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Adverse Drug Reactions (ADRs) present major challenges to patient safety, necessitating timely 

and precise identification to enhance pharmacovigilance initiatives. Traditional ADR reporting 

systems suffer from underreporting and delays, prompting the need for alternative data sources 

such as social media. However, extracting meaningful insights from unstructured and noisy 

social media text presents substantial challenges. This research proposes novel Deep 

Convolutional Recurrent Semantic Similarity Model (DCR-SSM), which integrates convolutional 

and recurrent layers with a semantic similarity mechanism and attention module to enhance 

ADR detection from Twitter data. The framework incorporates a robust Preprocessing pipeline 

tailored to social media text, along with Decision Tree-based feature selection and Bag-of-Words 

encoding to capture relevant linguistic and semantic features. Comprehensive experiments 

performed on SMM4H dataset illustrate superiority of proposed model compared to leading 

ADR detection techniques. DCR-SSM acquired an accuracy (72%), precision (75%), recall (72%), 

and an F1-score (73%), outperforming traditional machine learning (SVM) and (LSTM, Bi-

LSTM, CNN) deep learning models. In contrast to best-performing existing models, the proposed 

framework improves precision by up to 5.2% and maintains a balanced trade-off between recall 

and F1-score, ensuring better generalization in real life applications. Findings highlight potential 

in leveraging NLP as well as deep learning for mining patient-reported ADRs from social media, 

offering a scalable and cost-effective alternative to conventional pharmacovigilance methods. 

Future research can explore multi-lingual ADR detection and domain-specific embedding 

further to enhance detection accuracy and adaptability across diverse healthcare settings. 

Keywords: Adverse Drug Reactions, Twitter data, Natural Language Processing, Deep 

Learning, Pharmacovigilance 

 

1. INTRODUCTION 

ADRs are unintended, harmful physiological responses resulting from the administration of medications at 

therapeutic doses for approved indications. As a major pharmacovigilance concern, ADRs contribute significantly to 

morbidity, mortality, and economic burden worldwide (Karimi et al., 2015). In clinical settings, reports indicate that 

ADR-related emergency department visits increased from 5.6 to 11.6 per 100,000 people between 2005 and 2011, 

with an average of 25,303 cases annually (Castle, I. J. P., et al., 2016). 25.4% of ADR cases resulted in severe outcomes 

(hospitalization, transfer, or death), with CNS agents (59.1%) and opioids (17.4%) being the most frequently 

implicated drugs (Castle, I. J. P., et al., 2016). The financial impact of ADR-related hospitalizations and medical 

interventions is staggering, with an estimated economic burden of billions of dollars per year. In research published 

in the U S, the cost of an ADR varied from US$2000 to US$4000 per patient (Bordet, R., et al, 2001). These statistics 

highlight the critical need for efficient, real-time ADR monitoring systems that can augment existing drug safety 

surveillance frameworks. 

Conventional pharmacovigilance systems, like “FDA Adverse Event Reporting System (FAERS)” as well as other 

spontaneous reporting systems (SRSs), rely predominantly upon voluntary submissions from healthcare 

professionals along with individuals. Regardless, these systems exhibit significant underreporting. Several factors 
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contribute to underreporting; healthcare professionals' knowledge and attitude are the most important determinants 

(Sakaeda, T., e al. 2013). Major factors include lack of awareness, time constraints, and reporting biases, leading to a 

delayed identification of potentially severe ADRs. The reliance on passive surveillance mechanisms inherently limits 

the timeliness and completeness of ADR signal detection, thereby restricting the responsiveness of regulatory 

agencies to emerging drug safety concerns. 

The expansion of social media platforms, especially Twitter, is resulting in a growing amount of user-generated 

health-related material. Social media enables patients to share their real-time experiences with medications, often 

capturing ADR-related discussions that may never be reported through traditional pharmacovigilance channels 

(Alomar, M., et al., 2020). The global utilization of social media for health conversations and its capacity to deliver 

immediate insights into drug-related side effects offers a unique potential to improve pharmacovigilance initiatives. 

Unlike structured “electronic health records (EHRs)” or clinical trial data social, media facilitates the detection of 

patient-centric ADR narratives, including those affecting underrepresented populations, off-label drug use, and 

interactions that may otherwise go unnoticed. 

Despite its potential, leveraging social media for ADR detection presents several computational and methodological 

challenges. One of the most pressing concerns is the unstructured, informal, and noisy nature of social media text, 

where users frequently employ colloquialisms, abbreviations, misspellings, and non-standard medical terminology. 

The complexity is further exacerbated by: 

• Lack of Standardized Terminology: Unlike medical records, social media posts lack formal lexicons and often 

contain ambiguous expressions of symptoms and drug effects. 

• High Volume and Velocity: The massive scale of social media streams necessitates automated natural 

language processing (NLP) techniques for efficient filtering, classification, and extraction of relevant ADR 

mentions. 

• Distinguishing Genuine ADR Mentions: Not all drug-related discussions on social media correspond to 

actual adverse events. Many posts may reference medications in a general context, making it crucial to 

develop high-precision classification models that can accurately identify true ADR occurrences. 

• Data Reliability and Credibility Issues: Social media contains noisy, unverifiable, and potentially exaggerated 

information. Ensuring data credibility is a key challenge, as incorrect classification of ADRs may lead to false 

safety alerts or misleading conclusions. 

To effectively address these challenges, advanced NLP, deep learning, as well as semantic similarity-based methods 

are required to automate the extraction, validation, and classification of ADR mentions with high precision and recall. 

