝓍∗ problem from (1) to (2) under the condition (∑ 𝓍(𝒾𝒿)𝒾∈ℳ < 𝒷𝒿) we get the values of transportation 

quantities 𝓍(𝒾𝒿)
∗ = 0, ∀𝒾 ∈ ℳ; with the same degree of membership. Therefore, the quantities of transportation 

of goods to the demander 𝒿 ∈ 𝒩 from all suppliers will be non-zero with the degree of membership 𝛿(𝒿) if and 

only if the inequality (∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿) is satisfied with the same degree of membership. Let 𝑋 be the set of 

feasible solutions for a system of inequalities (2), which we will further call the universal set of solutions to the 

TP from (1) to (4) with fuzzy sets of supply and demand; 𝑓𝒾 = {𝓍 ∈ 𝑋|∑ 𝓍(𝒾𝒿)𝒿∈𝒩 > 0} be the set of feasible 

solutions from the universal set 𝑋, that satisfy a constraint of the form (3) with index 𝒾 ∈ ℳ, and ℎ𝒿 = {𝓍 ∈

𝑋|∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≤ 𝒷𝒿} is a similar set for the constraint 𝒿 ∈ 𝒩 of the form (4). Then problems from (1) to (4) can 

be represented as:  (𝑀𝑖𝑛𝑇𝐶)∑ ∑ 𝒸𝒾𝒿𝓍(𝒾𝒿)𝒿∈𝒩𝒾∈ℳ , s.to: 𝓍 ∈ ℱ̃, where: ℱ̃ = 𝑓 ∩ ℎ̃. That is, 𝑓 = ∩
𝒾∈ℳ̃

𝑓𝒾 represents the 

set of feasible solutions of systems (2) and (3), which is the intersection of the fuzzy set ℳ̃ of crisp sets 𝑓𝒾, 𝒾 ∈

ℳ. Moreover, ℎ̃ = ∩
𝒿∈𝒩̃

ℎ𝒿 is the set of feasible solutions to systems (2) and (4), which is the intersection of the 

fuzzy set 𝒩̃ of crisp sets, ℎ𝒿, 𝒿 ∈ 𝒩; ℱ̃ = 𝑓 ∩ ℎ̃, be the set of feasible solutions to the system from (2) to (4). Let 

us define the concept of the intersection of a fuzzy set of crisp sets under the approach proposed in 

(Mashchenko S.O.,2013). 

2. The intersection of a fuzzy set of crisp sets 

Assume that 𝒬𝓉, 𝓉 ∈ 𝒯, is some finite collection of crisp sets that are subsets of some universal set 𝒬. Let 𝒯̃  be 

some fuzzy subset of the index set 𝒯 with MF: 𝜆(𝓉), 𝓉 ∈ 𝒯. On the universal set of {𝒯, ∀𝓉 ∈ 𝒯}, we define the 

MF of the crisp set 𝒬𝓉 as follows: 𝜙𝓉(𝓍) = 𝜙𝓉(𝓍) = [0]  ⟺  {𝓍 ∉ 𝒬𝓉} 𝑎𝑛𝑑 [1]  ⟺  {𝓍 ∈ 𝒬𝓉}. Consider now the 

intersection 𝒬̃ = ∩
𝓉∈𝒯̃

𝒬𝓉 of a fuzzy set of 𝒯̃ crisp sets 𝒬𝓉, 𝓉 ∈ 𝒯. The classical generalization of operation 

intersection leads to the fact that the set 𝒯̃ will be given by the MF: 

𝓍 ∈ 𝒬, ℊ(𝓍) = 𝑀𝑖𝑛
𝓉∈𝒯̃

{𝜙𝓉(𝓍)}.         (5) 

The value of MF: ℊ(𝓍), for each fixed 𝓍 ∈ 𝒬 will be determined as the value of the objective function of the 

Fuzzy Linear Programming Problem (FLPP): 

 ℊ = 𝑀𝑖𝑛
𝓉∈𝒯̃

{𝜙𝓉}.         (6) 

According to (Orlovsky S.A.,1981), a solution to the problem (6) is a fuzzy set {𝒯̃∗}, whose vector is the set of 

Non-Dominated Optimal (NDO) alternatives (we denote it by 𝒯{𝑛𝑑𝑜}) of a bi-objective discrete optimization 

problem: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑀𝑖𝑛)𝜙𝓉, 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑀𝑎𝑥)𝛽 (𝓉), 𝓉 ∈ 𝒯.      (7) 

The MF: 𝛽 of a fuzzy set {𝒯̃∗} is the constraint of the MF: 𝛽(𝓉), 𝓉 ∈ 𝒯, from the universal set of indices 𝒯 to the 

set 𝒯{𝑁𝐷𝑂} ⊆ 𝒯. In other words, this MF will look like this: 𝛽(𝓉) = [0] ⟺ {𝓉 ∉ 𝒯{𝑛𝑑𝑜}} ∧ 𝛽(𝓉) =  𝛽(𝓉) ⟺

{ 𝓉 ∈ 𝒯{𝑛𝑑𝑜}} . The set of solutions to a problem (6), which is the fuzzy set {𝒯̃∗} with the MF: 𝛽(𝓉), 𝓉 ∈ 𝒯, 

according to (Orlovsky S.A.,1981), corresponds to the fuzzy set 𝛺 ⊆ {0,1} of optimal values of the objective 

function of this problem with the MF: 𝜔(ℊ) = 𝑀𝑎𝑥
𝜙𝓉={ℊ}

{𝛽(𝓉)}, 𝜔: {0,1} → [0,1] ∧ ℊ ∈ {0,1}. It should be noted that 

the universal set of the fuzzy set 𝛺 of optimal values of the objective function of problem (6) will be the set 

{0,1}, consisting of two elements: ℊ = [0] ∧ ℊ = [1]. Here is explained by the fact that the variable ℊ can take 

values equal only to the values of 𝜙𝓉(𝓍), 𝓉 ∈ 𝒯, which in turn can be equal to either: {0} ∨ {1} for any fixed 𝓍 ∈

𝒯. Thus, for each fixed 𝓍 ∈ 𝒯, the values ℊ(𝓍) of the MF: (5) of the fuzzy set 𝒬̃ = ∩
𝓉∈𝒯̃

𝒬𝓉 also form a fuzzy subset 

𝛺 of the universal set 𝒢 = {0,1}. That implies the fuzzy set 𝒬̃ is the so-called fuzzy set type-2 (we denote it by 
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FST2) [13]. According to [13], we formalize the concept of the intersection 𝒬̃ = ∩
𝓉∈𝒯̃

𝒬𝓉 of a fuzzy set 𝒯̃ of crisp 

sets 𝒬𝓉, 𝓉 ∈ 𝒯. For an arbitrary 𝓍 ∈ 𝒬, consider the dominance relation generated by the functions 𝜙𝓉(𝓍) and 

