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Emergency vehicles (EVs) must move through areas with mixed traffic as fast as they can in order 

to deliver aid in a timely manner. The dynamic and unpredictable nature of traffic makes this a 

difficult task. In some bottleneck situations, such as highway ramping and intersections, rein-

forcement learning (RL) has been used to simulate traffic and improve EV navigation. However, 

the complexity of real-world traffic environments is not fully captured by RL-based simulations, 

which are frequently restricted to a small number of entities. Our paper proposes a novel method 

to simulate EV navigation in mixed-traffic environments using SUMO simulation that utilizes a 

graph neural network (GNN) algorithm called Graph SAGE to learn node representations or the 

representations of the relationships between nodes in a graph through training, and a custom 

action policy function that uses the link states that we predict using Graph SAGE to determine 

the EVs' next course of action and makes decisions about lane changes, speed adjustments, and 

acceleration based on the predicted link states, vehicle types, and relative positions of vehicles. 

We demonstrate that, when compared to baseline approaches, our approach can significantly 

improve the navigation efficiency of EVs by achieving better speeds and reducing overall and 

emergency waiting times. Our findings demonstrate how well graphs model and simulate intri-

cate traffic situations. 

Keywords: GNN, GraphSAGE, mixed traffic environment, custom action, SUMO simulation, 

Dynamic Graphs 

 

1 INTRODUCTION 

The integration of autonomous vehicles (AVs) into our traffic networks is happening quite quickly. Although com-

pletely autonomous driving is still quite a long way away, in the near future, traffic will be composed of both human-

driven and autonomous vehicles. The unpredictable behavior of other drivers, the restricted sensor range, and the 

intricate traffic networks present a variety of difficulties for emergency vehicles (EVs) operating in this mixed-traffic 

environment. In situations where there is mixed traffic, EV navigation must be both safe and effective in order to 

quickly assist individuals in need. However, because traffic is dynamic and complex, this task is difficult.  

Learning representations of nodes in a graph is possible with the use of machine learning models called graph neural 

networks (GNNs). The efficacy of GNNs has been demonstrated in numerous traffic network-related tasks, including 

congestion prediction and traffic forecasting [1,6,12,14,16,17,18]. As well as learning representations of EVs that cap-

ture their objectives and current state, GNNs can be used to model the traffic network's overall state. Equipped with 

this data, an action policy function that is comprehensive in nature can be developed to assist EVs in safely and 

efficiently navigating mixed traffic environments.  

An innovative method that uses GNNs for efficient EV navigation in mixed-traffic environments has been proposed 

in this paper. Our method tackles the problem of sensor failures in real-life situations by utilizing GraphSAGE for 

link prediction. Additionally, we create a unique action policy function that improves upon the computational limi-

tations of Reinforcement learning-based action systems [2]. Our function considers the EV's current condition as 
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well as the types of vehicles in the network and the traffic network's overall state. We assess our suggested method 

on the generated environment and demonstrate that, in terms of both navigation efficiency and safety, it performs 

noticeably better than baseline methods. Our paper's key objective and contribution lies in its novel system for effi-

cient and safe EV navigation in mixed traffic environments utilizing GraphSAGE and a custom action policy function. 

2 RELATED WORK 

2.1 Simulation Environment 

A diverse range of simulation environments has been employed to assess and validate autonomous driving systems 

in mixed-traffic environments. The most prevalent choice is the SUMO platform [1,2,3,4,9], which provides a realistic 

traffic simulation framework for modeling various road networks and the interaction between autonomous and hu-

man-driven vehicles. Additionally, the CARLA simulation [15] has been used to train and evaluate the DiGNet system, 

offering high-fidelity scenarios across complex maps, including urban, rural, and highway environments.  

The robustness and generalizability of the suggested autonomous driving systems are greatly enhanced by the versa-

tility and depth of these simulation platforms. However, rather than concentrating on particular use cases, the ma-

jority of research studies currently in existence assess the overall performance of autonomous driving systems. The 

lack of research in this area restricts the development and assessment of customized solutions for particular traffic 

situations, like emergency vehicle navigation. 