Creating effective, real-time ADR detection methods from social media information has substantial consequences for 

drug safety surveillance as well as regulatory decision-making. By integrating machine learning-driven 

pharmacovigilance systems with traditional ADR reporting frameworks, healthcare authorities can improve early 

signal detection for faster responses to emerging drug safety concerns, capture a broader range of ADR experiences 

from underrepresented patient groups, and enhance real-time surveillance to dynamically identify potential safety 

risks. Furthermore, leveraging social media data reduces reliance on passive reporting systems, addressing the 

challenges of underreporting and delayed ADR recognition, ultimately strengthening pharmacovigilance efforts. 

This research seeks to provide an innovative deep learning framework for identifying ADRs from social media, 

specifically Twitter, through integrating advanced NLP, machine learning, and semantic similarity methodologies. 

The key objectives of the study are: 

• Develop a robust Preprocessing pipeline to handle noisy and unstructured Twitter data effectively. 

• Implement feature extraction as well as selection strategy, integrating Decision Tree based feature ranking 

along with Bag-of-Words (BoW) encoding to capture linguistic and semantic features relevant to ADR 

detection. 

• Design and optimize a Deep Convolutional Recurrent Semantic Similarity Model (DCR-SSM), which 

combines bidirectional LSTMs for contextual learning, convolutional neural networks (CNNs) for local 

feature extraction, and semantic similarity-based attention mechanisms to enhance ADR classification 

performance. 
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• Evaluate proposed model compared to state-of-the-art ADR detection methods, benchmarking its 

performance on the basis of precision, accuracy, recall, as well as F1-score using SMM4H dataset. 

• Assess potential social media-based pharmacovigilance as a complementary strategy to existing ADR 

monitoring systems, exploring its real-world applicability in drug safety surveillance. 

Subsequent sections of this work are structured were as follows: Section II offers an exhaustive literature analysis of 

current methodologies for ADR identification, obstacles in social media mining, as well as utilization of NLP as well 

as DL in ADR research. Section III details proposed research methodology, involving data collection, feature 

extraction, selection, Preprocessing, and classification using the DCR-SSM model. Section IV highlights the findings 

of our tests and evaluates performance of the proposed framework concerning existing methodologies. Section V 

closes the work and outlines possibilities for future research. 

2. LITERATURE REVIEW 

Literature review part explores challenges as well as advancements in ADR detection, emphasizing the limitations of 

traditional pharmacovigilance systems and the emerging role of social media mining. It examines various ML and 

DL approaches, highlighting their effectiveness in enhancing real-time ADR monitoring and improving drug safety 

surveillance. 

2.1 ADR Classification 

In their 2014 study, South et al. investigated effects of machine pre-annotation and an interactive annotation 

interface on the manual de-identification of clinical materials. They examined how using automated tools to pre-tag 

sensitive information in clinical documents, followed by manual review and correction, influences efficiency along 

with accuracy of the de-identification process. Researchers compared manual de-identification efforts with and 

without machine-assisted pre-annotation. The goal was to shed light on the advantages and challenges of integrating 

machine learning methods into this task. The study highlighted that automating certain aspects can streamline the 

de-identification process and reduce the workload for human annotators. However, it also addressed challenges, such 

as dealing with false positives, adapting to various document formats, and maintaining data privacy. Overall, findings 

give valuable insights into combined utilization of automated and manual approaches in clinical text de-identification 

along with practical considerations for implementing such systems. 

Lin et al. (2015) investigate different methods for representing words to extract ADRs from Twitter data. Study 

focuses on evaluating various approaches for encoding words and phrases in tweets, with the goal of enhancing the 

accuracy of ADR identification from user-generated content on the platform. 

Xu et al. (2015) examined health-related discussions on Twitter hashtags, concentrating on knowledge dissemination, 

community building, and activism or advocacy. The decentralized networks consist of advocates, healthcare 

professionals, and ordinary users, with interactions mainly occurring between those in healthcare-related roles. The 

study found that most conversations were neither ongoing nor reciprocal. 

Korkontzelos et al. (2016) examine function of sentiment analysis in identifying ADRs via social media platforms, 

including forum and tweet posts. The study explores how sentiment analysis can be combined with NLP techniques 

for enhancing detection as well as comprehension of ADR-related information in user-generated content. 

Huynh et al. (2016) focus on classifying ADRs using deep neural networks. Their research explores the application of 

neural network models to automatically classify text associated with ADRs, with the goal of enhancing the detection 

and understanding of potential drug side effects. 

Wei et al. (2016) developed computational methods for automatically extracting chemical-disease relations (CDR) as 

part of the Bio Creative V challenge. They compiled a large annotated dataset using human annotations from 1,500 

PubMed articles, and their machine learning models achieved high F-scores. This task engaged the text-mining 

research community, resulting in a significant corpus and enhancing accuracy of automatic disease recognition as 

well as CDR extraction. 

Lample et al. (2016) introduce innovative neural architectures for named entity recognition (NER) systems, 

comprising bidirectional LSTMs, transition-based segment creation and conditional random fields. Their models 

leverage character-based word representations alongside unsupervised word embedding, achieving state-of-the-art 

results in 4 languages with no need to require language-specific knowledge or resources. 
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“Yang et al. (2016)” proposed a hierarchical attention network for document classification, utilizing 2 tiers of 

attention—word and sentence levels—to represent structure of documents. Their experiments demonstrate that this 

architecture surpasses earlier models by effectively identifying and selecting informative words and sentences. The 

model creates a document vector by first aggregating key words into sentence vectors, and then combining these 

sentence vectors into a comprehensive document representation, resulting in improved performance compared to 

previous approaches. 