𝛽(𝓉) on the index set 𝒯. We will say that the index 𝒾 ∈ 𝒯 dominates the index 𝒿 ∈ 𝒯 for the solution 𝓍 ∈ 𝒬 and 

denote it by (𝒾 ≻
𝓍
𝒿) if the following inequalities hold: 𝑀𝑖𝑛𝜙𝓉: (𝜙𝒾(𝓍) ≤ 𝜙𝒿(𝓍)) ∧ 𝑀𝑎𝑥 𝛽 (𝓉): (𝛽(𝒾) ≥ 𝛽(𝒿)), and 

at least one of them is strict. This concept allows us to define the set of NDO alternatives of the bi-objective 

problem (7), which will be the vector of the fuzzy set of solutions to the problem (6). For 𝓍 ∈ 𝒬, we denote this 

vector; 𝒯{𝑛𝑑𝑜}(𝓍) = {𝓉 ∈ 𝒯|𝒿 ⊁
𝓍

𝓉, ∀𝒿 ∈ 𝒯}. For arbitrary 𝓍 ∈ 𝑋, 𝓉 ∈ 𝒯, we define the MF of the fuzzy set of 

solutions to the problem (7): 𝛽(𝓍, 𝓉) = [0] ⟺ 𝓉 ∉ 𝒯{𝑛𝑑𝑜}(𝓍) ∧ 𝛽(𝓍, 𝓉) = 𝛽(𝓉) ⟺ 𝑡 ∈ 𝒯{𝑛𝑑𝑜}(𝓍). The intersection 

of a fuzzy set 𝒯̃ of crisp sets 𝒬𝓉, 𝓉 ∈ 𝒯, is called 𝒬̃ = ∩
𝓉∈𝒯̃

𝒬𝓉 an FST2, which is given by triples relations 

(𝓍, 𝜔(𝓍, ℊ)), such that: 𝜔:𝑋 × 𝒢 → [0,1] is a fuzzy mapping that plays the role of a fuzzy MF and is specified by:  

𝜙(𝓍, ℊ) = [0] ⟺ 𝜙𝓉(𝓍) ≠ ℊ, ∀𝓉 ∈ 𝒯 ∧ 𝜙(𝓍, ℊ) = 𝑀𝑎𝑥
𝓉∈𝒯

{𝛽(𝓍, 𝓉)|𝜙𝓉(𝓍) = ℊ} ⟺ ∃𝓉 ∈ 𝒯: 𝜙𝓉(𝓍) = ℊ. Such that: 𝓍 

represent the element of the universal set 𝒬, and ℊ: is an element of the universal set 𝒢 = {0,1} of values of the 

MF: 𝜙(𝓍, ℊ) of the FST2 𝒬̃. The values of the MF: 𝜙(𝓍, ℊ) for a fixed {𝓍0 ∈ 𝒬} form a fuzzy subset 𝛺𝒢(𝓍
0) of the 

set 𝒢 = {0,1} with the MF: 𝜙(𝓍0, ℊ), ℊ ∈ {0,1}. The value of 𝜙(𝓍0, 1) can be understood as the degree to which 

the solution 𝓍0 ∈ 𝒬 belongs to the set 𝒬̃. Accordingly, the value of 𝜙(𝓍0, 0) means the degree of does not 

belong of {𝓍0 ∈ 𝒬 } in the set 𝒬̃. On the other hand, if we fix ℊ = {1} in the MF: 𝜙(𝓍, ℊ), we obtain a fuzzy set of 

solutions 𝓍 ∈ 𝒬 belonging to the set 𝒬̃ with the MF: 𝜙(𝓍, 1). We denote this set by 𝛺𝒬(1). Similarly, for a fixed 

value ℊ = {0}, we obtain a fuzzy set of alternatives 𝓍 ∈ 𝒬 that does not belong to the set 𝒬̃, with the MF: 

𝜙(𝓍, 0). Denote it by 𝛺𝒬(0). Interestingly, in the general case, 〈1 − 𝛺𝒬(1) ≠ 𝛺𝒬(0)〉, and, accordingly, 〈1 −

𝜔(𝓍, 1) ≠ 𝜔(𝓍, 0)〉. Therefore, both a fuzzy set 𝛺𝒬(0) and 𝛺𝒬(1) are fuzzy sets of sections for ℊ = {0} ∧ ℊ = {1} 

of the FST2 𝒬̃; and are its integral components. The following theorem makes it possible to simplify the 

construction of the MF 𝜔(𝓍, ℊ). 

Theorem [13]. Let 𝒬𝓉, 𝓉 ∈ 𝒯, be a crisp set that is defined on the universal set 𝒬 by the corresponding MFs: 

𝜙𝓉(𝓍), 𝓍 ∈ 𝒬, 𝓉 ∈ 𝒯; 𝜆(𝓉), 𝓉 ∈ 𝒯, of fuzzy set 𝒯̃. In order for the FST2 𝒬̃, which is given by the MF: 𝜔(𝓍, ℊ), 𝓍 ∈

𝒬, ℊ ∈ {0,1}, to be the intersection of a fuzzy set 𝒯̃ to the crisp sets 𝒬𝓉, 𝓉 ∈ 𝒯, (i.e., 𝒬̃ = ∩
𝓉∈𝒯̃

𝒬𝓉) it is essential and 

acceptable ∀𝓍 ∈ 𝒬: 

➢ 𝜔(𝓍, 0) = {0} ⟺ 𝜙𝓉(𝓍) = {1} ∀𝒾 ∈ 𝒯 ∧ 𝜔(𝓍, 1) = {0}, ∃𝒾 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒿∈𝒯

𝜆(𝒿) ⟺  𝜙𝓉(𝓍) = {0}; 

➢ 𝜔(𝓍, 0) = 𝑀𝑎𝑥
𝜙𝓉(𝓍)={0}

𝜆(𝓉) ⟺ ∃𝓉 ∈ 𝒯:  𝜙𝓉(𝓍) = {0} ∧ 𝜔(𝓍, 1) = 𝑀𝑎𝑥
𝓉∈𝒯

𝜆(𝑡) ⟺ 𝜙𝓉(𝓍) = {1} ∀𝓉 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒿∈𝒯

𝜆(𝒿). 

3. FST2 feasible solutions TP with fuzzy sets of supply & demand 

It follows from the above theorem that the set ℱ̃ = 𝑓 ∩ ℎ̃ of feasible solutions to the system from (2) until (4) is 

the intersection of FST2 𝑓 ∧ ℎ̃. The intersection 𝑓 = ∩
𝒾∈ℳ̃

𝑓𝒾 is the set of feasible solutions to inequalities (3) that 

the MF gives 𝜔𝑓̃(𝓍, ℊ), ∴ ℊ ∈ {0,1}, where: 

𝜔𝑓̃(𝓍, 0) = {
𝑀𝑎𝑥
𝒾∈ℳ

{𝜇(𝒾)|∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 0}; ∃𝒾 ∈ ℳ: ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 0,

(0);  ∀𝒾 ∈ ℳ: ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 > 0.
    (8) 

Such that 𝜔𝑓̃(𝓍, 0) represents the reliability of the infeasible solution (𝓍) for inequalities (3); 

𝜔𝑓̃(𝓍, 1) = {
𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾); ∀𝒾 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾): ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 > 0,

(0); ∃𝒾 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾): ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 0.
 (9) 

Where 𝜔𝑓̃(𝓍, 1) represents the reliability of its feasibility. 

Since inequalities (3) describe the set of goods transportation plans in which all suppliers participate non-zero, 

the value of 𝜔𝑓̃(𝓍, 0) can be explained as the reliability of non-participation of all suppliers in the goods 

transportation plan (𝓍). Furthermore, 𝜔𝑓̃(𝓍, 1) can be understood as the reliability of their participation. The 
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FST2 ℎ̃ = ∩
𝒿∈𝒩̃

ℎ𝑗 is the set of feasible solutions to inequalities (4), which is given by the MF 𝜔ℎ̃(𝓍, ℊ), ∴ ℊ ∈

{0,1}, where: 

𝜔ℎ̃(𝓍, 0) = {
𝑀𝑎𝑥
𝒿∈𝒩

{𝛿(𝒿)|∑ 𝓍(𝒾𝒿)𝒾∈ℳ < 𝒷𝒿}; ∃𝒿 ∈ 𝒩: ∑ 𝓍(𝒾𝒿)𝒾∈ℳ < 𝒷𝒿 ,

(0); ∀𝒿 ∈ 𝒩: ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿 .
 (10) 

That is 𝜔ℎ̃(𝓍, 0) represents the reliability of the infeasibility of the solution (𝓍) for inequalities (4); 

𝜔ℎ̃(𝓍, 1) = {
𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿);  ∀𝒿 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿): ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿 ,

(0); ∃𝒿 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿):  ∑ 𝓍(𝒾𝒿)𝒾∈ℳ < 𝒷𝒿 .
 (11) 

Where 𝜔ℎ̃(𝓍, 1)  represents the reliability of its feasibility. 

