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Many organizations maintain Knowledge Graphs (KG) to store their data. To query this data, 

multiple Questions Answering (QA) systems have been proposed. In the scenario of multi-source 

Knowledge Graphs or a scenario where multiple organizations come together to develop a better 

and secure QA system to query their own data, a Federated Learning approach seems suitable to 

bridge this gap which enables the learning models to learn collaboratively across decentralized 

data sources, ensuring total data privacy and security. Hence, we propose our solution Fed-

KGQA to address this problem. This research is limited to the domain of simple questions. Our 

research is subdivided into two main areas. First, we use a slightly improvised Federated Learn-

ing approach based on FedR which lets the clients train embeddings (of both entities and rela-

tions) locally using algorithms like TransE and then aggregate relation embeddings from all cli-

ents in a secure manner. Second, unlike traditional approaches, we employ KG Embedding 

(KGE) - based QA instead of SPARQL-based QA. Here we use the embeddings generated in the 

federated manner to represent entities and relationships. Given a question the system tries to 

infer the head, its embedding and the relational embedding from the query and then uses scoring 

function to deduce the tail entity, providing the answer to the user’s query. We test our approach 

and study its effectiveness on three subsets of FreeBase2M KG acting as clients with correspond-

ing subsets of FreeBase SimpleQuestions as QA datasets. Our method shows an improvement in 

the accuracy as compared to plain QA on all clients while maintaining the security of clients and 

efficiency of the process. 

Keywords: Knowledge Graphs, Knowledge Graph Question Answering, Federated Learning 

 

1 INTRODUCTION 

A Knowledge Graph (KG) is a structural representation of information in the form of entities (similar to nodes in 

normal graphs) and relations or predicates (similar to edges in normal graphs) [1]. Relations show the relationships 

between these entities, which are real-world objects or concepts [2]. A KG is mathematically represented as G = (E, 

R, T) where E, R and T are the set of entities, relations, and triples respectively. The KG stores the information or 

observed facts in the form of these triples T ⊂ E × R × E. Each triple has two entities - head and tail entity connected 

via a predicate indicated as (h,r,t), where h,t ∈ E and r ∈ R. In the rapidly advancing world of data and knowledge 

management, KGs such as FreeBase[3] and Wikidata[4] play a vital role across various domains and applications and 

there is an increase in demand for highly competent Question Answering systems to query these KGs effectively. 

A Knowledge Graph Question Answering (KGQA) model provides answers to questions that are asked in natural 

language by learning the questions and looking up the information stored in the KG. A major gap in the existing 

research is the task of performing question answering in the scenario where the graph data is distributed in different 

sources or clients with each maintaining their own knowledge graph referred to as Multi-Source KG [5]. This has 

applications in various domains including banking and healthcare sector. These clients can benefit from information 

or data that is available from other similar clients which have common entities and relations but they cannot 
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aggregate their data into a central server or share it with each other as it raises serious data security concerns and 

also violates some major regulations like “European Union General Data Protection Regulation”[6]. 

We try to address this gap using Federated Learning. Federated Learning revolves around learning a global statistical 

model from the data stored on multiple devices under the constraint that the data will be processed or trained locally 

on the devices with the periodic communication of only the intermediate updates to the central server[7]. We aim to 

modify the existing QA systems through a federated approach to take advantage of common relations between these 

sources in a completely secure manner and achieve better results. 

A number of algorithms like TransE[8], ComplEx[9] and RotatE[10] were proposed to represent the KGs mathemat-

ically by embedding the entities and relations in low-dimensional vector space embeddings to capture semantic rela-

tionships between them and enable downstream tasks like link prediction, KG completion and triple completion. 

These vectors referred to as Knowledge Graph Embeddings(KGE) encode the head, tail and the predicate connecting 

them into a geometric n-dimensional space, where the proximity or distance between embeddings reflects semantic 

similarities or dissimilarities between them and therefore try to deduce the connectivity patterns (for example, sym-

metry or anti-symmetry, composition and inversion) according to the observed knowledge facts[11]. 

