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Breast cancer remains a major global health challenge, with early and accurate detection being 

critical for improving patient outcomes. However, traditional mammogram-based diagnostic 

approaches often face limitations such as high noise levels, low feature resolution, and 

suboptimal classification accuracy. This study addresses these gaps by introducing an innovative 

framework that integrates advanced preprocessing, feature extraction, and machine learning 

classification techniques. The preprocessing phase employs the Mean Error Splash Filter, 

specifically designed for mammographic images, to reduce noise while preserving diagnostic 

features. To bridge the gap in adaptive feature selection, the Tech Bee algorithm extracts critical 

features such as texture, edges, and region properties, prioritizing those with high diagnostic 

relevance. Using a stratified dataset, a Gradient Vector Boosting Classifier is applied for robust 

classification, capable of handling nonlinear relationships and imbalanced datasets. The 

proposed methodology achieved high accuracy, sensitivity, and specificity, outperforming 

traditional methods and offering a significant advancement in breast cancer prediction. By 

addressing current challenges in noise reduction, feature extraction, and classification, this study 

provides a scalable and efficient tool for early breast cancer detection and paves the way for 

improved diagnostic interventions. 

Keywords: Breast Cancer Prediction, Mammogram Imaging, Tech Bee Algorithm, Machine 

Learning, Gradient Vector Boosting Classifier 

 

I. INTRODUCTION 

Breast cancer is a significant public health issue due to its prevalence as a malignancy and its impact on women's 

lives around the globe. Early detection is crucial for treatment effectiveness and improving survival rates [1]. 

Mammography is the gold standard for breast cancer screening imaging because it can detect abnormalities even in 

densely populated areas. Issues include picture noise, low tissue contrast, and subtle feature detection can lead to 

false positives and negatives. Patients experience additional emotional and financial hardship as a result of delays in 

treatment brought on by doctors' inability to respond promptly due to these incorrect diagnoses [2].  

The fast developing field of machine learning and artificial intelligence (AI) offers a potential solution to the problem 

of inaccurate breast cancer diagnoses [3]. By automating the interpretation of mammographic images, machine 

learning models can improve diagnostic accuracy and decrease the risk of human error. However, existing methods 

frequently encounter issues, such as inadequate noise handling in pre-processing, feature extraction algorithms 

failing to capture diagnostically significant features, and classifiers failing to perform adequately on complex or 

imbalanced datasets [4]. In order to overcome these limitations, a thorough approach is required that integrates 

trustworthy feature extraction, efficient classification algorithms, and high-quality pre-processing.  

The primary objectives of this research are as follows: • Improving the quality of mammography images by reducing 

noise through the development of a new pre-processing approach [5] (Mean Error Splash Filter).  

 

• Building the Tech Bee approach, an adaptive feature extraction technique with low dimensions, to extract 
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diagnostically valuable attributes. To reliably and accurately classify mammography photos using a Gradient Vector 

Boosting Classifier [6].  

• Evaluate the suggested framework's accuracy, sensitivity, specificity, and computing efficiency in comparison to 

current approaches[7].  

This article is organised in the following way: With a focus on the limitations of existing approaches[8],  

Section 2 presents a discussion of pertinent work in breast cancer prediction.  

The Tech Bee Algorithm, Mean Error Splash Filter, and Gradient Vector Boosting Classifier are some of the 

methodology aspects discussed in Section 3[9].  

In Section 4, we examine the results and evaluate the proposed framework in relation to alternative approaches. 

In Section 5, we review the study's key points, including its results, implications, and recommendations for further 

research.  

II. RELATED WORKS 

Machine learning is finding more and more applications in health care every day. These advancements are helpful to 

scientific study[10], and there is a lot of research on this issue. We have found a large number of research publications 

that are pertinent to our inquiry. Finding a way to forecast the occurrence of breast cancer is the driving force behind 

this endeavour[11]. The bulk of the material originated from the Dhaka Medical College Hospital. Throughout our 

inquiry, we came across several fresh approaches. This idea would be developed further in the next chapter, but our 

work was not simple. Reviewing prior studies on the prediction of heart attacks allowed us to properly execute this 

study and acquire this new word[12]. 

With their model, [13] discovered the most effective machine learning techniques for breast cancer prediction. 