Since inequalities (4) define a set of goods transportation plans in which all demanders take non-zero 

cooperation. Moreover, the value 𝜔ℎ̃(𝓍, 0) can be interpreted as the reliability of non-cooperation of all 

demanders in the goods transportation plan (𝓍), and 𝜔ℎ̃(𝓍, 1) can be understood as the reliability of their 

cooperation. From (8) to (11), it follows that the set ℱ̃ = 𝑓 ∩ ℎ̃ of feasible solutions to a system of (2) until (4) is 

an FST2. Denote its MF: 𝜔ℱ̃(𝓍, ℊ), ℊ ∈ {0,1}. Now, we can use the operation of the intersection of FST2 to 

obtain the following; 𝜔ℱ̃(𝓍, ℊ) = 𝑀𝑎𝑥
𝜅,ℓ∈{0,1},

𝑚𝑖𝑛{𝜅,ℓ}=(ℊ)

𝑀𝑖𝑛{𝜔ℱ̃(𝓍, 𝜅), 𝜔ℎ̃(𝓍, ℓ)}.  

From here: 𝜔ℱ̃(𝓍, 0) = 𝑀𝑎𝑥
𝜅,ℓ∈{0,1},

𝑚𝑖𝑛{𝜅,ℓ}=(0)

𝑀𝑖𝑛{𝜔𝑓̃(𝓍, 𝜅), 𝜔ℎ̃(𝓍, ℓ)} = 𝑀𝑎𝑥{𝑀𝑖𝑛{𝜔𝑓̃(𝓍, 0), 𝜔ℎ̃(𝓍, 0)}, 

𝑀𝑖𝑛{𝜔𝑓̃(𝓍, 0), 𝜔ℎ̃(𝓍, 1)},𝑀𝑖𝑛{𝜔𝑓̃(𝓍, 1), 𝜔ℎ̃(𝓍, 0)}}; where 𝜔ℱ̃(𝓍, 0) represents the reliability of the infeasibility of 

the solution (𝓍) for the system of (2) till (4), and 𝜔ℱ̃(𝓍, 1) = 𝑀𝑎𝑥
𝜅,ℓ∈{0,1},

𝑚𝑖𝑛{𝜅,ℓ}=(1)

𝑀𝑖𝑛{𝜔𝑓̃(𝓍, 𝜅), 𝜔ℎ̃(𝓍, ℓ)} =

𝑀𝑖𝑛{𝜔𝑓̃(𝓍, 1), 𝜔ℎ̃(𝓍, 1)}; that is 𝜔ℱ̃(𝓍, 1) represents the reliability of its feasibility. Let us build these functions. 

To do this, consider the three possible options shown below: 

1) Suppose that ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 > 0 ∀𝒾 ∈ ℳ, hence 𝜔𝑓̃(𝓍, 0) = (0), 𝜔𝑓̃(𝓍, 1) = 𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾). Therefore 𝜔ℱ̃(𝓍, 0) =

𝑀𝑎𝑥{ 0,0,𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾), 𝜔ℎ̃(𝓍, 0)}} = 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾), 𝜔ℎ̃(𝓍, 0)}, 𝜔ℱ̃(𝓍, 1) = 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾), 𝜔ℎ̃(𝓍, 1)}. The 

following cases are possible:  

a) If  ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿   ∀𝒿 ∈ 𝒩, then 𝜔ℎ̃(𝓍, 0) = (0), 𝜔ℎ̃(𝓍, 1) = 𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿), 𝜔ℱ̃(𝓍, 0) = 𝑀𝑎𝑥{ 0,0,0} = (0), 

𝜔ℱ̃(𝓍, 1) = 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)}; (12) 

b) If ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿  ∀𝒿 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿) ∧ ∃𝒿 ∈ 𝒩: ∑ 𝓍(𝒾𝒿)𝒾∈ℳ < 𝒷𝒿, then 𝜔ℎ̃(𝓍, 0) =

𝑀𝑎𝑥
𝒿∈𝒩

{𝛿(𝒿)|∑ 𝓍(𝒾𝒿)𝒾∈ℳ < 𝒷𝒿}, 𝜔ℎ̃(𝓍, 1) = 𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿), so 𝜔ℱ̃(𝓍, 0) = 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

{𝛿(𝒿)|∑ 𝓍(𝒾𝒿)𝒾∈ℳ <

𝒷𝒿}}, 𝜔ℱ̃(𝓍, 1) = 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)};   (13) 

c) If ∃𝒿 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿) ∑ 𝓍(𝒾𝒿)𝒾∈ℳ < 𝒷𝒿, then 𝜔ℎ̃(𝓍, 0) = 𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿), 𝜔ℎ̃(𝓍, 1) = 0. Also, we get 𝜔ℱ̃(𝓍, 0) =

𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)}, 𝜔ℱ̃(𝓍, 1) = 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾), 0} = 0. (14) 

2) Assume that ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 > 0  ∀𝒾 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾) ∧ ∃𝒾 ∈ ℳ  ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 0. Either 𝜔𝑓̃(𝓍, 0) =

𝑀𝑎𝑥
𝒾∈ℳ

{𝜇(𝒾)|∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 0}, 𝜔𝑓̃(𝓍, 1) = 𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾). That is why 𝜔ℱ̃(𝓍, 0) = 𝑀𝑎𝑥{𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

{𝜇(𝒾)|∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤

0}, 𝜔ℎ̃(𝓍, 0)}, 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

{𝜇(𝒾)|∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 0}, 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾), 𝜔ℎ̃(𝓍, 0)}}, 𝜔ℱ̃(𝓍, 1) = 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾), 𝜔ℎ̃(𝓍, 1)}. 

The following cases are possible: 

a) If  ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿  ∀𝒿 ∈ 𝒩, then 𝜔ℎ̃(𝓍, 0) = 0, 𝜔ℎ̃(𝓍, 1) = 𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿), 𝜔ℱ̃(𝓍, 0) =

𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

{𝜇(𝒾)|∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 0},𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)}, 𝜔ℱ̃(𝓍, 1) = 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)}.                          (15) 

b) If ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿  ∀𝒿 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿) ∧ ∃𝒿 ∈ 𝒩: ∑ 𝓍(𝒾𝒿)𝒾∈ℳ < 𝒷𝒿, then 𝜔ℎ̃(𝓍, 0) = 𝑀𝑎𝑥
𝒿∈𝒩

{𝛿(𝒿)|∑ 𝓍(𝒾𝒿)𝒾∈ℳ <

𝒷𝒿}, 𝜔ℎ̃(𝓍, 1) = 𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿). Therefore, we get 𝜔ℱ̃(𝓍, 0) = 𝑀𝑎𝑥{𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

{𝜇(𝒾)|∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤
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0},𝑀𝑎𝑥
𝒿∈𝒩

{𝛿(𝒿)|∑ 𝓍(𝒾𝒿)𝒾∈ℳ 𝒷𝒿}},𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

{𝜇(𝒾)|∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤

0},𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)},𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

{𝛿(𝒿)|∑ 𝓍(𝒾𝒿)𝒾∈ℳ 𝒷𝒿}}}, 𝜔ℱ̃(𝓍, 1) 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)};(16) 

c) If ∃𝒿 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿): ∑ 𝓍(𝒾𝒿)𝒾∈ℳ < 𝒷𝒿, then 𝜔ℎ̃(𝓍, 0) = 𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿), 

𝜔ℎ̃(𝓍, 1) = 0, 𝜔ℱ̃(𝓍, 0) = 𝑀𝑎𝑥{𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