The majority of the existing systems designed to provide answer to questions posed in natural language work by 

converting questions to SPARQL queries and then running these queries on the KG to generate responses and hence 

are constrained by certain predefined rules. These traditional QA tools based on SPARQL often struggle to effectively 

manage the extensive range of available data and information. Another type of QA system was proposed which first 

detects the head entity and the predicate from the question and uses KG embeddings to find the tail entity using 

scoring function or parsing through the database much like triple prediction[12]. The tail entity forms the answer to 

the question. We use this approach in our study as the federated framework can be leveraged while generating the 

embeddings. 

Our study is subdivided into two sub parts, the first being the process of collecting the union relations from multiple 

clients and training the embeddings in a federated setting which ensures that the data from each client cannot be 

deduced by any of the other clients and hence privacy is preserved. The second step involves using the embeddings 

acquired from the previous federated step to train a KGQA system. 

The subsequent sections of the paper are as follows: Section 2 offers an overview of the pertinent research related to 

the problem statement. Section 3 explains the approach which includes the methodology and the architecture of the 

models used. Section 4 covers the experimentation which includes the dataset description and also presents the com-

parison of final results with baseline obtained from testing our approach along with a discussion of the results. Fi-

nally, Section 5 concludes the research paper by outlining the potential avenues for future research. 

2 RELATED WORK 

2.1 Federated Learning frameworks for Knowledge Graphs 

Existing research in the domain of Federated Learning w.r.t to KGs is limited to Knowledge Graph Completion using 

downstream tasks - link prediction and triple completion. Two prominent frameworks or models have been put forth 

- FedE[4] and FedR[13]. FedE was the first work in this domain. It proposed the idea of training embeddings locally 

and then sending intermediate results periodically (after every ‘n’ rounds, where ‘n’ is a preset parameter) to the 

server where the embeddings are aggregated using FedAvg[14] algorithm and are then updated back to clients for the 

forthcoming set of training rounds. 

However, this model had severe privacy concerns as the mapping of entities to clients was kept in the server with the 

risk of exposure if any one of the clients attained backdoor access to the server. A reconstruction attack was also 

performed by simulating the scenario of a single corrupt client on the server by the authors of FedR which showed 

that the original KG could be reconstructed to an extent of 99.52%. To address this issue, FedR framework was pro-

posed that used Private Set Union algorithm to get the union of all relations and a Secure Aggregation algorithm 

which let the clients add masks to the embeddings updated locally before updating them to the server and when the 

server aggregates the updated masked embeddings, the masks cancel out each other and the server can only access 

the aggregated end result. 



706  

 

J INFORM SYSTEMS ENG, 10(30s) 

Moreover this model proposed aggregating the relation embeddings in contrast to the FedE’s approach of aggregating 

the entity embeddings as the number of relations are substantially less in real-world scenarios and the standard da-

tasets (e.g., FB15k-237[14], 14,541 entities, 237 relations). This brought an insignificant decrease in the performance 

but helped reduce the communication costs between server and clients significantly. Hence, FedR gained substantial 

improvements w.r.t privacy preserving effect and communication efficiency. 

2.2 Knowledge Graph Embeddings 

Four prominent KGE models have been previously proposed - TransE, DistMult, ComplEx and RotatE. TransE[3] 

models relationships as translations which operate on entity embeddings in a low-dimension space. It assumes that 

the relationship embedding can be seen as the translation from the head entity’s embedding to the tail entity’s em-

bedding. DistMult simplifies the scoring function by modeling interactions between entities and relations as diagonal 

3way interactions in the embedding space. It involves the element-wise product of embeddings, followed by reduction 

using a diagonal matrix. In the ComplEx[15] algorithm we represent the entities and relations as complex-valued 

embeddings in a complex vector space. It extends DistMult by modeling interactions through the Hermitian dot 

product in the complex space, capturing rich interactions and asymmetry in relationships. RotatE[16] operates by 

embedding the head, tail and predicate into a complex vector space. It uses rotation operations to model relation-

ships. It can capture various properties such as symmetry, anti-symmetry, composition, and inversion through rota-

tions in the complex space. 

All these embedding models discussed rely on their respective scoring functions which try to differentiate between 

the positive and negative triples (obtained by replacing either of the entities in a triple) by placing the positive triples 

in higher score region and the negative triples in the lower score region. For example, the scoring function for TransE 

algorithm is −||h+r−t|| (the sum of head embedding and predicate should equal that of the tail). 