Luo et al. (2017) emphasized the importance of biomedical relation extraction for interpreting scientific literature 

and clinical narratives. They highlighted that graph-based methods, which integrate semantics and syntax, have 

achieved top performance in shared tasks. Existing techniques involve parsing, generating dependencies, graph 

exploration, and applying heuristics to mitigate feature sparsity. Key applications involving clinical trial screening, 

pharmacogenomics, as well as detection of adverse drug reactions. Main challenges in this field include addressing 

synergy, Coreference resolution, redundant subgraph patterns, named entity recognition, as well as adapting models 

to different domains. 

2.2 Social Media Mining 

With social media's growing popularity, researchers have increasingly focused on leveraging user-generated content 

for ADR detection. Sarker et al. (2015) extensively evaluated text mining methodologies for ADR extraction using 

social media, emphasizing opportunities and obstacles associated with this data source. Nikfarjam et al. (2015) 

proposed an innovative method employing conditional random fields and word embedding clusters to extract ADRs 

from Twitter and online health forums, showcasing superior efficacy to traditional lexicon-based techniques. 

While social media offers promising potential for ADR detection, several challenges must be addressed: 

Social media data is often noisy, informal, and potentially unreliable. Gonzalez-Hernandez et al. (2017) discussed the 

challenges of ensuring data quality in social media pharmacovigilance, emphasizing the need for robust 

Preprocessing and validation techniques. Gonzalez and Sarker (2015) introduced methods for automatically 

classifying ADR assertive posts to filter out irrelevant or non-ADR mentions. 

The informal nature of social media posts presents challenges in identifying ADR mentions. Patients often use 

colloquial terms, abbreviations, and misspellings to describe their experiences. Karimi et al. (2015) highlighted the 

importance of developing robust text normalization and concept mapping techniques to address this linguistic 

variability. 

Distinguishing between actual ADR reports and general discussions about drugs or symptoms requires sophisticated 

context understanding. ADR mentions are typically rare events in social media data, leading to highly imbalanced 

datasets. Cocos et al. (2017) addressed this challenge by employing advanced sampling techniques and ensemble 

methods to improve classification performance on imbalanced ADR datasets. 

2.2 NLP and Deep Learning in ADR Research 

Advancements in NLP as well as DL have opened new avenues for ADR detection from unstructured text data: 

Word embedding techniques have shown promise in capturing semantic relationships between drugs and ADRs. 

Nikfarjam et al. (2015) utilized word embedding clusters to improve ADR extraction from social media posts.  

Research explored utilizing NLP as well as machine learning (ML) algorithms, focusing on feature extraction from 

three datasets. Selecting features thoughtfully led to notable improvements in classification accuracy. Text 

classification tasks can benefit from combining features from established text classification fields, like sentiment 

analysis, with topic modelling features. Recent research aimed to apply NLP and feature extraction techniques to 

medical contexts, with a particular focus on automatic text summarization for condensing and identifying key drug-

related information in social media networks. 

Deep learning models have exhibited excellent performance in numerous NLP tasks, including ADR detection. “Lee 

et al. (2017)” created “convolutional neural network (CNN)” model for ADR classification from social media posts, 

surpassing conventional ML methods. “Huynh et al. (2016)” proposed a “recurrent neural network (RNN)” 

architecture for ADR classification, exhibiting enhanced performance for capturing sequential dependencies within 

textual data. 
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Recent research has explored transfer learning as well as Pretrained language models for ADR detection. Bader as 

well as Giorgi(2019) utilized transfer learning with the BERT model to improve ADR classification performance on 

social media data. Multi-task learning approaches have shown promise in leveraging related tasks to improve ADR 

detection performance.  

In summary, the literature reveals a growing interest in leveraging social media information to ADR detection, with 

NLP and deep learning techniques emerging as powerful tools to address the associated challenges. Nonetheless, 

there persists a must for more advanced methodologies capable of effectively managing the intricacies of social media 

text while attaining elevated precision in ADR identification. This study seeks to fill this gap by presenting novel 

system that merges advanced NLP techniques with a deep learning architecture specifically tailored for ADR 

classification from Twitter data. 

3. RESEARCH METHODOLOGY 

This part outlines suggested methodology for identifying ADRs from Twitter data utilizing NLP as well as deep 

learning methodologies. Framework consists 5 main stages: data collection, feature extraction, Preprocessing, feature 

selection, as well as classification. Fig. 1 provides an overview of proposed framework. 

 

Figure 1: Proposed ADR Detection Framework 

3.1 Data Collection 

The dataset used in this study is the SMM4H dataset (Weissenbacher, D., et al. 2019), a specialized collection of 

health-related social media data, primarily from Twitter, designed to support NLP tasks in public health and 

pharmacovigilance. It includes annotated data for extracting meaningful information such as drug mentions, adverse 
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drug reactions, symptoms, and disease discussions. Widely used in shared tasks and competitions, SMM4H helps 

researchers tackle challenges like noisy, unstructured text and enables applications in monitoring health trends and 

tracking drug safety. This dataset is instrumental in advancing health informatics by allowing NLP models to derive 

actionable insights from social media health discussions. 

3.2 Data Preprocessing 

To ensure effective ADR detection from Twitter data, a comprehensive Preprocessing pipeline was developed to 

address informal as well as noisy nature of social media text. Pipeline began with a text cleaning stage, where URLs, 

user mentions, and special characters were removed to eliminate non-informative elements. All text was changes to 

lowercase for maintaining uniformity, and contractions were expanded (e.g., converting "don’t" to "do not") to 

enhance the interpretability of the text. This cleaning phase aimed to prepare the data for more structured processing 

in subsequent stages. 