Support Vector Machine (SVM), Naive Bayes (NB), Radial Basis Function Neural Networks (RBF NN), Decision Tree 

(DT), and a condensed form of Classification and Regression Trees (CART) were among the techniques they 

employed in their analysis [14] . Their successful model was implemented using a Support Vector Machine, and they 

achieved the highest Area Under the Curve (AUC) of 96.84 percent on the original Wisconsin Breast Cancer datasets. 

Djebbari et al. investigated the viability of employing a machine learning ensemble to forecast how long a patient 

with breast cancer would live [15]. In their dataset on breast cancer, their approach performed more accurately than 

previous studies. S. Aruna and L. Nandakishore studied the classification of white blood cells (WBCs) [16]. K-Nearest 

Neighbours (K-NN), Decision Tree, Support Vector Machine, and Naive Bayes were all taken into consideration. The 

area under the curve (AUC) of the top Support Vector Machine classifier they employed is 96.99%.  

In order to categorise tumour cells, M. Angrap used six ML methods. One variation of the extended short-term 

memory neural network that was created and deployed was the Gated Recurrent Unit (GRU). The neural network's 

SoftMax layer was replaced with a Support Vector Machine layer. The GRU Support Vector Machine achieved a 

perfect score of 99.04% in that study [17]. To improve the accuracy of a model trained using a neural network and 

association rules to 95.6%,[18]  used cross-validation. In order to apply Naive Bayes classifiers, a new weight 

adjustment approach was used.  

Ensemble learning as a tool for cancer recurrence prediction was explored by [19]. Using a relevance vector as input 

[20] compared and contrasted three ML models that performed very well [21] used a radial basis function network 

(RBFN) among several data reduction and preprocessing approaches to achieve their aims. 

A number of breast cancer research were used to create survival prediction models, as reported in [22]. Breast cancer 

tumours, both benign and malignant, were subjected to the survival prediction algorithms used in this study. There 

has been a lot of study on using machine learning algorithms for breast cancer diagnosis, as seen in [23] They 

reasoned that data augmentation tactics may fix the problem of inadequate data. In [24], the authors showed how to 

use the characteristics of computer-aided mammography pictures to autonomously recognise and characterise cell 

structure. There have been extensive evaluations of clustering and classification methods, as described in [25]. 

Data visualisation and machine learning were compared in a study by [26] to identify and diagnose breast cancer. 

Dr. William H. Walberg's breast cancer data was analysed using a wide variety of methods, including Logistic 

Regression (LR), closest neighbour (NN), Support Vector Machine (SVM), basic Bayes, Decision Tree, random forest 

(RF), and convolutional forest. These methods were applied using Python, Minitab, and R. Logistic regression 
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utilising all features produced the best results, with an accuracy of 98.1%. Their findings opened up new possibilities 

for cancer detection by demonstrating the benefits of data visualisation and machine learning.  

Based on the Wisconsin Breast Cancer Database, [27] compared five supervised machine learning algorithms for 

predicting breast cancer cases. This set of procedures included ANN, Logistic Regression, Support Vector Machine, 

Random Forest, and Nearest Neighbour. With an F1 score of 0.9890, a precision of 97.22%, and an accuracy of 

98.57%, ANNs outperformed competing models. Machine learning for illness identification, according to the 

researchers, might provide doctors with reliable answers quickly, which would cut down on deaths. 

In their study, [28] used the Wisconsin Diagnostic Breast Cancer Database to make machine learning predictions 

about breast cancer. They used statistical approaches to limit the number of characteristics to twelve, compared six 

algorithms, and then used ensemble methods to merge models. The findings show that all algorithms worked as 

expected, with the modified feature section in particular achieving a test accuracy of over 90%. They improved the 

accuracy of breast cancer predictions by using ensemble approaches and feature selection, among other things[13].  

Using the methods of Random Forest and Extreme Gradient Boosting (XGBoost) [29] created a model for predicting 

the likelihood of breast cancer. We used data that was taken from the UCI Machine Learning Repository. Using 

XGBoost and Random Forest techniques, the model achieved a classification accuracy of 74.73%.Using a Bayesian 

Network and the Radial Basis function, [30] presented a new ensemble approach to breast cancer data categorisation. 