2.2 Graph Representation and GNNs 

Graph representation and the application of Graph Neural Networks (GNN) emerge as pivotal elements in enhancing 

decision-making for autonomous vehicles. Several papers leverage graph-based models to represent vehicle interac-

tions and properties. In [1], every vehicle is depicted as a node, and interactions as edges in an undirected network, 

forming the basis for the proposed modular framework's state space. In [3], the Graphic Convolution Q network 

(GCQ) integrates Deep Q Network (DQN) and Graph Convolutional Neural Network (GCN) to facilitate cooperative 

lane change decisions, using graph-based techniques to aggregate collaborative sensing data. The adoption of GNN 

is further exemplified in [5,6,11,13,15], where graph structures capture spatial and temporal relationships among 

vehicles, enabling efficient decision-making in various cooperative and mixed-traffic scenarios. These approaches 

underscore the efficacy of graph-based representations and GNN architectures in modeling complex interactions and 

improving the decision-making capabilities of autonomous vehicles. 

2.3 Action Policy and outcome 

The proposed methodologies in the surveyed papers exhibit a variety of action policies designed to optimize autono-

mous vehicle decision-making. Reinforcement Learning (RL) algorithms [10,21], such as Deep Q-Learning [3,7,8,19], 

Curriculum through Self-Play [2], and Policy-based training methods [9,13], are recurrent themes. The utilization of 

advanced RL techniques, like Duelling Double DQN [1], Curriculum through Self-Play [2], and LSTM-Q [3], high-

lights the importance of effective learning strategies in achieving superior outcomes in interactive traffic scenarios. 

The incorporation of novel approaches, such as the Multi-Agent Reinforcement Learning (MARL) [20] framework 

with Connected Automated Vehicle Graph [4] and the DiGNet system [15], showcases the diversity of methodologies 

aimed at improving efficiency, safety, and cooperation in autonomous driving.  

However, lane changes are rarely taken into consideration, and the majority of current action spaces are restricted to 

simple movements like acceleration and deceleration. In addition, the number of vehicles that could be simulated 

was constrained by the complexity of RL algorithms. This limitation is addressed by our proposed custom action 

policy function, which allows complex maneuvers such as lane changes based on the current graph state. This enables 

us to model more realistic traffic scenarios and simulate a larger network[21]. 

3 SIMULATION ENVIRONMENT 

Three simulation scenarios are used to estimate the efficacy of our suggested method for emergency vehicle (EV) 

navigation in mixed-traffic environments. Highway merge shown in Fig.1 presents the critical challenge of merging 

onto a highway with mixed traffic, intersection shown in Fig. 2 showcases diverse turning movements, and citywide 

scenarios which can be viewed in Fig. 3 scales our methodology to larger, more realistic settings essential for its 

practical implementation. All the scenarios are based on real-world traffic situations with human vehicles, autono-

mous vehicles, and emergency vehicles. For all scenarios, the complex traffic network is modeled using SUMO, a 
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well-known and reliable simulation platform. By analyzing our method's performance in all the three contexts, we 

gain valuable insights into its ability to navigate high-speed lane changes, prioritize EV movement in congested situ-

ations and scalability and generalizability to broader traffic patterns. 

 

Fig. 1.  Merge Network 

 

Fig. 2.  Intersection Network 

 

Fig. 3.  City Network 

 The IDM3 algorithm, which accurately replicates human travel behaviour and goes beyond simplistic models by 

incorporating dynamic desired speeds, lane change decisions, and gradual acceleration/deceleration patterns flow is 

used to model human-driven vehicles in our simulation. Our proposed action policy function is used by autonomous 

vehicles to receive actions and also applies the IDM3 algorithm. This combination ensures safe and effective navigation 

by enabling autonomous vehicles to make decisions according to the action policy function. Emergency vehicles are 

capable of moving through the traffic network faster because they are given priority over other vehicles. By setting 

priorities, emergency vehicles can get to their destinations faster and possibly save more lives. 

Three metrics are considered in order to fully assess the effectiveness of our suggested approach: overall traffic waiting 

time, average speed, and navigation waiting time. The effectiveness of the navigation strategy is evaluated by 

measuring the amount of time an emergency vehicle waits while attempting to reach its destination, a measure known 

as navigation waiting time. Average speed determines the congestion level, which assesses how well the action policy 

function performs in averting collisions and guaranteeing smooth travel of traffic. The effect of the navigation strategy 

on the larger traffic system is measured by overall traffic waiting time, which is determined by the overall flow and 

congestion of the traffic network. 
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We compare two baseline approaches: Baseline 1 uses the IDM3 algorithm only and does not use any custom action 

policy, while Baseline 2 uses a custom action policy function that uses simulation obtained by the traCI library instead 

of GraphSAGE to predict links. 

4 METHODOLOGY 

The overall architecture of the simulation's interaction with the GraphSAGE algorithm is presented in Fig. 4. It can 

be essentially divided into three primary components: Graph representation, GraphSAGE and link prediction, and 

custom action policy function. 

