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Hybrid renewable energy sources (HRESs), including wind and photovoltaic systems (PV), 

are gaining popularity as alternatives to traditional sources for power in distributed 

generation, with the integration of energy storage systems(BAT) enhancing their 

effectiveness, such as battery, are important for ensuring equilibrium between the variable 

nature of energy production and the changing conditions of dynamic RL load. The situation 

demands sophisticated power control and management strategies to address difficult 

circumstances. This study examines and assesses an effective method for regulating DC bus 

voltage and enhancing power quality under conditions of dynamic load variation. The 

proposed power management strategy for hybrid renewable energy systems uses a deep 

learning intelligent controller, particle swarm optimization (PSO), Recurrent Neural 

Networks (RNN) and Convolution Neural Networks (CNN), creating an innovative an 

oversight power management structure designed for photovoltaic systems equipped with 

battery storage. The goal is to maintain consistent power flow, ensure quality through Total 

Harmonic Distortion, and ensure uninterrupted service by preventing system components 

from exceeding operational limits, enhancing DC link bus voltage regulation in renewable 

hybrid systems. 

Keywords: PV, Wind, Battery, dc/dc Converter, VSI, PI-PSO,RNN,and CNN. 

I. INTRODUCTION  

Global warming, the depletion of fossil fuel supplies, and rising energy use highlight the importance of renewable 

energy alternatives must be developed. Using data at several sites to guide operating choices, Author [1] created a 

hybrid wind-PV system for effective power management, showcasing an innovative method to power management. A 

BAT-Fuzzy control approach is put out by [2] for a HRESs that integrates a PV with BES. The best parameter values 

for MPPT are found using the fuzzy controller and the BAT method. Simulations demonstrate improved stability and 

quick reaction in transient situations. An experimental investigation on a freestanding hybrid micro grid system using 

RES as wind turbines, PV, fuel cells (FC), and BAT was carried out by [3]. The hybrid system, designed for distant 

applications, utilizes speed controllers for wind and SIFL controllers for solar subsystems, and An energy management 

approach that focuses on the charge level of batteries. [4] Explore optimal design, power management, and control 

strategies for hybrid Grid-tied PV and BAT storage of energy and wind power conversion systems. This research aims 

to maintain stable DC-link voltage, smooth stator and rotor currents, and steady active power output using a moth-

flame optimized fuzzy logic controller. A hybrid system that combines biomass, PV, WT, and battery storage is 

suggested by [5]. For the suggested hybrid setup, four optimization techniques are employed to maximize 

performance, guaranteeing that energy demands are satisfied while lowering COE. In this paper [6] improve CNN-

LSTM hyper parameters using Coati optimization method in enhancing performance and learning rate in solar and 

wind power forecasting. An ANFIS controller and Management technique for supervisory power regulation are used 

in the work by [7] to investigate a method for controlling DC bus voltage in solar systems. By keeping system 

components from going above operating thresholds, the objective is to maintain steady power flow and guarantee 
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continuous service. The intelligent control of the SEPIC Converter in electric car charging systems is examined in a 

research by [8]. In order to solve imbalance issues and accomplish sustainable development objectives, they employ a 

proportional-integral controller and calculated state of charge. By merging CNN and DQN in a hybrid architecture, 

[9] created a power management method that outperformed conventional models with A processing duration of 0.2 

seconds accompanied by an energy dissipation of 0.01 megawatts. In this manuscript [10] trained and validated 

models for forecasting future energy consumption using convolution neural networks utilizing data from 

Pennsylvania's "ensue" dataset and The ‘International Renewable Energy Agency’ evaluated the models' performance 

using criteria This encompasses metrics like mean absolute error, average squared error, root mean square error, and 

average constant error expressed as a percentage. Author [11] highlight power quality issues in photovoltaic micro 

grids due to changes in solar irradiance, load fluctuations, and switching activities. Deep learning, using MATLAB, 

enhances disturbance detection and classification using Hamiltonian Deep Neural Networks (HDNN). The study 

explores energy consumption, scheduling, and management in demand response systems for electric utilities, 

incorporating alternative energy sources like PV, thermal, CHP, and wind. It uses heuristic algorithms for smart 

appliance scheduling and management. The study by [13] proposes a strategy to enhance grid stability by integrating 