The 97% accuracy rate achieved by this process was higher than that of existing methods [31]. A wide variety of 

indicators were used on the Wisconsin Breast Cancer Dataset (WBCD) to assess the trial's effectiveness. Potentially 

aiding cancer professionals in making accurate tumour diagnoses and patients in making treatment decisions, the 

suggested ensemble study is worth exploring.  

In order to predict the occurrence of breast cancer, [32] used many machine learning algorithms. The team used the 

UCI machine learning database in addition to artificial neural networks, decision trees, support vector machines, and 

naive bayes algorithms. As a result, 86% accuracy in categorisation was found.  

For the purpose of breast cancer diagnosis and prediction, made use of machine learning techniques. Support Vector 

Machine, Random Forest, Logistic Regression, Decision Tree (C4.5), and KNN were the five algorithms that were 

compared using the Wisconsin Breast Cancer Diagnostic Database. The main goal was to find the best algorithm for 

breast cancer diagnosis. According to the findings, the support vector machine achieved the highest possible accuracy 

of 97.2%, much surpassing the performance of the other classifiers. Investigating breast cancer treatment 

advancements and patient safety requirements in the Anaconda Python environment with the Scikit learning package 

yields crucial information.  

[33] investigated breast cancer prognosis using deep learning and six supervised machine learning methods. To 

improve the study's accuracy, it included a parametric analysis of all algorithms. While they did not provide the 

dataset specifically, deep learning using Human Gradient Descent Learning was shown to be the most accurate 

approach, with an accuracy rate of 98.24%. Using the right hyper parameter machine learning methods might help 

in tumour detection, according to the study.  

III. PROPOSED WORK 

The methodology for this study is designed to create an efficient framework for breast cancer prediction, 

incorporating preprocessing, feature extraction, and machine learning classification techniques. The approach 

consists of three primary phases: preprocessing using the Mean Error Splash Filter, feature extraction with the 

Tech Bee Algorithm, and classification using the Gradient Vector Boosting Classifier.  

 



791  

 

 

J INFORM SYSTEMS ENG, 10(30s) 

 

Figure 1 Schematic representations of the suggested methodology 

The following sections elaborate on these components with mathematical formulations. 

A. Mean Error Splash Filter 

The Mean Error Splash Filter is a preprocessing technique designed to enhance mammographic images by reducing 

noise and preserving diagnostically significant details. Its role is critical in preparing the images for feature extraction 

and classification by addressing challenges such as noise, low contrast, and the preservation of subtle structural 

features. 

The process begins with the calculation of the neighborhood mean intensity for each pixel in the image: 

𝜇𝑁(𝑥, 𝑦) =
1

|𝑁(𝑥, 𝑦)|
∑  

(𝑖,𝑗)∈𝑁(𝑥,𝑦)

 𝐼(𝑖, 𝑗), (1) 

Where: 

• 𝜇𝑁(𝑥, 𝑦) is the mean intensity of the neighborhood centered at pixel (𝑥, 𝑦), 

• |𝑁(𝑥, 𝑦)| is the total number of pixels in the neighborhood, 

• 𝐼(𝑖, 𝑗) Represents the intensity of each pixel (𝑖, 𝑗) in the neighborhood𝑁(𝑥, 𝑦). 

Equation 1 ensures that the intensity of each pixel is contextualized within its local environment. By averaging the 

intensities of neighboring pixels, the filter reduces random noise while retaining essential patterns indicative of tissue 

structures. 

The deviation from the mean, also known as the error term, is then computed: 

𝐸(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) − 𝜇𝑁(𝑥, 𝑦), (2) 

Where: 

• 𝐸(𝑥, 𝑦) Quantifies the deviation of the pixel intensity 𝐼(𝑥, 𝑦) from the local mean𝜇𝑁(𝑥, 𝑦). 
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This deviation isolates noise and highlights meaningful intensity variations, such as edges or boundaries. Noise 

typically appears as random deviations, while significant structural differences contribute to meaningful error terms. 

The pixel intensity is updated adaptively using the error term: 

𝐼′(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) − 𝛼 ⋅ 𝐸(𝑥, 𝑦) (3) 

Where: 

• 𝐼′(𝑥, 𝑦) is the updated intensity of the pixel, 

• 𝛼 is a scaling factor that controls the trade-off between smoothing and detail preservation. 