 

 Fig. 4.  Architecture  

4.1 Graph Representation 

At each timestep of the simulation, the vehicles present are identified and categorized as either HV i.e. Human Vehi-

cle, AV i.e. Autonomous Vehicle, or EV i.e. Emergency Vehicles. The TraCI library is used to extract their attributes, 

such as position, speed, and lane information. This library makes communication with the SUMO traffic simulation 

software easier. Next, using the extracted vehicle data, a graph is built, with nodes representing the vehicles. On the 

basis of the position data of the two vehicles, an edge is established by calculating the distance between them using 

the formula mentioned in Eq. 1. An edge is added to the graph if this distance drops below a set threshold.   

                                        𝑑 = √(𝑥2 − 𝑥1)2 − (𝑦2 − 𝑦1)2  (1) 

Edge formation is limited to interactions between AVs and HVs, EVs and HVs, or AVs and EVs in order to better 

represent real-world scenarios. Connections between HVs themselves are not included in this. This distinction arises 

from the fact that HVs are treated as passive actors in the simulation, with decision-making powers exclusively as-

signed to AVs and EVs. The graph better captures the dynamics of traffic scenarios involving AVs, EVs, and HVs by 

restricting edge formation to these interactions. 

The graph representation consists of two components. One is the Node or Vehicle features matrix which is essentially 

made up of features list of individual vehicles in the environment. 

𝑉𝑇 = [𝑣𝑡
1, 𝑣𝑡

2, 𝑣𝑡
3, … . 𝑣𝑡

𝑖 , … … 𝑣𝑡
𝑛]𝑇                                                 (2) 

Here in Eq. 2. vi
T represents the feature matrix of vehicle vi. The second component of the graph representation is 

edge list E. It is a two-dimensional array consisting of vehicle IDs as values.  

 𝐸 =   [𝑣𝑖  ⋯ ⋯ 𝑣𝑘

𝑣𝑗  ⋯ ⋯ 𝑣𝑙 ]                                                              (3) 

In Eq. 3. vi and vj are connected by an edge and similarly vehicles vk and vl also have an edge connecting them. 

During the feature selection process, we carefully selected a set of essential attributes to describe each vehicle in the 

traffic network. Key features for each vehicle include latitude, longitude, lane information, speed, and acceleration. 

The inclusion of geographical coordinates (latitude and longitude) allows the model to capture the spatial relation-

ships between vehicles, while lane information helps to understand the specific road segment that each vehicle occu-
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pies. Speed and acceleration, two important indicators of vehicular dynamics, provide information about the move-

ment patterns and behavior of vehicles in the network. This thoughtful feature selection aims to provide the 

GraphSageNet model with comprehensive information, ensuring a nuanced understanding of the traffic scenario and 

accurate link prediction in the context of emergency vehicle routing. 

4.2 GraphSAGE and Link Prediction 

When an emergency vehicle needs to get to its destination fast and effectively, its route requires to be optimized. This 

is known as emergency vehicle routing. The act of optimizing emergency response techniques can be further en-

hanced by link prediction, which forecasts the possibility of links or interactions between vehicles. Real-world appli-

cations of sensors include gathering vehicle location data, which is subsequently utilized to connect vehicles based 

on their proximity to one another. But malfunctioning sensors can cause gaps in data, which means there won't be 

any connections between the cars. The decision-making process for emergency vehicles can be improved by using 

link prediction techniques to fill up these gaps by forecasting the missing edges. 

To predict the missing links between vehicles, we employ a specialized model called GraphSageNet. This model is 

made up of two principal components: 

GraphSAGE. This component creates the node embeddings for cars. In this instance, the traffic network's vehicles' 

attributes and interactions with one another are captured by the node embeddings produced by the GraphSAGE 

model. 

LinkPredictorNN. This component forecasts whether or not there are links connecting the cars. For each pair of 

nodes, GraphSAGE produces node embeddings, which are then used to calculate a link prediction score. The higher 

the link prediction score, the more probable it is that there is a connection between the two nodes. 

The GraphSAGE model comprises of two layers of SAGEConv, which is a strain of GraphSage graph neural network 

(GNN), that aggregates information from neighboring nodes to generate node representations. 

𝐺𝑇 =  ∅𝐺𝑟𝑎𝑝ℎ𝑆𝑎𝑔𝑒(𝑉𝑡 , 𝐸)                                                  (4) 

Here in Eq. 4. GT refers to the node embeddings of vehicle nodes given by GraphSage module. The LinkPredic-

tionNN(LNN) consists of two fully connected layers. The first layer takes the output-dimensional node embeddings 

from the GraphSAGE model as input and produces hidden-dimensional representations. The second layer takes the 

hidden-dimensional representations as input and produces a single output value, which represents the probability of 

a link existing between the two corresponding nodes.  