Energy Storage Systems with a Pyramidal Dilation Attention Convolutional Neural Network, thereby reducing 

electricity expenses. An ANFIS method is used in the work by [14]to predict the instantaneous photovoltaic power 

database and optimize the size of solar panel-battery systems and energy management in smart grids. The 2023 

research by [15] addresses the issues with micro grid systems by emphasizing network designs, peak-shaving and 

optimum power flow. They point to block chain technology, metaheuristic techniques, and reinforcement learning as 

viable options for energy management, decentralization, and cybersecurity in microgrid systems. An overview of micro 

grids is given by [16], who concentrate on their energy management techniques and operating procedures. In order 

to ensure utility providers' profitability, the energy management system (EMS) plays a crucial role in balancing energy 

resources such as distributed generation, conventional generation, power storage systems, and power-driven cars with 

load needs. The article classifies EMS approaches and identifies study areas. In order to provide a continuous power 

supply, [17] suggest a DC micro grid energy management method that integrates battery energy, wind, and PV in a 

hybrid green power system Battery energy storage, wind turbines, and solar panels make up a hybrid clean energy 

system. Simulations and laboratory validation are used to assess the strategy's utilization of LSTM networks for energy 

generation and battery status prediction. 

 

Fig. 1 System Modeling 

This study's simulation model integrates a controlled grid with photovoltaic, wind, and battery energy sources, with 

the battery connected via a bi-directional converter and photovoltaic and wind sources via a DC/DC step-up converter 

system illustrated in figure 1. The existing HRESs conversion DC source is linked to a shared DC bus equipped with a 

capacitor. The DC power is supplied to the dynamic resistive-inductive (RL) load via a voltage source inverter that is 

optimally managed by the proposed EMC system.The VSI control reference signal is generated using an EMC system, 

comparing load parameters and DC link capacitor bus voltage. The power conversion system is managed using PSO-

PI, PSO-PI-RNN, and PSO-PI-CNN controllers for energy management. The study conducted simulations to analyze 

the dynamic load change configurations of a (HRPS), which uses PV and wind energy, a battery for backup storage, 

and a controlled grid supply for responsive load management. The efficiency of the suggested methodology is 

illustrated using various kinds of EMS techniques and extensive simulation scenarios in the Matlab/Simulink 
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environment. The existing HRESs conversion DC source is linked to a shared DC bus equipped with a capacitor. The 

DC power is supplied to the dynamic resistive-inductive (RL) load via a voltage source inverter that is optimally 

managed by the proposed EMC system. Connected in parallel, the DC power conversion system delivers power to a 

(DC/AC) VSI inverter, which in turn is associated with a dynamic resistive-inductive load. 

II.  SYSTEM ARCHITECTURE 

A. System Description and Modeling  

The design of a HRPS, which integrates a controlled grid, comprises a solar photovoltaic system is connected to a direct 

current converter., alongside a wind turbine linked to a PMSG that interfaces with a controlled rectifier. Furthermore, 

the system incorporates a backup storage solution consisting of rechargeable batteries, which are managed through a 

bi-directional DC converter for charging and discharging. A common DC link capacitor bus serves to unify all energy 

sources. This common DC source is then connected to a (VSI), which supplies a dynamic AC resistive-inductive load. 

The entire system is governed by an energy management framework utilizing PSO-PI, PSO-PI-RNN, and PSO-PI-CNN 

methodologies. 

B.  PV Models  

Figure 2 shows a generic model equivalent circuit with a photocurrent source, diode, parallel resistor, and series 

resistor. Equation (1) illustrates photovoltaic current expression in relation to solar cell circuit and Kirchhoff's circuit 

laws application. 
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The equation 'Iph' represents the saturation current, 'Ipv' represents the photovoltaic current, 'Vd' represents the diode 

voltage, 'Tc' the absolute cell temperature, and 'Rp' the parallel resistance. The photocurrent 'Iph' is primarily influenced 

by The equation (2) that follows outlines the relationship between solar insolation and the temperature of the cell. 