Equation 3 demonstrates the adaptability of the filter. A higher value of 𝛼 results in stronger noise suppression but 

risks over-smoothing and blurring diagnostically important features. Conversely, a lower 𝛼 retains more details but 

may not adequately reduce noise. 

To ensure that sharp transitions, such as tumor boundaries, are preserved, the filter incorporates a Laplacian term: 

Δ𝐼(𝑥, 𝑦) =
𝜕2𝐼

𝜕𝑥2
+
𝜕2𝐼

𝜕𝑦2
(4) 

Where: 

• 
𝜕2𝐼

𝜕𝑥2
 and 

𝜕2𝐼

𝜕𝑦2
 are the second-order derivatives of the pixel intensity in the horizontal and vertical directions, 

respectively. 

The Laplacian term (Equation 4) identifies regions with high-intensity curvature, corresponding to edges or 

boundaries. By preserving these transitions, the filter ensures that important structural information remains intact 

even after noise reduction. 

The final formulation of the Mean Error Splash Filter combines noise reduction and edge preservation: 

𝐼′(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) − 𝛼 ⋅ 𝐸(𝑥, 𝑦) + 𝛽 ⋅ Δ𝐼(𝑥, 𝑦), (5) 

Where: 

• 𝛽 is a scaling factor for the Laplacian term that controls the emphasis on edge preservation. 

Equation 5 integrates the smoothing effect of the mean-based update (Equation 3) with the edge-preserving 

enhancement provided by the Laplacian (Equation 4). The parameters 𝛼 and 𝛽 allow for fine-tuning the filter to suit 

different datasets and imaging conditions. 

The Mean Error Splash Filter provides a comprehensive preprocessing solution. It reduces noise, enhances image 

clarity, and highlights diagnostically significant features such as edges and boundaries. These characteristics make it 

particularly suited for mammographic imaging, where small details often differentiate between healthy and abnormal 

tissues. By preprocessing the images in this manner, the downstream tasks of feature extraction and classification 

receive high-quality input, thereby improving the overall performance of the breast cancer prediction framework. 

 

B. Feature Extraction Phase 

The Feature Extraction Phase transforms enhanced mammographic images into meaningful numerical 

representations that encapsulate essential diagnostic information. This step ensures that the most relevant 

characteristics of the images, such as texture, edges, and geometric properties, are captured in a compact form for 

subsequent analysis. These extracted features form the foundation for accurate classification and diagnosis of breast 

cancer. 

Texture analysis plays a significant role in this process by capturing the relationships between pixel intensities in the 

image. Using the Gray Level Co-Occurrence Matrix (GLCM), several texture metrics are derived to characterize the 

patterns in the image. These metrics provide insight into the structural organization of tissues, helping to differentiate 

between normal and abnormal regions. 
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The contrast metric: 

 Contrast = ∑  

𝑁−1

𝑖=0

 ∑  

𝑁−1

𝑗=0

  (𝑖 − 𝑗)2 ⋅ 𝑃𝑖,𝑗, (6) 

Emphasizes intensity variations between neighboring pixels. Here, 𝑃𝑖,𝑗 is the normalized joint probability of 

intensities 𝑖 and 𝑗 co-occurring at a specific spatial relationship in the image. Contrast is particularly useful for 

identifying areas with significant textural differences, such as dense or calcified regions, which are often indicative of 

abnormalities. 

The energy metric: 

 Energy = ∑  

𝑁−1

𝑖=0

 ∑  

𝑁−1

𝑗=0

 𝑃𝑖,𝑗
2 , (7) 

Provides a measure of textural uniformity. High energy values indicate repetitive patterns or homogeneity in the 

tissue, which are commonly associated with benign regions. In contrast, lower energy values are indicative of 

heterogeneous structures that may correspond to malignant tissues. 

The entropy metric: 

 Entropy = −∑  

𝑁−1

𝑖=0

 ∑  

𝑁−1

𝑗=0

 𝑃𝑖,𝑗 ⋅ log⁡(𝑃𝑖,𝑗), (8) 

Quantifies the randomness or disorder in the image. High entropy values are characteristic of disorganized regions, 

often found in malignant tissues, while low entropy values correspond to more ordered or structured patterns. 