2.3 Knowledge Graph Question Answering 

A question answering system based on embedding approach was proposed by [17]. This approach divided the prob-

lem of question answering into four steps: entity detection, relation prediction, entity linking and finally evidence 

integration. In entity detection, the question undergoes tokenization, with each token labeled as either entity or not 

entity. A neural network model was employed and the output is a token sequence representing a candidate entity. 

Next step is to link this candidate entity to the actual node in the graph. This process is treated as fuzzy string match-

ing without utilizing any neural networks. In the pipeline’s next step, the aim of relation prediction is to pinpoint the 

relationship in the question. This task is viewed as a classification task and uses neural networks. 

The final task involves integrating evidence from the previous components to make a single prediction. Tuples are 

generated and they are ranked according to their scores.[18] proposed a similar embedding-based framework which 

tackles issues like entity name ambiguity and varied predicate expressions. The paper introduces recurrent neural 

network-based models: head entity learning model, predicate learning model, and head entity detection model. The 

head entity and predicate learning models predict the questions head entity representation and predicate represen-

tation respectively. The HED model reduces the head candidate space which is based on the concept - named entity 

recognition (NER). A relation function computes the tail representation by using a joint distance metric. learned a 

scoring function between the question and the corresponding triple and ranks these triples according to the score. In 

our work, we have used the architecture . Methods like [19] approach the QA problem as a classification task, wherein 

they classify the query into one of the relationship types present in KG by using neural networks models and non-

neural network models. 

3 APPROACH 
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Fig.1. Fed-KGQA Architecture 

Fig.1 shows the architecture for our proposed model Fed-KGQA. This architecture involves two major processes and 

are explained in the following subsections 3.1 and 3.2. 

3.1 Training the Embeddings in a Federated Setting 

We use the FedR framework that was proposed for the downstream task of KG Completion through link prediction. 

This framework primarily aggregates the relations of each client. The first step is to collect the relation IDs from each 

client and store them all in a relation table in a secure manner. This is performed using Private Set Union(PSU)[7] 

algorithm. PSU guarantees that the union of the relations will be calculated without revealing information about 

where the relations came from. Hence the server cannot know from which client each relation came from. The relation 

table obtained from PSU will be distributed to each client which will be used by the clients to communicate the 

changes to the server. 

Each client trains the entity and relational embeddings on its own data locally for a preset ‘n’ number of rounds and 

after each set of local training, the updated values of embeddings will be replicated in the relation table during the 

communication round and sent to the server where the server aggregates them using FedAvg[10] algorithm. The 

process of communication of updated relational embeddings between the clients and server happens as per the Se-

cure Aggregation[12] algorithm. In Secure Aggregation, each relational embedding is provided with a mask before 

being communicated to the server. 

To explain the process of Secure Aggregation in simple terms, let’s assume the scenario of 3 clients and the server. 

Assume the relation embedding distribution of each client as R1 = {r1}, R2 = {r2} and R3 = {r1} respectively. After the 

completion of PSU[7], the union of relations from all clients will be obtained by the server denoted as R = {r1,r2}. The 

existence vectors for relations of the clients will be 

𝐸1 = (1,0), 𝐸2 = (0,1), 𝐸3 = (1,0) 

During a communication round, each client u produces su,v with every other client v (su,v = sv,u for a certain condition, 

for example when s1,2 = s2,1). Each client computes the masked value tu for its secret vector su := {Ru,Eu}, as shown 

below[19]: 

𝑡𝑢 =  𝑠𝑢 + ∑ 𝑠𝑢,𝑣

𝑢<𝑣

−  ∑ 𝑠𝑣,𝑢

𝑢>𝑣

 

Therefore, clients have their masked embedding vectors as: 

𝑡1 =  𝑠1 + 𝑠1,2 +  𝑠1,3 

𝑡2 =  𝑠2 + 𝑠2,3 − 𝑠2,1 

𝑡3 =  𝑠3 − 𝑠3,1 − 𝑠3,2 
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After masking, these matrices will be uploaded to the server. The server will not be capable of obtaining original data 

from clients but as the masks are designed in a manner to cancel out each other, the server will be able to obtain only 

the end aggregated value via: 

z =  ∑ 𝑡𝑢

3

𝑢=1

=  𝑠1 + 𝑠2 + 𝑠3 

These masks prevent the server from recognizing the actual embeddings of the relations from each client, but when 

they are aggregated, all the masks cancel each other out and we get the actual aggregated value at the server. This 

way even if one of the clients was to gain access to the server, they wouldn’t be capable of deducing the presence of a 

certain relation from a particular client looking at the changes(if any) in the values of embeddings received from that 

particular client for that particular relation. 