{𝜇(𝒾)|∑ 𝓍(𝒾𝒿) ≤ 0𝒿∈𝒩 },𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)},0,𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)}} =

𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)}, 𝜔ℱ̃(𝓍, 1) = 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),0} = 0.         (17) 

3) Let ∃𝒾 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾): ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 0. Then 𝜔𝑓(𝓍, 0) = 𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾), 𝜔𝑓̃(𝓍, 1) = 0. Therefore 𝜔ℱ̃(𝓍, 0) =

𝑚𝑎𝑥{𝑚𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾), 𝜔ℎ̃(𝓍, 0)}, 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾), 𝜔ℎ̃(𝓍, 1)},0}; 𝜔ℱ̃(𝓍, 1) = 𝑀𝑖𝑛{𝜔𝑓̃(𝓍, 1), 𝜔ℎ̃(𝓍, 1)} = 0. (18) There 

are the following cases: 

a) If  ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿  ∀𝒿 ∈ 𝒩, then 𝜔ℎ̃(𝓍, 0) = 0, 𝜔ℎ̃(𝓍, 1) = 𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿), that's why 𝜔ℱ̃(𝓍, 0) =

𝑀𝑎𝑥{ 0,𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)},0} = 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)}; (19)            

b) If  ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿  ∀𝒿 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿) and ∃𝒿 ∈ 𝒩: ∑ 𝓍(𝒾𝒿)𝒾∈ℳ < 𝒷𝒿, then  𝜔ℎ̃(𝓍, 0) =

𝑀𝑎𝑥
𝒿∈𝒩

{𝛿(𝒿)|∑ 𝓍(𝒾𝒿)𝒾∈ℳ < 𝒷𝒿}, 𝜔ℎ̃(𝓍, 1) = 𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿), so 𝜔ℱ̃(𝓍, 0) = 𝑀𝑎𝑥{𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

{𝛿(𝒿)|∑ 𝓍(𝒾𝒿)𝒾∈ℳ <

𝒷𝒿}},𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)},0} = 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)}. (20)                      

c) If  ∃𝒿 ∈ 𝐴𝑟𝑔𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿): ∑ 𝓍(𝒾𝒿)𝒾∈ℳ < 𝒷𝒿, then 𝜔ℎ̃(𝓍, 0) = 𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿), 𝜔ℎ̃(𝓍, 1) = 0. Additionally we get 

𝜔ℱ̃(𝓍, 0) = 𝑀𝑎𝑥{𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)},0,0} = 𝑀𝑖𝑛{𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾),𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿)}.           (21) 

4. Find a balanced solution for TP with FST2 of supply & demand 

When searching for a Balanced Solution (BS), the DM will try to minimize the objective function (1) as well as 

maximize the reliability of objective functions (2) and (3), respectively, of non-participation and participation 

of supply and demand in terms of goods transportation. In other words, the DM faces the following multi-

objective programming problem: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ( 1): (𝑀𝑖𝑛𝑇𝐶)∑ ∑ 𝒸𝒾𝒿𝓍(𝒾𝒿)𝒿∈𝒩𝒾∈ℳ ; 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ( 2): (𝑀𝑎𝑥ℛ)𝜔ℱ̃ (𝑥, 0); 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ( 3): (𝑀𝑎𝑥ℛ)𝜔ℱ̃ (𝑥, 1); 

𝑠. 𝑡𝑜: 𝓍 ∈ 𝒟.       (22) 

Let (𝑊𝑁𝐷𝑂) denote the set of Weakly Non-Dominated Optimal solutions to this problem. Recall that a 

solution 𝓍∗ ≥ 0 is called Slater's optimal solution for a problem of the form (22) if ∄𝓍 ≥ 0, for which the 

following inequalities hold:  

➢ ∑ ∑ 𝒸𝒾𝒿𝓍(𝒾𝒿)𝒿∈𝒩𝒾∈ℳ > ∑ ∑ 𝒸𝒾𝒿𝓍(𝒾𝒿)
∗

𝒿∈𝒩𝒾∈ℳ , 

➢ 𝜔ℱ̃(𝑥, 0) > 𝜔ℱ̃(𝑥
∗, 0), 

➢ 𝜔ℱ̃(𝑥, 1) > 𝜔ℱ̃(𝑥
∗, 1). 

It is pretty clear that the definition of a BS to problem for (1) to (4) should include only solutions from the set 

of 𝑊𝑁𝐷𝑂. These considerations lead to the following definition.  

The general BS to the TP from (1) until (4), with fuzzy sets of supply and demand, will be an FST2 𝒟̃ with the 

MF: 𝜔𝒟̃(𝓍, ℊ) = 𝜔𝒟̃(𝓍, ℊ), 𝓍 ∈ 𝑊𝑁𝐷𝑂: ℊ ∈ 𝒢 = {0,1}  ∧ 𝜔𝒟̃(𝓍, ℊ) = 0, 𝓍 ∉ 𝑊𝑁𝐷𝑂.  

When the DM is interested in a specific BS 𝓍∗, it can be selected from the set of 𝑊𝑁𝐷𝑂 using one or another 

method of multi-objective optimization by solving a problem (22). Then we will call it a BS to the TP for (1) till 

(4) with certainties 𝜔𝑓̃(𝓍, 0) and 𝜔𝑓̃(𝓍, 1), respectively, of non-participation and participation of supply in the 

plan of goods transportation. Let us denote the functions: 

ℛ{𝑑𝑒𝑚𝑎𝑛𝑑}(𝓍) = {
𝑀𝑎𝑥
𝒿∈𝒩

{𝛿(𝒿)|∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≤ 0}; ∃𝒿 ∈ 𝒩: ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≤ 0,

(0);  ∀𝒿 ∈ 𝒩: ∑ 𝓍(𝒾𝒿)𝒾∈ℳ > 0.
 (23) 
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ℛ{𝑠𝑢𝑝𝑝𝑙𝑦}(𝓍) = {
𝑀𝑎𝑥
𝒾∈ℳ

{𝜇(𝒾)|∑ 𝓍(𝒾𝒿)𝒿∈𝒩 < 𝑏𝑗}; ∃𝒾 ∈ ℳ: ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 < 𝑏𝑗 ,

(0); ∀𝒾 ∈ ℳ: ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≥ 𝑏𝑗 .
 (24) 

We can allow denoting that {ℐ∗} = 𝐴𝑟𝑔𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾)  ∧  {𝒥∗} = 𝐴𝑟𝑔𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿). Multi-objective programming problem 

(22) can be simplified if and only if the MFs 𝜇(𝒾) of the fuzzy set of indices ℳ̃ ⊆ ℳ of suppliers intending to 

release goods and 𝛿(𝒿) of the fuzzy set of indices 𝒩̃ ⊆ 𝒩 of consumers ready to receive goods, are standard, 

i.e., 𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾) = 1 and 𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿) = 1, then for each given value of the parameter ℛ ∈ (0,1], at which the problem 

(25) and (26) has an optimal solution, this solution will be balanced for the TP of (1) until (4) with the 

reliability of the participation of supply in the plan of transportation of goods equal to (one), and the reliability 

of their non-participation is not less than ℛ, i.e., 

(𝑀𝑖𝑛𝑇𝐶)∑ ∑ 𝒸𝒾𝒿𝓍(𝒾𝒿)𝒿∈𝒩𝒾∈ℳ , (𝑀𝑎𝑥){ℛ {𝑑𝑒𝑚𝑎𝑛𝑑}(𝓍), ℛ {𝑠𝑢𝑝𝑝𝑙𝑦}(𝓍)} ≥ ℛ, 𝓍 ∈ 𝒟, (25) 

∑ 𝓍(𝒾𝒿)𝒿∈𝒩 > 0  ∀𝒾 ∈ ℐ∗, ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿  ∀𝒿 ∈ 𝒥
∗.        (26) 