Next, tokenization was performed using the NLTK Tweet Tokenizer, a tool specifically designed to handle social 

media language with its characteristic slang, abbreviations, and emojis. This tokenizer effectively split the text into 

individual tokens, providing a foundation for word-level analysis. Spelling correction was applied to address common 

misspellings, particularly of drug names and medical terms, using a custom algorithm based on edit distance and 

drug name similarity. This correction step was critical in maintaining the accuracy of medical terminology, which is 

essential for ADR identification. 

To focus on relevant information, stop word removal was conducted, removing common stop words while retaining 

negation words such as "not" and "no," which are essential for understanding the context of ADRs, as negations often 

influence the sentiment and meaning of ADR-related statements. Following this, lemmatization was applied using 

NLTK’s WordNet Lemmatizer, reducing words to their base forms to minimize lexical variability, thereby improving 

the consistency and comparability of terms used across tweets. 

Finally, a custom Named Entity Recognition (NER) model trained on medical corpora was employed to identify and 

tag critical entities, including drug names, symptoms, and other relevant medical terms. This NER step enriched the 

data with medically relevant tags, facilitating precise ADR detection. In our initial data extraction phase, we removed 

tweets that were unavailable or unfound, retaining only the accessible tweets for analysis. Together, these 

Preprocessing steps established a clean, standardized, and medically relevant dataset, suitable for robust ADR 

detection and analysis. 

3.3 Feature Extraction 

To capture the linguistic and semantic characteristics of ADR mentions, we designed a comprehensive text feature 

extraction process. This process begins with N-gram features, extracting unigrams, bigrams, and trigrams to capture 

local context around ADR mentions, allowing us to understand the immediate linguistic environment. We also use 

Part-of-Speech (POS) tags generated via NLTK's POS tagger to provide syntactic information, which aids in 

identifying the grammatical roles of words related to ADRs. 

Named entity tags identified during the NER step are included to highlight specific drug names, symptoms, and other 

medically relevant entities, enhancing the specificity of ADR-related data. To evaluate the sentiment associated with 

ADR mentions, sentiment polarity is calculated using  “Valence Aware Dictionary and Entiment Reasoner(VADER)”, 

which yields an overall sentiment score for each tweet, thereby defining emotional context of ADR discussions. 

We further analyse semantic similarity by calculating the similarity between each tweet and a predefined list of ADR-

related terms using word embedding, providing an additional layer of relevance-based filtering. Additionally, drug-

symptom co-occurrence frequencies are measured, allowing us to detect patterns in the co-occurrence of drug names 

and potential symptom terms, which is essential for ADR identification. 

In line with the workflow in the diagram, we used a Decision Tree-based feature selection to prioritize most 

informative features, improving model efficiency. Feature encoding, we employed Bag of Words (BoW) model, 

ensuring structured representation of extracted features, which is compatible with machine learning algorithms used 

for ADR detection. This systematic approach to feature extraction, selection, and encoding provides a robust 

framework for analysing and detecting ADR mentions in social media text. 
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3.4 Feature Selection 

Feature selection is an important step in ML pipelines, particularly for text classification tasks like ADR detection. 

The objective is to find most relevant as well as informative features while minimizing redundancy, thereby improving 

model efficiency and interpretability. In this study, we employ a Decision Tree-based Feature Selection method, 

leveraging its ability to capture feature interactions and hierarchical dependencies within the dataset. The selected 

features are subsequently encoded using a BoW model to transform textual data into a structured numerical 

representation. 

Decision Tree-based methods offer an effective approach for feature ranking and selection by evaluating feature 

importance based on their contribution to model predictions. The feature importance score 𝐼(𝑓) of a given feature 𝑓 

is computed using Information Gain (IG) as defined by: 

𝐼(𝑓) = 𝐼𝐺(𝑓) = 𝐻(𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝐻(𝑆𝑣)

𝑣∈𝑉𝑓

 

Where, 

𝐻(𝑆) represents entropy of dataset 𝑆 

𝑆𝑣 denotes subset of 𝑆 where feature 𝑓 takes value 𝑣 

𝑉𝑓 is set of possible values for 𝑓 

𝐻(𝑆𝑣) is entropy after splitting on 𝑓 

The feature selection process follows a structured methodology: 

1. Train a Decision Tree Model: 

Decision Tree model is trained on dataset using available features. Tree recursively splits data based on optimal 

feature thresholds, minimizing Gini impurity or maximizing information gain at each node. Model learns how 

different features (like specific words, n-grams, named entities) contribute for predicting target label (e.g., ADR or 

non-ADR). 

2. Compute Feature Importance: 

Once trained, the Decision Tree provides information about the importance of each feature in making decisions. This 

is measured based on the information gain each feature provides when used to split the data. 

3. Rank Features by Importance: 

The features are ranked according to their importance scores. Features that provide higher information gain or reduce 

impurity more significantly are considered more important for classification tasks. 

4. Select Top Features: 

Based on a predefined threshold or the top N features (e.g., top 20% most important features), the most informative 

features are selected. This step eliminates redundant or less informative features, streamlining the dataset.  

𝐹∗ = {𝑓 ∈ 𝐹|𝐼(𝑓) ≥ 𝜏} 

Where 𝜏 is a predefined threshold 

5. Utilize Selected Features during Model Training: 

Reduced feature set 𝐹∗ is used to train final ML model. By only including most important features, the model is faster, 

simpler, and often performs better due to reduced noise. 