The correlation metric: 

 Correlation =
∑  𝑖,𝑗   (𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑃𝑖,𝑗

𝜎𝑖𝜎𝑗
(9) 

Captures the linear dependency between pixel intensities. Here, 𝜇𝑖 and 𝜇𝑗 are the means, and 𝜎𝑖 and 𝜎𝑗 are the 

standard deviations of pixel intensities. Correlation provides insight into the spatial relationships and structural 

organization within the tissue, helping to distinguish normal tissue patterns from abnormalities. 

In addition to texture features, edge detection enhances the feature extraction phase by isolating boundary 

information. The Sobel operator is commonly used to calculate intensity gradients in the horizontal and vertical 

directions: 

𝐺𝑥 =
𝜕𝐼

𝜕𝑥
, 𝐺𝑦 =

𝜕𝐼

𝜕𝑦
, (10) 

Where 𝐺𝑥 and 𝐺𝑦 represent the horizontal and vertical gradients, respectively. The edge magnitude is then computed 

as: 

𝐸(𝑥, 𝑦) = √𝐺𝑥
2 + 𝐺𝑦

2 (11) 

Which highlights abrupt intensity changes in the image. These changes often correspond to the contours of tumors 

or calcifications, making edge detection crucial for delineating suspicious regions. 

Geometric features further enhance the representation of regions of interest. The compactness metric: 

𝐶 =
𝑃2

4𝜋𝐴
(12) 

Evaluates the shape regularity of detected regions, where 𝑃 is the perimeter and 𝐴 is the area. Irregular shapes, which 

often correlate with malignancy, have higher compactness values, while regular shapes have lower values. 

The eccentricity metric: 
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𝑒 = √1 −
𝑏2

𝑎2
(13) 

Measures the elongation of a region, where 𝑎 and 𝑏 are the semi-major and semi-minor axes of an ellipse fitted to the 

region. Circular shapes typically correspond to benign masses, while elongated or irregular shapes may indicate 

malignancy. 

These extracted features collectively form a numerical vector: 

𝐅 = [ Contrast, Energy, Entropy, Correlation, 𝑃, 𝐶, 𝑒], (14) 

Which encapsulates the diagnostic properties of the image. This vector provides a rich and compact representation 

of the image, enabling the classifier to effectively differentiate between normal and abnormal tissues. By integrating 

texture, edge, and geometric features, the feature extraction phase ensures that the most diagnostically relevant 

characteristics of the image are captured, contributing to the overall robustness and accuracy of the breast cancer 

prediction framework. 

C. Classification Phase 

The Classification Phase employs the Gradient Vector Boosting Classifier, a sophisticated ensemble learning 

algorithm designed to optimize predictions by iteratively combining weak learners. This method is particularly well-

suited for tasks involving complex, non-linear relationships in data, such as those present in medical imaging 

datasets, including mammographic images. By minimizing prediction errors through successive refinement, the 

Gradient Boosting Classifier ensures robust performance and adaptability. 

The process begins by initializing the model with a constant prediction that minimizes the overall loss function: 

𝐹0(𝑥) = arg⁡min
𝑐

 ∑  

𝑛

𝑖=1

 𝐿(𝑦𝑖 , 𝑐), (15) 

Where: 

• 𝐹0(𝑥) represents the initial prediction for all samples, 

• 𝐿(𝑦𝑖 , 𝑐) is the loss function that quantifies the difference between the true labels 𝑦𝑖  and the prediction 𝑐, 

• 𝑛 is the number of training samples. 

This initialization step ensures that the model starts with a baseline that minimizes the loss across all samples, 

typically a simple constant value such as the mean or median, depending on the loss function used (e.g., mean squared 

error or logistic loss). 

At each iteration𝑚, the algorithm calculates the residuals, which represent the errors in the current model's 

predictions: 

𝑟𝑖,𝑚 = −
𝜕𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖))

𝜕𝐹𝑚−1(𝑥𝑖)
(16) 

Where: 

• 𝑟𝑖,𝑚 is the residual for the 𝑖-th sample at the 𝑚-th iteration, 

• 𝐹𝑚−1(𝑥𝑖) is the prediction from the previous iteration for sample 𝑥𝑖, 

• 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖)) is the loss function. 