Let be now see how we can simplify the solution to the problem (25) and (26). Indicate that ℳℛ = {𝒾 ∈

ℳ|𝜇(𝒾) ≥ ℛ} and 𝒩ℛ = {𝒿 ∈ 𝒩|𝛿(𝒿) ≥ ℛ} sets of supply and demand indices, respectively, have degrees of 

membership in the corresponding fuzzy sets ℳ̃ and 𝒩̃ of at least ℛ ∈ (0,1]. Thus, the problem (25) and (26) 

can be written as follows: 

𝑀𝑖𝑛
{𝑣∈ℳℛ ,𝑤∈𝒩ℛ}

(𝑀𝑖𝑛𝑇𝐶)∑ ∑ 𝒸𝒾𝒿𝓍(𝒾𝒿)𝒿∈𝒩𝒾∈ℳ ;  𝓍 ∈ 𝒟; 

 ∑ 𝓍(𝑣𝒿)𝒿∈𝒩 ≤ 0, ∑ 𝓍(𝒾𝑤)𝒾∈ℳ < 𝒷𝒿; (27) 

 ∑ 𝓍(𝑣𝒿)𝒿∈𝒩 > 0  ∀𝒾 ∈ ℐ∗, ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿  ∀𝒿 ∈ 𝒥
∗. (28) 

Since 𝑀𝑎𝑥
𝒾∈ℳ

𝜇(𝒾) = 1 and 𝑀𝑎𝑥
𝒿∈𝒩

𝛿(𝒿) = 1, it is evident that for (ℛ = 1) ∀ 𝑣 ∈ ℐ∗, 𝑤 ∈ 𝒥∗, constraints (27) and (28) 

will be a priori inconsistent. Therefore, we can obtain the following final result from the theorem above.  

I.Signify by ℳ̄ℛ = {𝒾 ∈ ℳ|1 > 𝜇(𝒾) ≥ ℛ} and 𝑁̄ℛ = {𝒿 ∈ 𝒩|1 > 𝛿(𝒿) ≥ ℛ} the sets of supply and demand 

indices, which have a certainty of membership degrees, not less than ℛ ∈ (0,1), but not equal to one. 

II.If the MFs of 𝜇(𝒾), the fuzzy set of indices ℳ̃ ⊆ ℳ of supply who intend to release goods, and 𝛿(𝒿), the fuzzy 

set of indices 𝒩̃ ⊆ 𝒩 of demand ready to receive goods, are typical. Then for each given value of the parameter 

ℛ ∈ (0,1), for which the problem has an optimal solution. It will be BS for TP from (1) to (4), with the 

reliability of the participation of supply in the plan for transportation goods equal to one. Furthermore, the 

reliability of their non-participation is at least ℛ. 

𝑀𝑖𝑛
{𝑣∈ℳ̄ℛ ,𝑤∈𝒩̄ℛ}

(𝑀𝑖𝑛𝑇𝐶)∑ ∑ 𝒸𝒾𝒿𝓍(𝒾𝒿)𝒿∈𝒩𝒾∈ℳ ; 𝓍 ∈ 𝒟; 

∑ 𝓍(𝑣𝒿)𝒿∈𝒩 ≤ 0; ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 > 0; ∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 𝒶𝒾  ∀𝒾 ∈ ℐ
∗;          (29) 

∑ 𝓍(𝒾𝑤)𝒾∈ℳ < 𝒷𝑤; ∑ 𝓍(𝒾𝒿)𝒾∈ℳ ≥ 𝒷𝒿  ∀𝒿 ∈ 𝒥
∗; 𝓍(𝒾𝒿) ≥ 0, 𝒾 ∈ ℳ, 𝒿 ∈ 𝒩.         (30) 

Based on what was stated in the previous theorem and its subsequent properties. It is now possible to propose 

a new method consisting of five steps, to obtain the optimal BS of a TP with a fuzzy set of supply and demand 

indices that finally satisfies the DM, as displayed below: 

1) Choose the number of ℛ{𝑚𝑎𝑥} ∈ (0,1), which according to (Ⅰ) and (Ⅱ), characterizes the maximum 

reliability for the DM of the infeasibility of the goods transportation plan. 

2) Compose a set of supply ℳℛ = {(𝒾) ∈ ℐ|𝜇(𝒾) ≤ ℛ}, which have a membership degree of the fuzzy set of 

supply indices not greater than ℛ{𝑚𝑎𝑥} ∈ (0,1). 

3) For indices, ℳℛ = {(𝒿) ∈ 𝒥|𝛿(𝒿) ≤ ℛ} constructs the set of supply with a degree of membership to the 

fuzzy set of supply indices not greater than ℛ {𝑚𝑎𝑥} ∈ (0,1). 

4) Minimizing the total cost of transportation 𝓏(𝓍) = ∑ ∑ 𝒸𝒾𝒿𝓍(𝒾𝒿)𝒿∈𝒩{𝑑𝑒𝑚𝑎𝑛𝑑}𝒾∈ℳ{𝑠𝑢𝑝𝑝𝑙𝑦}  for each supply and 

demand with index (𝑘, 𝑙) ∈ ℳℛ on the set of feasible transportation plans Ψ{𝑠𝑢𝑝𝑝𝑙𝑦,𝑑𝑒𝑚𝑎𝑛𝑑} under additional 
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constraints: ∑ 𝓍(𝒾𝒿)𝒿∈𝒩𝒾
> 0  ∀𝒾 ∈ {ℐ∗\ℳℛ} and ∑ 𝓍(𝒾𝒿)𝒾∈ℳ𝒿

≥ 𝒷𝒿  ∀𝒿 ∈ {𝒥
∗\ℳℛ} on supply who release goods 

and on active demand respectively. Moreover, two additional constraints: ∑ 𝓍(𝑘𝒿)
𝑙

𝒿∈𝒩𝑘
≤ 0 and ∑ 𝓍(𝒾𝒿)

𝑙
𝒾∈ℳ𝑘

<

𝒷𝑘
𝑙 , which determines the zero goods of products from the supply and associated with an inactive demand 

respectively, with index (𝑘, 𝑙), i.e., to solve the problem: 

(𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
Ψ(𝑠𝑢𝑝𝑝𝑙𝑦,𝑑𝑒𝑚𝑎𝑛𝑑)

) 𝓏(𝓍) = ∑ ∑ 𝒸𝒾𝒿𝓍(𝒾𝒿)𝒿∈𝒩𝒾∈ℳ ; 

∑ 𝓍(𝒾𝒿)𝒿∈𝒩 ≤ 𝒶𝒾, 𝒾 ∈ ℳ; ∑ 𝓍(𝑘𝒿)
𝑙

𝒿∈𝒩𝑘
≤ 0; ∑ 𝓍(𝒾𝒿)𝒿∈𝒩𝒾

> 0  ∀𝒾 ∈ {ℐ∗\ℳℛ};    (31) 

∑ 𝓍(𝒾𝒿)
𝑙

𝒾∈ℳ𝑘
< 𝒷𝑘

𝑙 ; ∑ 𝓍(𝒾𝒿)𝒾∈ℳ𝒿
≥ 𝒷𝒿  ∀𝒿 ∈ {𝒥

∗\ℳℛ}; 𝓍(𝒾𝒿) ≥ 0, 𝒾 ∈ ℳ, 𝒿 ∈ 𝒩.   (32) 

(We indicate its solution by 𝓍(𝑘,𝑙)). 

5) From the obtained solutions 𝓍(𝑘,𝑙), ∴ (𝑘, 𝑙) ∈ ℳℛ, choose (𝓍̄) the record one in terms of the value of the 

objective function, i.e., 𝓍̄ = 𝐴𝑟𝑔 Min
{(𝑘,𝑙)∈ℳℛ}

𝓏(𝓍(𝑘,𝑙)). 