Decision Tree-based feature selection is particularly effective because it considers the interactions between features 

and helps to identify the attributes most relevant to the target variable. 

Bag of Words technique transforms text into numerical features that ML models can use. It generates a dictionary of 

distinct words from dataset as well as characterizes each text according to the occurrence or frequency of these words. 
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1. Compile a Vocabulary of Distinctive Words: 

First, BoW scans through all the text data (e.g., tweets) to create list of distinctive words or “vocabulary.” This 

vocabulary becomes the foundation for encoding the text data. The dataset is scanned to create a vocabulary set 𝑉 

containing unique words across all tweets. Given a dataset of tweets 𝐷 = {𝑑1, 𝑑2, 𝑑3 …𝑑𝑁}, the vocabulary is: 

𝑉 = ⋃𝑊(𝑑𝑖)

𝑁

𝑖=1

 

 𝑊(𝑑𝑖) represents set of unique words in tweet 𝑑𝑖 

2. Build a Matrix of Word Occurrences: 

Each tweet is then represented as a vector in a matrix 𝑥𝑖 ∈ ℝ|𝑉| each column corresponds to a word in vocabulary. For 

every tweet, the matrix will record either the count of each word (frequency-based) or just a binary indicator (0 or 1) 

to signify whether the word appears or not. The feature values are encoded using: 

Binary Encoding: 𝑥𝑖𝑗 = 1 if word 𝑤𝑗  appears in 𝑑𝑖, else 0. 

Term Frequency (TF): 𝑥𝑖𝑗 = 𝑐𝑜𝑢𝑛𝑡(𝑤𝑗 , 𝑑𝑖)  

TF-IDF (TF-Inverse Document Frequency): 

𝑥𝑖𝑗 = 𝑇𝐹(𝑤𝑖 , 𝑑𝑖) ∙ log
𝑁

𝐷𝐹(𝑤𝑗)
 

Where 𝐷𝐹(𝑤𝑗) is the number of documents containing 𝑤𝑗  

3. Transform Text into Word Vectors: 

The BoW representation of each tweet is vector in which each object corresponds to word from vocabulary. If word 

from vocabulary appears in a tweet, its associated element in vector is either increased by one (for counts) or 

designated as 1 (for binary BoW). 

4. Feed Encoded Data into the Model: 

The resulting matrix, where each row denotes tweet regarding word occurrences, is then used as input for ML models. 

The models can leverage this structured data to learn patterns associated with ADR mentions. 

BoW is straightforward and highly effective for capturing word presence and frequency in text data, making it one of 

the most widely used encoding techniques for NLP tasks. However, it does not account for the order of words, so 

context and meaning based on sequence are not preserved. 

By integrating DT-based feature selection with BoW encoding, the proposed approach ensures that model retains 

only most discriminative linguistic features while reducing noise from redundant or irrelevant words. This structured 

feature engineering framework improves classification accuracy while reducing computational complexity. Together, 

Decision Tree-based feature selection and BoW encoding establish a robust Preprocessing pipeline, optimizing text 

representation for deep learning-based ADR detection from social media data. 

3.5 Classification using Deep Convolutional Recurrent Semantic Similarity Model (DCR-SSM) 

The final classification stage leverages a novel DCR-SSM, “Bidirectional Long Short-Term Memory (Bi-LSTM)” for 

contextual representation, integrating CNNs for local feature extraction, and a semantic similarity-based attention 

mechanism for refining ADR detection. Model follows a hierarchical architecture that captures both the linguistic 

and semantic properties of social media text while improving classification performance. 

Architecture of DCR-SSM model contains of following components: 

1.  Embedding Layer: 

This layer changes input tokens into dense vector illustrations with Pretrained word embeddings (e.g., Word2Vec or 

GloVe). 



739  
 

J INFORM SYSTEMS ENG, 10(30s) 

𝑋 = [𝑥1, 𝑥2, … 𝑥𝑇] ∈ ℝ𝑇×𝑑 

𝑇 is the sequence length (maximum number of words in a tweets), 

𝑑 is dimensionality of word embeddings (e.g., 50 for GloVe embeddings), 

𝑥𝑡 represents the embedding vector for the word at position 𝑡. 

2. Convolutional Layer: 

This layer applies multiple convolutional filters of varying sizes to capture local n-gram patterns. 

𝑐𝑡 = 𝑓(𝑊𝑐 ∙ 𝑋𝑡:𝑡+𝑘−1 + 𝑏𝑐) 

𝑋𝑡:𝑡+𝑘−1 represents the window of 𝑘 words centred at 𝑡 

𝑏𝑐 is bias term, 

𝑓(∙) is non-linear activation function (ReLU). 

3. Max Pooling Layer: 

This layer executes max pooling on convolutional outputs to extract most prominent features. 

Multiple filters generate feature map: 𝐶 = [𝑐1, 𝑐2, … 𝑐𝑇−𝑘+1] 

which is passed through max-pooling layer to retain most important local features: 

𝑐̂ = max 𝐶 

4. Bidirectional LSTM Layer: 

This layer processes pooled features using a bidirectional LSTM to capture long-range dependencies as well as 

contextual information. 

It processes input in forward as well as backward directions: 

ℎ𝑡
⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀𝑓𝑤𝑑(𝑐̂, ℎ𝑡−1) 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐿𝑆𝑇𝑀𝑏𝑤𝑑(𝑐̂, ℎ𝑡+1) 

Final hidden state is obtained by concatenating both directions: 

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗; ℎ𝑡

⃖⃗ ⃗⃗ ] 

5. Semantic Similarity Layer: 

This layer computes semantic similarity among LSTM outputs as well as a set of predefined ADR-related embedding. 