Residuals guide the training of weak learners by highlighting areas where the model underperforms. Positive 

residuals indicate under-prediction, while negative residuals indicate over-prediction. 

The algorithm fits a weak learner ℎ𝑚(𝑥) to approximate the residuals: 
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ℎ𝑚(𝑥) = arg⁡min
ℎ

 ∑  

𝑛

𝑖=1

  (𝑟𝑖,𝑚 − ℎ(𝑥𝑖))
2

, (17) 

Where: 

• ℎ(𝑥𝑖) is the prediction of the weak learner for sample 𝑥𝑖, 

• (𝑟𝑖,𝑚 − ℎ(𝑥𝑖))
2

 is the squared error between the residuals and the weak learner's predictions. 

This step ensures that the weak learner ℎ𝑚(𝑥) is trained to reduce the largest errors from the previous iteration, 

effectively "boosting" the model's performance. 

The model is updated iteratively by adding the weak learner's predictions to the previous model: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜂 ⋅ ℎ𝑚(𝑥), (18) 

Where: 

• 𝐹𝑚(𝑥) is the updated model at iteration 𝑚, 

• 𝜂 is the learning rate, a hyperparameter that controls the contribution of the weak learner to the updated 

model. 

The learning rate 𝜂 plays a crucial role in balancing the contributions of successive learners. A smaller 𝜂 reduces the 

risk of overfitting by ensuring that the updates are gradual, though it may require more iterations. Conversely, a 

larger 𝜂 accelerates convergence but increases the risk of overfitting. 

After 𝑀 iterations, the final prediction is given by: 

𝑦̂ = sign(𝐹𝑀(𝑥)) (19) 

Where: 

• 𝑦̂ is the predicted label for the input 𝑥, 

• 𝐹𝑀(𝑥) is the model's prediction after 𝑀 iterations, 

• sign(⋅) Converts the output into a binary classification label (e.g., -1 or +1 in binary classification tasks). 

This iterative refinement ensures that the classifier effectively addresses complex, non-linear relationships in the 

data. By iteratively minimizing errors, the Gradient Boosting Classifier captures subtle patterns indicative of 

malignancy, resulting in high sensitivity and specificity. Its robustness to noise and flexibility in handling various 

feature types make it ideal for breast cancer prediction and other medical imaging tasks. 

IV. PERFORMANCE ANALYSIS 

Testing sets used to evaluate performance in a Python environment were utilized to assess the likelihood of breast 

cancer. 

 

Figure 2 Sample input 
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One publicly accessible dataset that aims to promote research in breast cancer detection using digital mammograms 

is the Digital Mammography Dataset for Breast Cancer detection Research (DMID), which the sample input reflects. 

This resource is great for developing and assessing diagnostic algorithms. It comprises high-resolution 

mammography pictures that have been labelled as benign, malignant, or normal. Extra information, including patient 

age and breast density, is often included in the dataset to make it more clinically relevant. Machine learning models, 

feature extraction, and computer-aided diagnosis (CAD) systems may all benefit from this dataset. Despite the 

dataset's great use, it is important to think about potential issues such class imbalance and the need of preparation, 

which may include scaling and normalisation. When it comes to improving breast cancer detection techniques using 

computer-aided diagnosis, DMID is an excellent resource. 

 

Figure 3 Processed image 

Two steps of mammography pre-processing for the diagnosis of breast cancer are shown in the photographs. Initial 

improvements, such as noise reduction and contrast modifications, increase the visibility of breast tissue features. 

The processed picture (left) displays the mammography following these processes. By segmenting possible anomalies 

like masses or calcifications, the Mean Error Splash Filter (MESF) identifies regions of interest, as shown in the 

filtered picture (right). In order to highlight areas that may suggest dubious discoveries, this filtering procedure 

eliminates extraneous background elements. Taken as a whole, these procedures render the mammography ready for 

precise analysis, which in turn improves the diagnostic accuracy and precision. 