( ) GITTI scrcSCph .+−=    (2) 

 

Fig. 2 PV Equivalent circuit 

 

 

Fig. 3 P-V and I-V the characteristics 
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TABLE I.  SPECIFICATION 

Parameters Values 

Model ‘Solartech ISTH-215-P’ 

Series conneced , 4 Nos 

Parallel Strings 4 Nos 

Short circuit current(Isc) 8.95 A 

Open circuit volt(Voc) 45.22 V 

Module Maximum current(Imax) 8.45 A 

Maximum volt (Vmax) 37.28 V 

maximum Power(Pmax) 315 W 

Within this framework, ‘μsc’ signifies the heat coefficient pertinent to the ‘Isc’ of photovoltaic cells. The term ‘Tr’ is used 

to denote the reference temperature of these cells, whereas ‘Isc’ indicates the ‘Isc’ at standard conditions of 25°C and 

1 kW/m². Additionally, G represents the solar irradiance, expressed in kW/m² respectively. Figure 3 demonstrates the 

P-Vand I-V characteristics of a PV panel, produced under variable conditions of solar irradiance and temperature, 

represented by G(W/m²) values. The study highlights the necessity of implementing a (MPPT) algorithm to guarantee 

that the system consistently functions at its optimal power output 

C. Wind Models 

The wind system simulation model's technical parameters show table 2 that The wind facility's electrical generation is 

directly linked to the wind's speed. The following equations (3) through (4) can be used to express the power delivered. 
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TABLE II.  WIND SYSTEM PARAMETERS 

Parameter Values 

Wind turbine 

Velocity of wind  12m/s 

Power 2.5KW 

PMSG Generator details 

speed 4000rpm 

DC/DC system Diode  Bridge 

Voltage During Operation 100V 

Current capacity 50A 

Power capacity 5000 Watts 

In equation (3), 
3

wv  represents the wind swiftness, Cp denotes the Coefficient associated with wind energy, ρa indicates 

the air volume, "R" stands for the blade's radius., S (m²) signifies the operative surface area swept by the blade, and λ 

represents the pitch angle of the wind blade along with the tip speed ratio. In equation (4), 'R' and 'ΩT' correspond to 

the wind turbine's rate of rotation and blade radius, respectively. The torque  on the shaft cab be calculated using 

equation (5) The rotational speed  is measured from PMSG’s model 
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D. Battery energy system(BES) 

The (BES) system serves as a supplementary resource for the power generator, providing crucial electricity during 

periods of inadequate output from RES and the grid system, employing a bi-directional (Buck-Boost) converter. 

TABLE III.  BATTERY PARAMETERS 

Parameter Values 

capacity 50 (Ah) 

Rated Voltage 370 V 

Voltage Obtainable 355 (VA) 

Charging ampere 21.05 (A) 

Rated Charging Volt 415 (V) 

dt
C

I
SoCSoC

t

to
bat

bat

 



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


+=    (6) 

The variable Ibat represents the battery current, while Cbat denotes the battery's rating illustrate in Table 3. The 

recommended EMS controller regulates the available solar energy (PPV) and the load power characteristic (PL) to 

provide appropriate charging and discharging procedures using the buck-boost conversion system. 

E. A three-phase RL loads 

Dynamic variations can influence both the actual and reactive inductance loads associated with the HRPS system. The 

rating of the inductive load varies within a specified time interval. The system functions at a voltage level of 380 volts 

and a frequency of 50 hertz. In instances where renewable power is insufficient, grid power is employed to meet the 

power usage needs, facilitated by the proposed EMS. The specifications for the 3ph inductive load are exhaustive in 

Table 4. 

TABLE IV.  AC LOAD DETAILS 

Description Specification 

Voltage 400V 

Frequency 50Hz 

Resistance 5KW/phase/7KW/phase 

Inductance 5KVA/phase/7KVA/phase 

 

III. POWER REGULATION CONTROL SYSTEM  

Hybrid green power encompasses a diverse range of sources, which is is necessary for optimal performance of the 

energy management system (EMS)..The implementation of three distinct algorithms for the EMS strategy is necessary 

to achieve optimal performance in response to dynamic load demand fluctuations and varying configurations of hybrid 

renewable power systems (HRPS). 
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Fig.4 PMS control system based on states 

The primary energy sources for photovoltaic (PV) and wind systems are characterized by their intermittent nature, 

which often leads to a mismatch with load demand. The discrepancy necessitates the use of additional backup systems 

like storage energy and the control grid to effectively manage and store renewable power. In the present work h study, 

the authors have designed EM control system for hybrid power systems (HPS) that integrates a PV, wind and a 

battery. The algorithm developed allows the adoption of different operational modes in electricity management 

methods, taking into account elements such as PV generator energy production, wind resources, battery levels, and 

SOC, as depicted in figure 4. 