𝑃𝑇 =  𝜎𝐿𝑁𝑁(𝐺𝑇)                                                       (5) 

And in Eq. 5. PT refers to prediction scores given by the LinkPredictionNN module. In order to identify possible links, 

the LinkPredictionNN efficiently learns patterns in the informative node embeddings created by the GraphSAGE 

model, which captures the interactions between vehicles. Making use of the advantages of both the LinkPredictionNN 

and the GraphSAGE model, the combined GraphSageNet model predicts the missing links between vehicles with high 

accuracy. 

The GraphSageNet model is trained using a dataset obtained from the SUMO (Simulation of Urban MObility) soft-

ware, utilizing the TraCI (Traffic Control Interface) API. The dataset represents a traffic network extracted from 

OpenStreetMap (OSM) data. A snapshot of the traffic network taken at a particular moment in time is used to train 

the model. The training graph's edges are constructed using the same process as described in the section on graph 

representation.  

In our model training, we use the BCEWithLogitsLoss function, which is specifically designed for binary classification 

tasks such as link prediction. This loss function seamlessly integrates sigmoid activation and binary cross-entropy to 

effectively quantify the difference between predicted link probabilities and actual binary labels. As the GraphSageNet 

iteratively learns from the training data, the BCEWithLogitsLoss gradually decreases as shown in Fig 5., indicating 

the model's ability to minimize prediction errors. This reduction in loss demonstrates the model's adaptability to 

traffic network nuances, as well as its efficiency in capturing relevant patterns for accurate link prediction in emer-

gency vehicle routing scenarios. 
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 Fig. 5.  Train Test curve for GraphSAGE 

GraphSageNet is used in the actual simulation process to forecast the presence of any potential missing links after 

the traffic graph has been constructed. Then, in the simulated environment, the Custom Action policy is applied to 

make well-informed decisions for both autonomous and emergency vehicles. 

4.3 Custom Action Policy 

The main element in charge of choosing actions based on the traffic graph's current state is the custom action policy 

function. The presence of edges in the graph is necessary for it to function. The action policy function is triggered to 

determine a score for every vehicle when there are sufficient edges in the graph. Subject to the type of vehicle and the 

characteristics of its surrounding nodes and edges, this score is the basis for decision-making. 

For emergency vehicles (EVs), a high score is assigned, prompting an adjustment of their speed towards their maxi-

mum allowable limit. This guarantees that electric vehicles (EVs) can quickly and effectively navigate the traffic net-

work to get to their destinations. 

The action policy function for autonomous vehicles (AVs) uses neighborhood data to decide what speed modifications 

are appropriate. The action policy function tells an AV to switch lanes to make room for an EV if they are in the same 

lane. When the autonomous vehicle (AV) is in a separate lane, it is advised to reduce speed to prevent possible colli-

sions. 

The custom action policy function uses the vast amount of information found in the traffic graph to plan an orderly 

and effective vehicle movement that guarantees emergency vehicles can navigate through mixed traffic situations in 

a timely and safe manner. 

5 RESULTS AND ANALYSIS 

Unlike existing research which uses Reinforcement Learning to select actions, our method does not need the high 

processing power of GPU hardware to model the network. Extensive computations are not required as our custom 

action policy function generates concise actions considering the traffic graph's current state. 

We examined three distinct cases for each of the three simulation environments in order to assess the efficacy of our 

methodology. Using no algorithmic intervention, the first case simulates a scenario and acts as a baseline. The second 

example builds the graph with our custom action policy function applied, utilizing simulation attributes which are 

taken from SUMO. In the final scenario, link states are inferred using GraphSAGE, and our custom action policy 

function is employed based on the resulting graph. The experimental parameters for the three scenarios merge, in-

tersection, and city network scenarios are presented in Table. 1. These parameters are provided explicitly to ensure 
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transparency and reproducibility, allowing future researchers to replicate our system for additional analysis or vali-

dation. They also provide insights into the characteristics of the simulated traffic networks, which aids in the inter-

pretation of results and potential transferability to real-world settings. 

Table 1. Parameter Settings 

Parameters 

Scenarios 

Merge 
Intersec-

tion 
City 

Number of HVs 23 26 47 

Number of AVs 14 16 26 

Number of EVs 3 2 7 

Speed limit of EVs and AVs 120 km/h 120 km/h 100 km/h 

Speed limit of HVs 80 km/h 80 km/h 70 km/h 

Number of Lanes 2 2 <3 

 

5.1 Merge 

The relatively sparse distribution of cars in the merge scenario suggests that individual vehicle driving behavior has 

little effect on the overall flow of traffic. This finding seemingly clarifies the performance patterns shown in Table. 2. 