𝑆(ℎ𝑡 , 𝐸) = 𝑐𝑜𝑠(ℎ𝑡 , 𝐸) =
ℎ𝑡 ∙ 𝐸

||ℎ𝑡||||𝐸||
 

Where 𝑐𝑜𝑠(ℎ𝑡 , 𝐸) represents the cosine similarity between the hidden state and ADR embedding. 

 

6. Attention Layer: 

This layer implements an attention mechanism to concentrate on most relevant aspects of input for ADR 

classification. 

𝛼𝑡 =
exp(𝑊𝑎ℎ𝑡)

∑ exp(𝑊𝑎ℎ𝑡′)𝑡′

 

ℎ𝑎𝑡𝑡 = ∑𝛼𝑡ℎ𝑡

𝑡

 

Where, 
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𝑊𝑎 is the attention weight matrix, 

𝛼𝑡 is the attention score assigned to ℎ𝑡′ 

ℎ𝑎𝑡𝑡 is weighted sum of hidden states. 

7. Fully Connected Layer: 

This layer integrates the outputs from preceding layers and transmits them through a fully linked layer with dropout 

for regularization purposes. A concluding sigmoid activation function is utilized to get the ultimate prediction (ADR 

or non-ADR): 

𝑦 = 𝜎(𝑊𝑜ℎ𝑎𝑡𝑡 + 𝑏𝑜) 

𝑊𝑜 and 𝑏𝑜 are output parameters, 𝜎 represents the sigmoid activation function, 

𝑦 represents probability of tweet containing an ADR mention. 

Model is trained via a “Binary Cross-Entropy (BCE)” loss function accompanied by semantic similarity regularization: 

ℒ = −
1

𝑁
∑(𝑦𝑖 log 𝑦𝑖̂ + (1 − 𝑦𝑖) log(1 − 𝑦𝑖̂)) + 𝜆‖𝑆(ℎ𝑡 , 𝐸)‖

𝑁

𝑖=1

 

𝑦𝑖  is a ground-truth label, 

𝑦𝑖̂ is predicted probability label, 

𝜆 is regularization weight. 

To address class imbalance, weighted loss and data augmentation techniques were employed during training. Table 

1 presents the proposed model's Hyperparameters settings. 

Table 1. Hyperparameters Setting of the Proposed Model 

Hyperparameters Value 

Pooling Size 2 

LSTM Units 128 

Dropout Rate 0.5 

Batch Size 64 

Learning Rate 0.001 

Epochs 70 

Loss Function Semantic Similarity based Binary Cross Entropy 

Optimizer Adam 

Max Words (Tokenizer) 500 

Max Sequence Length 50 

Embedding Dimension 50 

CNN Filters (First Layer) 256 

CNN Kernel Size (First Layer) 5 

CNN Filters (Second Layer) 128 

CNN Kernel Size (Second Layer) 3 

LSTM Units (First) 100 

LSTM Units (Second) 50 

Dropout (Fully Connected Layer) 0.5 & 0.3 

Final Activation Sigmoid 

 

4. RESULTS AND DISCUSSION 

4.1 Evaluation Metrics 

To thoroughly evaluate efficacy of proposed ADR detection framework, we utilize the following assessment metrics: 
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Precision: Precision quantifies the ratio of accurately detected ADR mentions to the total instances categorized as 

ADRs. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Where TP = True Positives, FP = False Positives 

Recall: Recall measures portion of correctly identified ADR mentions among all actual ADR instances. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

Where FN = False Negatives 

F1-score:  F1-score is the harmonic mean of precision as well as recall, offering a fair assessment of the model's 

efficacy. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

Area Under the Receiver Operating Characteristic Curve (AUC-ROC): AUC-ROC measures model's ability to 

differentiate between ADR and non-ADR, mentioning various threshold settings. 

Matthews Correlation Coefficient (MCC):  MCC offers a comprehensive assessment of binary classification quality, 

particularly advantageous for imbalanced datasets. 

𝑀𝐶𝐶 =
((𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁))

√((𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁))

 

Where TN = True Negatives 

 

4.2 Experimental Setup 

The experiments were conducted using the SMM4H dataset (Weissenbacher, D., et al. 2019), containing tweets about 

drug experiences. The dataset was pre-processed and annotated as described in Section 3. A five-fold cross-validation 

method was utilized to guarantee a rigorous assessment of model performance. 

DCR-SSM model was executed via Pytorch and trained on a Tesla V100 GPU. Adam optimizer was employed with 

learning rate of 0.001 as well as a batch size of 64. Model underwent training for 70 epochs, with early stopping 

predicated on validation performance. 

4.3 Performance Evaluation 

 Performance of proposed model is depicted through accuracy plot against number of epochs for training as well as 

validation dataset splits in Fig. 2. Training and validation accuracy curves of proposed DCR-SSM model show a steady 

improvement over 70 epochs, with rapid learning in the initial phase and gradual convergence beyond 20 epochs. 