5. Illustrative numerical example:  

Consider a single-product TP as described below: 

(𝑀𝑖𝑛𝑇𝐶) 𝓏 (𝑥11, … , 𝑥67) =

5𝑥(1,1) + 8𝑥(1,2) + 7𝑥(1,3) + 3𝑥(1,4) + 3𝑥(1,5) + 9𝑥(1,6) + 5𝑥(1,7) +

+8𝑥(2,1) + 4𝑥(2,2) + 2𝑥(2,3) + 8𝑥(2,4) + 7𝑥(2,5) + 10𝑥(2,6) + 16𝑥(2,7) +

+10𝑥(3,1) + 2𝑥(3,2) + 6𝑥(3,3) + 3𝑥(3,4) + 9𝑥(3,5) + 10𝑥(3,6) + 18𝑥(3,7) +

+6𝑥(4,1) + 6𝑥(4,2) + 2𝑥(4,3) + 9𝑥(4,4) + 12𝑥(4,5) + 8𝑥(4,6) + 10𝑥(4,7) +

+3𝑥(5,1) + 6𝑥(5,2) + 5𝑥(5,3) + 7𝑥(5,4) + 4𝑥(5,5) + 10𝑥(5,6) + 8𝑥(5,7) +

+9𝑥(6,1) + 8𝑥(6,2) + 10𝑥(6,3) + 6𝑥(6,4) + 14𝑥(6,5) + 6𝑥(6,6) + 5𝑥(6,7) }
 
 
 

 
 
 

 (1) 

Subject to constraints of supply: 

𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 + 𝑥15 + 𝑥16 + 𝑥17 ≤ 18000,
𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 + 𝑥26 + 𝑥27 ≤ 10000,
𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 + 𝑥35 + 𝑥36 + 𝑥37 ≤ 6000,
𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 + 𝑥45 + 𝑥46 + 𝑥47 ≤ 12000,
𝑥51 + 𝑥52 + 𝑥53 + 𝑥54 + 𝑥55 + 𝑥56 + 𝑥57 ≤ 8000,
𝑥61 + 𝑥62 + 𝑥63 + 𝑥64 + 𝑥65 + 𝑥66 + 𝑥67 ≤ 6000; }

 
 

 
 

 (2) 

Subject to constraints of demand: 

𝑥11 + 𝑥21 + 𝑥31 + 𝑥41 + 𝑥51 + 𝑥61 ≥ 11000,
𝑥12 + 𝑥22 + 𝑥32 + 𝑥42 + 𝑥52 + 𝑥62 ≥ 12000,
𝑥13 + 𝑥23 + 𝑥33 + 𝑥43 + 𝑥53 + 𝑥63 ≥ 8000,
𝑥14 + 𝑥24 + 𝑥34 + 𝑥44 + 𝑥54 + 𝑥64 ≥ 10000,
𝑥15 + 𝑥25 + 𝑥35 + 𝑥45 + 𝑥55 + 𝑥65 ≥ 7000,
𝑥16 + 𝑥26 + 𝑥36 + 𝑥46 + 𝑥56 + 𝑥66 ≥ 15000,
𝑥17 + 𝑥27 + 𝑥37 + 𝑥47 + 𝑥57 + 𝑥67 ≥ 5000; }

  
 

  
 

 (3) 

Non-negativity of variables: 𝓍(𝒾𝒿) ≥ 0; (𝒾 = 1,2,⋯ ,6); (𝒿 = 1,2,⋯ ,7). 

Let us denote: ℐ = {1,2,3,4,5,6} is the set of supply, and  𝒥 = {1,2,3,4,5,6,7} represents the demand set. Suppose 

that the DM cannot clearly say which supply will exactly release products but can only set a fuzzy set {ℐ̃} with 

MFs: 𝜇(1) = 0.65;  𝜇(2) = 0.90; 𝜇(3) = 0.35;  𝜇(4) = 1.0; 𝜇(5) = 0.70; 𝜇(6) = 0.40. Furthermore, suppose that the 

DM cannot clearly say which demand will be precisely active (accept products in the stated amount) but can 

only set a fuzzy set {𝒥̃}  with MFs: 𝛿(1) = 0.60;  𝛿(2) = 0.80; 𝛿(3) = 0.75;  𝛿(4) = 1.0; 𝛿(5) = 0.90; 𝛿(6) = 0.85; 𝛿(7) =

1.0. Let's now perform the procedure of choosing a BS. 

1. Choosing the maximum reliability for the DM of the infeasibility of the transportation plan, for 

example: ℛ{𝑚𝑎𝑥} = (
1

2
). 
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2. Then the set of indices of supply and demand, which have a degree of membership in the fuzzy set {ℐ̃} 

and {𝒥̃} not more than ℛ {𝑚𝑎𝑥} = (
1

2
), will take the form ℳℛ(𝒾𝒿) = {(𝒾) ∈ ℐ |𝜇(𝒾) ≤ (

1

2
)} = {1,3,5,6} ∧ { (𝒿) ∈

𝒥 |𝛿(𝒿) ≤ (
1

2
)} = {1}.  

a. For {(𝒾) = 1; (𝒿) = 1} we solve the TP as follows: 

(𝑀𝑖𝑛𝑇𝐶) 𝓏 (𝑥11, … , 𝑥67) = 5𝑥(1,1) + 8𝑥(1,2) + 7𝑥(1,3) + 3𝑥(1,4) + 3𝑥(1,5) + 9𝑥(1,6) + 5𝑥(1,7) +

         + 8𝑥(2,1) + 4𝑥(2,2) + 2𝑥(2,3) + 8𝑥(2,4) + 7𝑥(2,5) + 10𝑥(2,6) + 16𝑥(2,7) +

         + 10𝑥(3,1) + 2𝑥(3,2) + 6𝑥(3,3) + 3𝑥(3,4) + 9𝑥(3,5) + 10𝑥(3,6) + 18𝑥(3,7) +

+6𝑥(4,1) + 6𝑥(4,2) + 2𝑥(4,3) + 9𝑥(4,4) + 12𝑥(4,5) + 8𝑥(4,6) + 10𝑥(4,7) +

+3𝑥(5,1) + 6𝑥(5,2) + 5𝑥(5,3) + 7𝑥(5,4) + 4𝑥(5,5) + 10𝑥(5,6) + 8𝑥(5,7) +

+9𝑥(6,1) + 8𝑥(6,2) + 10𝑥(6,3) + 6𝑥(6,4) + 14𝑥(6,5) + 6𝑥(6,6) + 5𝑥(6,7) }
  
 

  
 

 

Subject to constraints of supply: 

𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 + 𝑥15 + 𝑥16 + 𝑥17 ≤ 18000,
𝑥(2,1) + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 + 𝑥26 + 𝑥27 ≤ 10000,

𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 + 𝑥35 + 𝑥36 + 𝑥37 ≤ 6000,
𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 + 𝑥45 + 𝑥46 + 𝑥47 ≤ 12000,
𝑥51 + 𝑥52 + 𝑥53 + 𝑥54 + 𝑥55 + 𝑥56 + 𝑥57 ≤ 8000,
𝑥61 + 𝑥62 + 𝑥63 + 𝑥64 + 𝑥65 + 𝑥66 + 𝑥67 ≤ 6000,
𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 + 𝑥26 + 𝑥27 > 0.000,
𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 + 𝑥45 + 𝑥46 + 𝑥47 > 0.000,
𝑥(1,1) + 𝑥12 + 𝑥13 + 𝑥14 + 𝑥15 + 𝑥16 + 𝑥17 ≤ 0.000; }

 
 
 
 

 
 
 
 

 (4)  

Subject to constraints of demand: 

𝑥12 + 𝑥22 + 𝑥32 + 𝑥42 + 𝑥52 + 𝑥62 ≥ 12000,
𝑥13 + 𝑥23 + 𝑥33 + 𝑥43 + 𝑥53 + 𝑥63 ≥ 8000,
𝑥14 + 𝑥24 + 𝑥34 + 𝑥44 + 𝑥54 + 𝑥64 ≥ 10000,
𝑥15 + 𝑥25 + 𝑥35 + 𝑥45 + 𝑥55 + 𝑥65 ≥ 7000,
𝑥16 + 𝑥26 + 𝑥36 + 𝑥46 + 𝑥56 + 𝑥66 ≥ 15000,
𝑥17 + 𝑥27 + 𝑥37 + 𝑥47 + 𝑥57 + 𝑥67 ≥ 5000,
𝑥11 + 𝑥21 + 𝑥31 + 𝑥41 + 𝑥51 + 𝑥61 < 11000;}

  
 

  
 

 (5) 

Subject to Non-negativity of variables: 𝓍(𝒾𝒿) ≥ 0; (𝒾 = 1,2,⋯ ,6); (𝒿 = 1,2,⋯ ,7). 