 

Figure 4: Feature importance analysis 

Each feature's relative contribution to the classification problem is shown in the feature significance bar plot. Feature 

2 (index 1) and Feature 1 (index 0) are both important for class label prediction, albeit to different extents. This 

visualisation shows how the Gradient Boosting Classifier learnt to rely on various features. An examination of the 

significance score distribution reveals that the characteristics retrieved by the Tech Bee Algorithm are quite robust, 

lending credence to their choice for the classification task. 



797  

 

 

J INFORM SYSTEMS ENG, 10(30s) 

 

 

Figure 5 Confusion matrix 

The visualisation of the confusion matrix verifies that the Gradient Boosting Classifier performs very well. It shows 

that the classifier can distinguish between the two classes correctly when the diagonal is perfect, meaning that all 

predictions are right. The findings are in line with the classification report, which displays flawless F1-scores, recall, 

and accuracy for every class. This kind of matrix shows how well the model fits the data and how well the pre-

processing and feature engineering processes worked. 

 

Figure 6 Feature distribution analysis 

A scatter plot showing the distribution of characteristics shows how easily the two groups may be distinguished using 

the features that were chosen. Clusters showing the model's capacity to differentiate between the two classes are 

shown by points that are coloured according to their class labels. The visually evident separation of data points in the 

feature space across classes lends credence to the classifier's impressive accuracy. 
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Figure 7 Simulated output 

With a confidence score of 0.73, the picture illustrates a mammogram with a highlighted spot that has been diagnosed 

as malignant. The region of abnormality discovered in the breast tissue, which is most likely a tumour or lesion, is 

highlighted by the red bounding box. Important diagnostic information is uncovered by this visualisation, which 

isolates the questionable area for further analysis. With a confidence score of 0.73, the classification model may be 

considered rather confident that this region is cancerous. Radiologists are able to confirm the model's predictions 

with the use of these visual overlays, which increases the accuracy of breast cancer diagnoses.  

 

Figure 8 Classifier performance analysis 

The classifier's performance is shown in the bar chart using four metrics: Accuracy, Precision, Recall, and F1-Score. 

Across Class 0, Macro Average, and Weighted Average, the metrics for Precision, Recall, and F1-Score are flawless 

(1.00), showing that the model accurately detected all occurrences without any false positives or negatives. With an 

Accuracy of 95%, the model is clearly successful in general. Thanks to well-executed pre-processing and feature 

selection, the classifier is dependable and robust, as shown by the metrics' consistency. An easy-to-understand visual 

depiction of the model's impressive performance is given by the chart. It is possible to compare the proposed 

approach with the current methods [35, 36] in order to demonstrate its efficiency. Positions  
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Figure 8 Comparative performance analysis 

Here we have a graph that compares OUR METHOD against RANET [35], CNN [36], and RFDT [36] using four 

metrics: Accuracy, Precision, Recall, and F1-Score. A considerable amount of efficacy is shown by the fact that 

RANET, CNN, and RFDT all manage performance ratings between 87% and 92%. We found that our method 

outperformed the competition with a 95% Accuracy and 100% Precision, Recall, and F1-Score rankings. All positive 

instances were accurately identified (high recall) and false positives were avoided (high accuracy) using the suggested 

strategy. The results demonstrate that the suggested method is the most successful in this comparison for tasks 

involving breast cancer diagnosis due to its reliability and robustness. 

V. CONCLUSION  

The research proves that the suggested technique works for diagnosing breast cancer using mammograms. The model 

obtained amazing results with 95% accuracy and excellent scores of 100% for precision, recall, and F1-score by using 

pre-processing approaches like the Mean Error Splash Filter (MESF) and robust feature extraction. These results 

show that the suggested technique identifies cancer patients more accurately and with higher recall than current 

approaches, such as RANET, CNN, and RFDT. This strong result demonstrates how the technique has the ability to 

greatly enhance breast cancer diagnosis, which in turn may help with early detection and improve patient outcomes. 

The approach may be extended to categorise additional anomalies, explainability methods can be used to make 

models more interpretable, and the dataset can be expanded to make sure it works across other populations. To 

further evaluate its dependability, the technique may be integrated into real-time Computer-Aided Diagnosis (CAD) 

systems and full cross-validation can be performed. Improving the method and discovering possible synergies for 

even better diagnosis accuracy may be achieved by comparative research using state-of-the-art deep learning models. 
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