Mode 1: The system is designed to harness surplus power generated from PV systems, wind power, and a controlled 

electrical grid, thereby facilitating the management of load discrepancies through the charging of the capacitor. Mode 

2: During this phase, there was a reduction in both wind speed and photovoltaic (PV) insolation, whereas the power 

from the grid remained constant. To produce the required power output, effective load management is crucial. 

Additionally, the battery was in charging mode throughout this interval. 

Mode 3: In this configuration, the provision of direct current power to the load is facilitated by the grid functioning 

independently, accompanied by fluctuations in both photovoltaic and wind energy production. 

Mode 4: The insolation from the photovoltaic (PV) system was progressively reduced, while the wind speed 

maintained stability as observed in the preceding mode. The battery was completely emptied, allowing the grid to 

effectively manage the demand, and any extra electricity was sent to recharge the battery unit. 

Mode 5: The shortfall in wind energy production is offset by contributions from both the grid and the photovoltaic 

system. 

A. Over View of PSO  

A population-based technique called PSO employs particles as potential solutions to issues. These particles are 

governed by mathematical equations, with their movement influenced by their position and the positions of other 

particles. A fitness function assesses each particle's performance, identifying the optimal solution. The global optimum 

is determined through iterative generations within an n-dimensional search space, where particles' positions and 

velocities are continuously updated  

   
TT

iniiiiiniii xxxxxandvvvv ....., 3,21,21 ==  (7) 

Respectively. 
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The position of particles signifies potential solutions within an n-dimensional search space, while their velocity reflects 

the variation between these positions as described in equation (8). Each particle possesses an optimal position that 

aligns with the best solution obtained up to the current time  

 Tiniii pppp ....21=        (8) 

The global best particle, referred to as pg, signifies the most optimal particle at time t within the entire swarm, with its 

updated velocity determined by equation (9). 

))(()())(()()1( 2211 txprctxtxprctwvtv ijgiijijijijij −++−+=+               (9) 

nj ,...2,1=  

The location of each particle is revised in every generation based on equation (10). 

njtvtxtx ijijij ,...2,1),1()()1( =++=+   (10) 

with variables w representing inertia weight, acceleration coefficients c1 and c2 denoted by r1 and r2. 

B. Design of PSO-PID Controller 

This study presents a PID controller that employs (PSO) algorithms to find the optimal suited parameters for a 

dynamic load system. The configuration of the PID controller integrated with PSO technique is shown in the figure 5. 

The performance of the control scheme is significantly compromised when inappropriate values for the controller 

tuning constants are employed, potentially leading to instability. Therefore, it is essential to adjust the controller 

parameters appropriately to ensure optimal control performance through the careful selection of tuning constants. 

 

Fig.5 The block diagram illustrating the proposed PID controller integrated with PSO algorithms 

 

Fig. 6 PSO-PI configuration 

In contrast to traditional methods that eliminate particles with unfavorable costs while reproducing those with 

favorable costs, the integration of particle clusters enables the utilization of identical positions within the optimal 

solution space. The ‘ith ‘element, which is different from the optimal particle, is situated at multiple points on the 

surface of a virtual sphere that is centered on the location of the ‘ith’ particle, with the radius defined as the Euclidean 

distance between this particle and the best one. The best particle should be updated by comparing the costs of new 

positions with the cost of the previously identified best particle. 
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The optimal particle diffuses attractant to other particles within a cluster, forming 'cones of attraction' with axes 

connecting them to the remaining particles. The process depends on maintaining an angle between the optimal 

particle and the current and subsequent positions of the ith particle within specified degrees. The Particle Swarm 

Optimization (PSO) approach uses three-dimensional components (P, I and D) for particles, requiring them to 

navigate within a three-dimensional environment. Figure 6 illustrates the PSO-PID control system. Selection 

parameter of PSO and optimized PI parameters described in table 5 and six respectively. The primary objective 

function utilized for the optimization of PID parameters is the ITAE performance index, with the goal of minimizing 

the performance index of the feedback control system The PI parameters are obtained for 15 iterations. 

tetITAE t = 


0

     (10) 

TABLE V.   SELECTION PARAMETER OF PSO 

Population size 5 

Iteration count 15 

Constant of Velocity (c1) 01.19 

Contant of Velocity (c2) 01.49 

TABLE VI.  TABLE 6 OPTIMIZED PI PARAMETERS 

Tuning Method Kp Ki Kp 

Ploe placement 11.78 3.13 16.23 

PI-PSO (ITAE) 4.16 5.16 6.17 

The PSO algorithm is an M file that interfaces with a Simulink model. It transmits initial particle values to the Simulink 

module, which calculates fitness values based on ITAE standards of performance. The process continues iteratively 

until satisfactory performance criteria are reached. The optimal control parameters for both classical and proposed 

PID controllers are presented. 