The optimal solution of this problem: 𝑥(2,2)
{𝒾=1,𝒿=1}

= 10000, 𝑥(3,4)
{1,1} = 6000, 𝑥(4,2)

{1,1} = 2000, 𝑥(4,6)
{1,1} = 4000, 𝑥(5,4)

{1,1} =

1000, 𝑥(5,5)
{1,1} = 7000, 𝑥(4,6)

{1,1} = 3000, 𝑥(6,6)
{1,1} = 11000, all other variables have the value of zero. The optimal value of 

the objective function: 𝓏(𝑀𝑖𝑛𝑇𝐶)𝑥
{𝒾=1,𝒿=1} = 221000. 

b. For {(𝒾) = 3; (𝒿) = 1} we solve the TP as follows: 

(𝑀𝑖𝑛𝑇𝐶) 𝓏 (𝑥11, … , 𝑥67) = 5𝑥(1,1) + 8𝑥(1,2) + 7𝑥(1,3) + 3𝑥(1,4) + 3𝑥(1,5) + 9𝑥(1,6) + 5𝑥(1,7) +

         + 8𝑥(2,1) + 4𝑥(2,2) + 2𝑥(2,3) + 8𝑥(2,4) + 7𝑥(2,5) + 10𝑥(2,6) + 16𝑥(2,7) +

         + 10𝑥(3,1) + 2𝑥(3,2) + 6𝑥(3,3) + 3𝑥(3,4) + 9𝑥(3,5) + 10𝑥(3,6) + 18𝑥(3,7) +

+6𝑥(4,1) + 6𝑥(4,2) + 2𝑥(4,3) + 9𝑥(4,4) + 12𝑥(4,5) + 8𝑥(4,6) + 10𝑥(4,7) +

+3𝑥(5,1) + 6𝑥(5,2) + 5𝑥(5,3) + 7𝑥(5,4) + 4𝑥(5,5) + 10𝑥(5,6) + 8𝑥(5,7) +

+9𝑥(6,1) + 8𝑥(6,2) + 10𝑥(6,3) + 6𝑥(6,4) + 14𝑥(6,5) + 6𝑥(6,6) + 5𝑥(6,7) }
  
 

  
 

 

Subject to constraints of supply: 
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𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 + 𝑥15 + 𝑥16 + 𝑥17 ≤ 18000,
𝑥(2,1) + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 + 𝑥26 + 𝑥27 ≤ 10000,

𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 + 𝑥35 + 𝑥36 + 𝑥37 ≤ 6000,
𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 + 𝑥45 + 𝑥46 + 𝑥47 ≤ 12000,
𝑥51 + 𝑥52 + 𝑥53 + 𝑥54 + 𝑥55 + 𝑥56 + 𝑥57 ≤ 8000,
𝑥61 + 𝑥62 + 𝑥63 + 𝑥64 + 𝑥65 + 𝑥66 + 𝑥67 ≤ 6000,
𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 + 𝑥26 + 𝑥27 > 0.000,
𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 + 𝑥45 + 𝑥46 + 𝑥47 > 0.000,
𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 + 𝑥35 + 𝑥36 + 𝑥37 ≤ 0.000; }

 
 
 
 

 
 
 
 

 (6) 

Subject to constraints of demand: 

𝑥12 + 𝑥22 + 𝑥32 + 𝑥42 + 𝑥52 + 𝑥62 ≥ 12000,
𝑥13 + 𝑥23 + 𝑥33 + 𝑥43 + 𝑥53 + 𝑥63 ≥ 8000,
𝑥14 + 𝑥24 + 𝑥34 + 𝑥44 + 𝑥54 + 𝑥64 ≥ 10000,
𝑥15 + 𝑥25 + 𝑥35 + 𝑥45 + 𝑥55 + 𝑥65 ≥ 7000,
𝑥16 + 𝑥26 + 𝑥36 + 𝑥46 + 𝑥56 + 𝑥66 ≥ 15000,
𝑥17 + 𝑥27 + 𝑥37 + 𝑥47 + 𝑥57 + 𝑥67 ≥ 5000,
𝑥11 + 𝑥21 + 𝑥31 + 𝑥41 + 𝑥51 + 𝑥61 < 11000;}

  
 

  
 

 (5) 

Subject to Non-negativity of variables: 𝓍(𝒾𝒿) ≥ 0; (𝒾 = 1,2,⋯ ,6); (𝒿 = 1,2,⋯ ,7). 

The optimal solution to this problem: 𝑥(1,4)
{𝒾=3,𝒿=1}

= 10000, 𝑥(1,5)
{3,1} = 7000, 𝑥(2,2)

{3,1} = 10000, 𝑥(4,2)
{3,1} = 2000, 𝑥(4,6)

{3,1} =

1000, 𝑥(6,6)
{3,1} = 14000, all other variables have a value of zero. The optimal value of the objective function: 

𝓏(𝑀𝑖𝑛𝑇𝐶)𝑥
{𝒾=3,𝒿=1} = 195000.     

c. For {(𝒾) = 5; (𝒿) = 1} we solve the TP as follows: 

(𝑀𝑖𝑛𝑇𝐶) 𝓏 (𝑥11, … , 𝑥67) = 5𝑥(1,1) + 8𝑥(1,2) + 7𝑥(1,3) + 3𝑥(1,4) + 3𝑥(1,5) + 9𝑥(1,6) + 5𝑥(1,7) +

         + 8𝑥(2,1) + 4𝑥(2,2) + 2𝑥(2,3) + 8𝑥(2,4) + 7𝑥(2,5) + 10𝑥(2,6) + 16𝑥(2,7) +

         + 10𝑥(3,1) + 2𝑥(3,2) + 6𝑥(3,3) + 3𝑥(3,4) + 9𝑥(3,5) + 10𝑥(3,6) + 18𝑥(3,7) +

+6𝑥(4,1) + 6𝑥(4,2) + 2𝑥(4,3) + 9𝑥(4,4) + 12𝑥(4,5) + 8𝑥(4,6) + 10𝑥(4,7) +

+3𝑥(5,1) + 6𝑥(5,2) + 5𝑥(5,3) + 7𝑥(5,4) + 4𝑥(5,5) + 10𝑥(5,6) + 8𝑥(5,7) +

+9𝑥(6,1) + 8𝑥(6,2) + 10𝑥(6,3) + 6𝑥(6,4) + 14𝑥(6,5) + 6𝑥(6,6) + 5𝑥(6,7) }
  
 

  
 

 

Subject to constraints of supply: 

𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 + 𝑥15 + 𝑥16 + 𝑥17 ≤ 18000,
𝑥(2,1) + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 + 𝑥26 + 𝑥27 ≤ 10000,

𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 + 𝑥35 + 𝑥36 + 𝑥37 ≤ 6000,
𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 + 𝑥45 + 𝑥46 + 𝑥47 ≤ 12000,
𝑥51 + 𝑥52 + 𝑥53 + 𝑥54 + 𝑥55 + 𝑥56 + 𝑥57 ≤ 8000,
𝑥61 + 𝑥62 + 𝑥63 + 𝑥64 + 𝑥65 + 𝑥66 + 𝑥67 ≤ 6000,
𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 + 𝑥26 + 𝑥27 > 0.000,
𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 + 𝑥45 + 𝑥46 + 𝑥47 > 0.000,
𝑥51 + 𝑥52 + 𝑥53 + 𝑥54 + 𝑥55 + 𝑥56 + 𝑥57 ≤ 0.000; }

 
 
 
 

 
 
 
 

 (7)Subject to constraints of demand: 

𝑥12 + 𝑥22 + 𝑥32 + 𝑥42 + 𝑥52 + 𝑥62 ≥ 12000,
𝑥13 + 𝑥23 + 𝑥33 + 𝑥43 + 𝑥53 + 𝑥63 ≥ 8000,
𝑥14 + 𝑥24 + 𝑥34 + 𝑥44 + 𝑥54 + 𝑥64 ≥ 10000,
𝑥15 + 𝑥25 + 𝑥35 + 𝑥45 + 𝑥55 + 𝑥65 ≥ 7000,
𝑥16 + 𝑥26 + 𝑥36 + 𝑥46 + 𝑥56 + 𝑥66 ≥ 15000,
𝑥17 + 𝑥27 + 𝑥37 + 𝑥47 + 𝑥57 + 𝑥67 ≥ 5000,
𝑥11 + 𝑥21 + 𝑥31 + 𝑥41 + 𝑥51 + 𝑥61 < 11000;}

  
 

  
 

 (5) 

Subject to Non-negativity of variables: 𝓍(𝒾𝒿) ≥ 0; (𝒾 = 1,2,⋯ ,6); (𝒿 = 1,2,⋯ ,7). 
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The optimal solution for this problem is: 𝑥(1,4)
{𝒾=5,𝒿=1}

= 10000, 𝑥(1,5)
{5,1} = 7000, 𝑥(2,2)

{5,1} = 6000, 𝑥(3,2)
{5,1} = 6000, 𝑥(4,6)

{5,1} =

1000, 𝑥(6,6)
{5,1} = 14000, all other variables have zero value, and the optimal value of the objective function is: 

𝓏(𝑀𝑖𝑛𝑇𝐶)𝑥
{𝒾=5,𝒿=1} = 179000. 

d. For {(𝒾) = 6; (𝒿) = 1} we solve the TP as follows: 

(𝑀𝑖𝑛𝑇𝐶) 𝓏 (𝑥11, … , 𝑥67) = 5𝑥(1,1) + 8𝑥(1,2) + 7𝑥(1,3) + 3𝑥(1,4) + 3𝑥(1,5) + 9𝑥(1,6) + 5𝑥(1,7) +

         + 8𝑥(2,1) + 4𝑥(2,2) + 2𝑥(2,3) + 8𝑥(2,4) + 7𝑥(2,5) + 10𝑥(2,6) + 16𝑥(2,7) +

         + 10𝑥(3,1) + 2𝑥(3,2) + 6𝑥(3,3) + 3𝑥(3,4) + 9𝑥(3,5) + 10𝑥(3,6) + 18𝑥(3,7) +

+6𝑥(4,1) + 6𝑥(4,2) + 2𝑥(4,3) + 9𝑥(4,4) + 12𝑥(4,5) + 8𝑥(4,6) + 10𝑥(4,7) +

+3𝑥(5,1) + 6𝑥(5,2) + 5𝑥(5,3) + 7𝑥(5,4) + 4𝑥(5,5) + 10𝑥(5,6) + 8𝑥(5,7) +

+9𝑥(6,1) + 8𝑥(6,2) + 10𝑥(6,3) + 6𝑥(6,4) + 14𝑥(6,5) + 6𝑥(6,6) + 5𝑥(6,7) }
  
 

  
 

 

Subject to constraints of supply: 

𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 + 𝑥15 + 𝑥16 + 𝑥17 ≤ 18000,
𝑥(2,1) + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 + 𝑥26 + 𝑥27 ≤ 10000,

𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 + 𝑥35 + 𝑥36 + 𝑥37 ≤ 6000,
𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 + 𝑥45 + 𝑥46 + 𝑥47 ≤ 12000,
𝑥51 + 𝑥52 + 𝑥53 + 𝑥54 + 𝑥55 + 𝑥56 + 𝑥57 ≤ 8000,
𝑥61 + 𝑥62 + 𝑥63 + 𝑥64 + 𝑥65 + 𝑥66 + 𝑥67 ≤ 6000,
𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 + 𝑥26 + 𝑥27 > 0.000,
𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 + 𝑥45 + 𝑥46 + 𝑥47 > 0.000,
𝑥61 + 𝑥62 + 𝑥63 + 𝑥64 + 𝑥65 + 𝑥66 + 𝑥67 ≤ 0.000; }

 
 
 
 

 
 
 
 

 (8) 

Subject to constraints of demand: 

𝑥12 + 𝑥22 + 𝑥32 + 𝑥42 + 𝑥52 + 𝑥62 ≥ 12000,
𝑥13 + 𝑥23 + 𝑥33 + 𝑥43 + 𝑥53 + 𝑥63 ≥ 8000,
𝑥14 + 𝑥24 + 𝑥34 + 𝑥44 + 𝑥54 + 𝑥64 ≥ 10000,
𝑥15 + 𝑥25 + 𝑥35 + 𝑥45 + 𝑥55 + 𝑥65 ≥ 7000,
𝑥16 + 𝑥26 + 𝑥36 + 𝑥46 + 𝑥56 + 𝑥66 ≥ 15000,
𝑥17 + 𝑥27 + 𝑥37 + 𝑥47 + 𝑥57 + 𝑥67 ≥ 5000,
𝑥11 + 𝑥21 + 𝑥31 + 𝑥41 + 𝑥51 + 𝑥61 < 11000;}

  
 

  
 

 (5) 

Subject to Non-negativity of variables: 𝓍(𝒾𝒿) ≥ 0; (𝒾 = 1,2,⋯ ,6); (𝒿 = 1,2,⋯ ,7). 

RESULTS 

The optimal solution of this problem: 𝑥(1,4)
{𝒾=6,𝒿=1}

= 10000, 𝑥(1,5)
{6,1} = 7000, 𝑥(1,6)

{6,1} = 1000, 𝑥(2,2)
{6,1} = 6000, 𝑥(2,6)

{6,1} =

2000, 𝑥(3,2)
{6,1} = 6000, 𝑥(4,6)

{6,1} = 12000,  all other variables have a value of zero. The optimal value of the objective 

function is: 𝓏(𝑀𝑖𝑛𝑇𝐶)𝑥
{𝒾=6,𝒿=1} = 212000. Since 𝑥{𝒾

∗=6,𝒿∗=1} has the smallest value of the objective function: 

𝓏(𝑀𝑖𝑛𝑇𝐶)
∗ 𝑥{𝒾

∗=6,𝒿∗=1} = 212000, it will be the solution to the problem with the reliability of the feasibility of the 

obtained solution equal to one, and the reliability of infeasibility is not more than (
1

2
). 

CONCLUSION 

In conclusion, it should be noted that the proposed method extends the scope of fuzzy mathematical 

programming to the case of a transportation problem of linear programming with a fuzzy set of type-2 for 

supply and demand. The new method showed its effectiveness in optimal decision-making by obtaining a 

balanced solution with a fuzzy environment for supply and demand indexes for the transportation problem. 

Furthermore, it can provide a new approach to solving other optimization problem formulations under fuzzy 

information. 
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