Training accuracy stabilizes above 80%, while validation accuracy reaches approximately 72%, indicating effective 

generalization with minimal overfitting. The close alignment of the two curves suggests that the model balances bias 

and variance well, leveraging convolutional layers for local feature extraction, recurrent layers for contextual learning, 

and semantic similarity-based attention for enhanced ADR classification. The lack of sudden validation underscores 

the model's robustness, rendering it appropriate for practical pharmacovigilance applications. 
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Figure 2. Accuracy Vs Epochs 

Table 2 compare proposed DCR-SSM along with various state-of-the-art models for ADR detection from social media 

information. Baseline models included in the comparison represent a large range of deep learning architectures as 

well as ensemble techniques, such as transformer-based models (RoBERTa, BERT, DeBERTa, BioBERT, and 

BERTweet), hybrid approaches integrating domain-specific embeddings (ChemBERTa, Byte-Pair Embeddings, 

DeepADEMiner), and multi-task learning strategies. Research by “Magge et al. (2021)”, “Weissenbacher et al. 

(2022)”, and “Sakhovskiy et al. (2021)” showcase different advancements in NLP-based ADR detection, leveraging 

variations in data augmentation (over/under-sampling, SMOTE, domain adaptation) and model fine-tuning 

strategies. 

Table 2: Performance comparison of ADR detection methods 

Method Precision 

(%) 

Recall 

(%) 
 

F1-score 

(%) 

Magge, A., et al. (2021) 

RoBERTa + Under/Over- 

sampling 

61.0  51.5 75.2 

RoBERTa + ChemBERTa 61.0 55.2 68.1 

BERT + Over-sampling + 

Ensemble 

54.0 60.3 48.9 

BERTweet + Pseudo Data  49.0 59.2 41.7 

BERT + Class Weights  46.0 47.2 45.6 

BERTweet + Class Weights  
 

46.0 52.3 40.9 

Multi-task Learning + 

BioBERT + Class Weights 

 

44.0 49.1 39.3 

RoBERTa + SMOTE + DA  
 

40.0 40.5 40.1 

BERT Ensemble + Over- 

sampling 

 

40.0 52.1 32.7 

BERT  
 

23.0 13.5 72.6 

Multi-task Learning + 

Selective Over-sampling 

51.0 51.4 51.4 
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RoBERTa + FastText + 

Byte-Pair Embeddings 
 

 

50.0  

 

55.5 45.9 

RoBERTa 50.0 49.3 50.5 

BERT + BiLSTM + CRF  
 

42.0 38.1 47.5 

Weissenbacher, D., et al. (2022) 

BERTweet-large + DA  

 

69.8 83.9 59.8 

10x RoBERTa-large 69.3 77.2 62.9 

DeBERTa-v3 + AdvT  
 

68.9 79.0 61.1 

RoBERTa + BERTweet + 

EMA 

 

66.2 78.5 57.3 

BERTweet + DeBERTa + 

BioBERT + DA 

 

66.2  

 

76.5 58.4 

T5 + GPT-2 + Over/Under 

Sampling 

 

65.5  

 

68.8 62.5 

 

RoBERTa + In-domain 

Tweets 

 

65.2 73.7 58.5 

Glove + DeepADEMiner 

 

64.2  

 

55.4 76.5 

RoBERTa-base + AdvT 63.7  

 

78.7 53.6 

BERTweet-large + 

RoBERTa-large + CT-BERT 

 

 

61.0  

 

60.6 61.4 

RoBERTa + FGM + PGD 60.1  

 

70.5 52.4 

RoBERTa + Adaptive 

Learning 

 

56.7 67.4 48.9 

RoBERTa + DA + 

Downsampling 

49.1  

 

38.4 68.1 

BERT + Med Data 47.2  60.7 38.6 

BERTweet + Template Aug  43.3  

 

61.4 33.4 

BERT + RoBERTa + 

ERNIE 2.0 

41.3  

 

67.7 29.7 

BERT + BioBERT + XLNet 

+ RoBERTa 

29.9  

 

23.5 40.9 

RoBERTa + BERTweet + 

LDA Loss 

7.7  

 

4.1 54.7 

Sakhovskiy, A., et al. (2021) 

RoBERTa + ChemBERTa + 

Over-sampling + Sigmoid 

55.0  

 

68.0 61.0 
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RoBERTa + ChemBERTa + 

Over-sampling + Sigmoid 

59.0  

 

56.0 58.0 

Proposed Model 

DCR-SSM 

75.0 72.0 73.0 

 

 Performance of models varies significantly across recall, precision, as well as F1-score metrics, with proposed DCR-

SSM model demonstrating superior results in all aspects. Regarding accuracy, existing models show a wide range, 

with the lowest precision recorded at 7.7% (RoBERTa + BERTweet + LDA Loss) and the highest among previous 

models at 69.8% (BERTweet-large + DA). In contrast, the proposed DCR-SSM model achieves a precision of 75%, 

marking an improvement of 5.2% over the best-performing baseline. Similarly, for recall, the prior models range from 

as low as 4.1% (RoBERTa + BERTweet + LDA Loss) to a peak value of 83.9% (BERTweet-large + DA). The proposed 

model achieves a recall of 72%, which, while slightly lower than the top recall score, offers a more balanced 

performance by maintaining high precision alongside recall, avoiding the trade-off observed in several previous 

methods. 

F1-score, provides harmonic mean of precision as well as recall, further underscores superiority of proposed model. 

Previous models demonstrate highly variable F1-scores, with the lowest recorded at 27.5% (BERT + Joint NER & 

Normalization) and the highest among existing methods at 76.5% (Glove + DeepADEMiner). The DCR-SSM model 

acquired an F1-score (73%), placing it among the highest-performing models while ensuring a stable balance between 

precision and recall. The improvements made by DCR-SSM can be attributed to its integration of convolutional and 

recurrent layers, which enable effective feature extraction, along with the inclusion of a semantic similarity 

mechanism and attention-based refinement that improves model’s ability to capture contextually rich ADR mentions 

in unstructured social media text. 