3.2 Question answering using KGQA 

We begin this step of our pipeline with the output produced by the federated model. This output is the KG reduced 

to a low dimensional space. In FedR, an already existing embedding algorithm has been used to learn P and E such 

as TransE [3]. We use these KG embeddings to answer simple questions. The architecture proposed by [5] makes use 

of each entity E’s and each predicate P’s embedding representation. For each and every triple or fact (h,r,t) in the 

knowledge graph G, the embedding representation is denoted as (eh,pr,et). TransE function defines the relation as: 

𝑒𝑡 ≈ 𝑒ℎ + 𝑝𝑟  

For the question answering process we will be using the architecture designed by [11] and [5]. This process is carried 

out though a course of three steps. 

The first step involves using the Head Entity Detection (HED) model used by [5]. The primary aim of this model is to 

decrease the number of potential entities found in the search space. This is done by identifying multiple words in the 

question as head entities and using words which match or look very similar to these in the entity space to reduce the 

candidate head entities. This step implements a named entity recognition (NER) model for entity detection in text. 

To train this model the questions and their tagged entity and non-entity names is used for training the HED model. 

A question of length L is taken and all L tokens are mapped to the corresponding sequence of word embeddings using 

a pre-trained model like GloVe (Global Vectors). We use a bidirectional LSTM model, meaning it considers both the 

past and also the future contexts while processing each token in the sequence. For each element or token, the forward 

LSTM processes the sequence in the normal order (from left to right), while the backward LSTM processes the se-

quence in reverse order (from right to left). Both these passes of LSTM generate the corresponding hidden states as 

they process the sequence from both the directions. After both the LSTMs have processed the entire input sequence, 

the hidden states from both these LSTMs are concatenated. The concatenated output is supplied to the fully con-

nected layer and finally a softmax function is applied which produces probabilities over two different label categories: 

head entity and non-head entity. The model learns to assign entity labels to words belonging to question which is 

used to recognize the head entities. 

In the second step, we use the question in the training dataset and their respective predicate embeddings to train a 

model which will take as input the simple question and then obtain the predicate vector which exists in the embedded 

space. Neural Networks are used for learning predicate and head representations. Similar to the head entity detection 

model, a question of length L is taken and all L tokens are mapped to their corresponding word embeddings. We 

employ a bidirectional LSTM which considers both the past and future contexts for each token. The hidden states 

from both these LSTMs are concatenated. This output is then used to compute the attention weights, which are used 

to weight the word embeddings. The attention weights are applied to the concatenated hidden states and then the 

output is concatenated with the word embeddings and then supplied to a completely connected layer. The resultant 

is a target vector for each token. Finally, to compute the predicted predicate embeddings, the model aggregates the 

target vectors of all the tokens in the sequence by taking the mean of all token’s target representations. Similarly, the 

head entity learning model will make use of the same architecture as that of the predicate learning model. In this 

manner, for a given question, this model will predict the head entity embedding representation directly. 

The third step involves searching in the embedding space to rank all the triples according to their scores. We now 

have predicted the head and predicate representation for each question. Now we have to find the triple having the 
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highest score that matches with the predicted head and predicate. Using the predicted head entity and predicate 

object, we iterate over the triples data to find the matched triple and we add the tail belonging to this triple as a 

candidate answer. We then calculate the joint distance as proposed by [5] to the predicated representations. We re-

trieve the results by using the scoring function and rank then according to their scores. The fact that has the smallest 

separation is chosen. Ultimately, the tail is returned as answer to the input simple question Q. 

4 EXPERIMENTATION AND RESULTS 

4.1 Dataset 

FreeBase is a standard KG dataset used for all tasks in the study of Knowledge Graphs and is very large with billions 

of triples containing information about millions of entities and training any task on entire database requires vast 

amount of resources both in terms of computation and time. Hence two subsets of FreeBase - FB2M and FB5M with 

2 million and 5 million entities respectively were released and have become the most popular benchmarks for various 

tasks. FB2M has a Question Answering (QA) dataset associated with it - SimpleQuestions[2] with roughly 80k ques-

tions in train, 20k in test and 10k in valid datasets. 