Even though the improvement in performance over the baseline is not very large, it is still noteworthy. Furthermore, 

the GraphSAGE-based approach's performance is close to that of the condition where the graph was created with 

simulation attributes. 

Table 2. Performance on Merge 

Simulation Scenario 

Parameters 

Emergency 

Waiting 

Time 

Average 

Speed 

Average 

Waiting 

Time 

Baseline 12.2s 67.2km/h 14.8s 

Graph made by simulation 

attributes 
8.5s 88.5km/h 9.2s 

Graph made by 

GraphSAGE 
6.1s 82.4km/h 5.1s 

 

5.2 Intersection 

The optimization effect attained in the intersection scenario was more visible than that seen in the merge scenario, as 

clearly seen in Table. 3. This discrepancy is probably due to the increased mutual influence between cars in the inter-

section situation, where their movements and interactions have a bigger impact on the direction of traffic flow as a 

whole. Interestingly, the simulation-based approach's performance and the GraphSAGE-based approach's closely 

match which highlights how well GraphSAGE captures the complex dynamics of the intersection scenario. 



683  

 

J INFORM SYSTEMS ENG, 10(30s) 

Table 3. Performance on Intersection 

Simulation Scenario 

Parameters 

Emergency 

Waiting 

Time 

Average 

Speed 

Average 

Waiting 

Time 

Baseline 12.3s 55.8km/h 15.8s 

Graph made by simulation 

attributes 
3.6s 83.1km/h 3.2s 

Graph made by GraphSAGE 3.8s 87.2km/h 3.1s 

5.3 City Network 

As can be seen from Table. 4, the custom action policy function significantly outperforms the baseline when combined 

with the graph for the city network. Furthermore, the simulation-based approach and the GraphSAGE-based approach 

for graph construction closely match, indicating GraphSAGE's strong prediction abilities. Due to computational con-

straints, large-scale traffic simulations are just not possible, so this is a significant improvement over RL-based action 

systems. 

Table 4. Performance on City Network 

Simulation Scenario 

Parameters 

Emergency 

Waiting 

Time 

Average 

Speed 

Average 

Waiting 

Time 

Baseline 12.2s 54.7km/h 20.8s 

Graph made by simulation 

attributes 
4.8s 72.9km/h 8.1s 

Graph made by 

GraphSAGE 
4.9s 78.3km/h 9.6s 

 

The outcomes show that the utilization of a graph in conjunction with a custom action policy function has greatly 

increased the simulation's efficiency. Moreover, GraphSAGE is an effective way for predicting links for graphs in such 

forms of traffic networks and can be used efficiently in these kinds of situations. Overall, our proposed system stands 

out over other conventional methods for its combination of accurate link prediction, dynamic navigation policy, scala-

bility, and proven efficiency in both speed and safety. 

6 CONCLUSIONS AND FUTURE SCOPE 

EV navigation efficiency has been substantially improved by integrating GraphSAGE for graph representation and link 

prediction with a custom action policy function for EV navigation optimization as it demonstrably outperforms base-

lines in navigating mixed-traffic environments. This reveals the potential of graph-based traffic modeling and 

prediction methods in practical traffic control situations, especially for vital applications such as emergency vehicle 

navigation. GraphSAGE enables more precise link prediction and EV navigation by efficiently capturing the intricate 

spatial relationships present in the traffic network. These relationships are accounted for by the custom action policy 

function, which optimises traffic flow for EVs and results in more effective navigation. The SUMO simulation 

framework's integration of GraphSAGE and the custom action policy function enables large-scale traffic simulations, 

getting around the computational constraints of RL-based techniques. 
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On the whole, our paper shows the potential of graph-based traffic modeling and prediction methods in practical traffic 

management applications, especially for crucial situations such as electric vehicle (EV) navigation. Our suggested 

method provides a viable means of enhancing the effectiveness of EV navigation and guaranteeing prompt assistance 

delivery during emergencies. Future research will examine how various graph neural network architectures affect our 

method's effectiveness, create a more complex action policy function that considers other variables like pedestrians 

and road conditions, and test our method on a bigger and more varied dataset of traffic scenarios. These efforts will 

improve the efficacy of our suggested methodology and expand its suitability to an expanded array of actual traffic 

situations. 
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