Overall, outcome highlight effectiveness of proposed framework in overcoming imitations of previous ADR detection 

methods. While many prior approaches rely heavily on transformer-based architectures without domain-specific 

enhancements, the DCR-SSM model leverages a more structurally comprehensive approach, integrating CNNs for 

local feature extraction, bidirectional LSTMs for contextual learning, and semantic similarity-based attention to 

refine classification decisions. The significant gains in precision as well as F1-score, coupled with  model’s ability to 

maintain competitive recall, position it as a highly effective solution for ADR detection in social media-based 

pharmacovigilance. Future enhancements could explore improvements in domain adaptation techniques and 

ensemble learning to optimize recall while maintaining high precision. 

Table 3 contrasting the proposed DCR-SSM with conventional ML as well as DL models, specifically “Support Vector 

Machine (SVM), LSTM, Bi-LSTM, and CNN”. These models represent spectrum of approaches used for text 

classification in ADR detection, ranging from classical machine learning (SVM) to more advanced DL architectures 

(LSTM, Bi-LSTM, and CNN), each with varying capabilities in capturing sequential dependencies as well as 

contextual relationships in textual data. 

Table 3: Comparison of the proposed framework with existing models 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

SVM 65.4 68.4 66 67 

LSTM 67.5 71 67.3 68.9 

Bi-LSTM 68.1 71.5 68.2 69.7 

CNN 69.8 72 69 70.6 

Proposed DCR-SSM 72 75 72 73 
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Among the baseline models, SVM achieves the lowest performance, with an accuracy of 65.4%, precision (68.4%), 

recall (66%), as well as an F1-score (67%). This relatively lower performance reflects limitations of traditional ML 

models in dealing with the complex and context-dependent nature of ADR mentions in unstructured social media 

text. The DL models—LSTM, Bi-LSTM, and CNN—show incremental improvements, with CNN achieving the highest 

accuracy at 69.8% and an F1-score of 70.6%. This suggests that CNN's ability to capture local patterns through 

convolutional filters enhances ADR detection compared to purely sequential models like LSTM. 

The proposed DCR-SSM model outperforms all baseline models across all performance metrics, achieving an 

accuracy (72%), precision (75%), recall (72%), as well as an F1-score (73%). Improvement over CNN (highest-

performing baseline) is notable, with an increase in accuracy (2.2%) and F1-score (2.4%). This improvement is due 

to incorporation of bidirectional LSTM layers for capturing long-range dependencies, convolutional layers for local 

feature extraction, and a semantic similarity-based attention mechanism, which enhances model's capacity to 

differentiate ADR mentions from non-ADR text. The 3% increase in precision compared to CNN indicates model’s 

ability to reduce false positives, ensuring higher confidence in ADR classification. 

The results highlight that while traditional DL models like LSTM and Bi-LSTM improve upon classical approaches 

like SVM, the DCR-SSM model provides the most balanced and robust performance. The combination of 

convolutional and recurrent architectures, along with semantic refinement, permits the proposed model to effectively 

capture both local and global text patterns. These improvements position the DCR-SSM model as a highly effective 

tool for ADR detection in social media-based pharmacovigilance, offering both accuracy and reliability in identifying 

adverse drug reactions from unstructured user-generated text. 

The exceptional efficacy of the proposed DCR-SSM model may be attributable to multiple factors: 

• Decision Tree-based feature selection identifies the most informative features, minimizing noise and 

enhancing the model's emphasis on relevant information. 

• The integration of Bag-of-Words encoding with deep learning allows the model to identify both local and 

global patterns within the text data. 

• The recurrent and convolutional components of the DCR-SSM model allow for better capturing of sequential 

dependencies and local patterns in the text. 

• By incorporating semantic similarity measures, the model can better handle variations in how ADRs are 

expressed. 

• The attention layer enables the model to concentrate on the most pertinent segments of the input, enhancing 

its capacity to accurately identify ADR mentions. 

The findings illustrate the capability of utilizing advanced natural language processing and deep learning techniques 

for adverse drug reaction detection from social media data. The proposed framework addresses several challenges 

identified in the literature, such as handling informal language, capturing context, and dealing with imbalanced data. 

5. CONCLUSION 

This study presents a comprehensive framework for detecting ADRs from social media data, particularly Twitter, by 

leveraging advanced NLP and DL approaches. The proposed DCR-SSM combines convolutional and recurrent layers 

with a semantic similarity metric and attention mechanism, facilitating extracting local and global contextual features 

from unstructured text. Upon thorough assessment of the SMM4H dataset, the model exhibited exceptional 

performance, attaining an accuracy of 72%, precision of 75%, recall of 72%, and an F1-score of 73%, exceeding current 

state-of-the-art techniques. Compared to conventional ML (SVM) and DL models (LSTM, Bi-LSTM, and CNN), the 

DCR-SSM exhibited substantial enhancements across all performance metrics, illustrating its robustness and 

generalization proficiency in adverse drug reaction detection. The findings underscore the framework’s potential in 

real-time pharmacovigilance, offering a scalable and cost-effective alternative to traditional ADR monitoring 

systems. This approach can enhance early drug safety surveillance and support decision-making for healthcare 

professionals and regulatory agencies by effectively capturing patient-reported ADRs from social media. Future 

research can extend this framework to multi-lingual ADR detection and explore further optimizations, including 

domain-specific embeddings and adaptive learning techniques, to improve recall and overall classification 

performance. 
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