But even these datasets suffer from data imperfections and are still very large when computationally intensive oper-

ations are to be performed to train on these datasets like generating embeddings for the link prediction task. Hence 

for downstream tasks like link prediction, triple completion, a standard benchmark was established - FB15k-237[14]. 

This has 15k entities and 237 relations and has served as a good benchmark. The problem associated with this dataset 

is that when the triples from FB15k-237[14] are mapped to SimpleQuestions[2] QA dataset, we end up with less than 

1000 questions. So, we formed a dataset using the KG formed from SimpleQuestions and taking top 20k entities and 

mapping them to the FB2M dataset to find more triples. As a result, we formed the FBQA20k KG with 19.7k entities, 

1836 relations and 278k triples. We split the triples into 3 clients to simulate the training under federated setting.                    

Table 1 displays the statistical data for the three clients. 

Table 1. Statistics of 3 clients from FBQA20k 

Da-

taset 

Enti-

ties 

Rela-

tions 

Triples Train 

QA 

Test 

QA 

Valid 

QA 

Client 1 18479 1358 92633 3833 730 377 

Client 2 18433 1372 92633 3903 744 387 

Client 3 18435 1360 92662 3768 726 324 

 

4.2 Results 

 

Fig.2. Results of 3 clients 

To test the effectiveness of federated framework on the KGQA system, we simulate three clients as discussed earlier 

and use the TransE embedding model to train and generate embeddings. We take the KEQA model[5] (which uses 
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vanilla TransE embeddings) as the baseline model. Compared to this baseline, our model achieves an improvement 

of 2.5%-3.2% in final accuracy over the 3 clients as presented in Table 2. 

Table 2. Results of 3 clients from FBQA20k 

Client Head 

Detec-

tion 

Entity 

Learning 

Predicate 

Learning 

Final Accu-

racy 

Lo-

cal 

FedR Local FedR Lo-

cal 

FedR 

1 85.11 67.64 73.58 58.13 67.10 72.88 75.39 

2 89.11 63.15 65.79 61.30 71.06 73.11 75.88 

3 89.66 67.74 73.30 56.97 67.17 72.31 75.48 

 

The head detection accuracy, entity learning accuracy, predicate learning accuracy and final accuracy are presented 

in Table 2. The Local section presents the results obtained from the baseline model (training the embeddings locally 

and using them directly) and the FedR section presents the results from our proposed model Fed-KGQA. We credit 

these improvements in results to the better relation embeddings as result of training under the federated framework. 

This credit is also conveyed by the increase in the predicate learning accuracy as well as the entity learning accuracy, 

as seen in the Fig 2 which also shows that improving embeddings of relations can also indirectly result in improve-

ment of embeddings of entities. 

5 CONCLUSION AND FUTURE DIRECTIONS 

We believe the improvement in accuracy can be enhanced if we were to aggregate the entity embeddings as well as 

opposed to the current framework which only aggregates the relational embeddings, but doing it in a secure manner 

using PSU and SecAgg brings in enormous communications costs specially when the number of clients scales to real-

world scenarios since each client would have to coordinate with every other client in the federated network during 

SecAgg process to generate masks for each entity and the union of entities across all clients would be huge. So, we 

believe an algorithm that can aggregate both entity and relational embeddings across clients in a secure and efficient 

manner would help the QA system achieve better accuracy as embeddings play the major role in the domain of em-

bedding based KGQA systems. Apart from the point raised here, we believe this study can be extended in two more 

directions. 

The current study delves into QA on KG clients where all the clients use the same KGE model to train their entity and 

relation embeddings. In a real-world scenario, all the participating institutions might not use the same KGE model. 

In such case, developing a robust Federated QA system that can effectively aggregate embeddings across different 

geometric spaces is one potential future research direction. 

In our study we have restricted to static or non-evolving graphs, but in a real-world scenario KGs are always evolving 

(newer entity and relation types are added to the existing KG). To make the QA system answer these facts, re-gener-

ating embeddings and hence re-training the QA system is necessary. In such case developing a QA system that can 

tackle incoming entities and relations without having to retrain the old data is another potential future direction. 
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