C. Recurrent Neural Network  

RNNs were developed specifically for the analysis of time-series data and have demonstrated effectiveness across 

numerous fields, such as speech recognition, machine translation, and image captioning. RNNs handle incoming time-

series data by processing individual vectors sequentially, while maintaining the information from prior time steps in a 

hidden state. 

 

 

Fig.7 RNN (a) Structure (b) Flow Control 
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( )( ) ( )txthfth c ,1)( −=    (11) 

Here, h(t) signifies the present state, ‘fc’ is a role assigned the value 'c', h(t-1) corresponds to the prior state, and x(t) is 

the input matrix at the time step 't'. Figure 7 depicts the configuration of the system. where "x" denotes the input layer. 

This layer is responsible for gathering real-time data from the hybrid renewable system, encompassing 1250 control 

parameters that pertain to critical environmental conditions. Among these parameters, Power net (Pnet) of PV, wind, 

DC link voltage(Vdc), load power and battery power are particularly influential on crop productivity. The hidden layer 

is represented by "h," while "y" signifies the output layer. The resulting output is achieved by employing the optimal 

modulation index for bi-directional battery converters in conjunction with the RL load inverter, with the current input 

comprising values from x(t) and x(t-1) at certain moments, hence enhancing the network's efficiency 

D. CNN algorithm 

The CNN are an advanced type of ANN that are particularly adept at processing time-series data. A CNN is 

fundamentally organized into three key players: the convolution layer, the pooling layer, and the fully connected layer, 

which is denoted in Figure 8.  with the training process illustrated in Figure 9. The input layer gathers real-time data 

from agricultural settings, integrating 1,200 control parameters that influence Power net (Pnet = PV+Wind), DC link 

voltage (Vdc), load power and battery power content. The convolutional layer primarily serves to identify local features 

within the input data, while the pooling layer plays a major role in decreasing the dimensionality of this data. By 

minimizing the dimensions of feature representations, the pooling layer alleviates memory and computational 

demands as the depth of the network escalates. In contrast, fully connected layers are essential for generating high-

level representations and facilitating the prediction of the system's control parameters. 

 

(a) 

 

(b) 

Fig. 9 CNN(a) Architecture (b)Functional flow chart 

The essential concept of convolution forms the basis of a CNN. In the CNN we introduce, there are two key 

components: the convolution layers, as outlined in Equations (5) and (7), and the pooling layer. The core role of the 

pooling layer is to minimize the amount of constraints in the tensor by decreasing its dimensions, thus facilitating a 

decrease in computational time. 
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 The convolution layer interrelates with the convolutional kernel to produce output feature graph j, which may result 

from multiple input feature graphs. It is defined by  , , ,and   the convolution kernel (8).  Equation (9) 

depicts the feature graph related to the convolution layer l.The symbol for the activation function is ‘f’. As stated in 

Equation (9), will adopt a rectified linear unit (ReLU) in this study equation (9).The algorithm develops an optimal 

CNN controller using real-time data from the agricultural sector, enhancing charging and discharging efficiency by 

identifying globally optimal parameters for bi-directional battery converters and pump controllers through CNN 

algorithms. 

IV. SIMULATION AND RESULTS 

The essential RES are wind and PV energy, battery and supportive components of a controlled grid are utilized to 

manage dynamic loads. To evaluate the precision of the control algorithms, a model using Simulink has been designed. 

of PSO-PID, PSO-PID-RNN, and PSO-PID-CNN controllers, aimed at regulating the DC bus voltage and facilitating 

DC/AC conversion inverters under conditions of varying resistive-inductive (RL) loads. The simulation model is 

illustrated in Figure 10 and was executed using the MATLAB/Simulink platform, incorporating various configurations 

of the available natural resource parameters. 

 

Fig. 10 Simulation Model 

The EMC controller is responsible for generating three control signals: Spv, Swind, Sgrid, and Sbat, based on three input 

variables for battery storage unit performance include irradiation (G), wind speed, and battery (SOC).. Figure 4 

illustrates the operational flow chart. The system can operate in five distinct modes, with energy delivered to the load 

as illustrated by balance equation (20). 

( ) gridgridwindwindpvpvBATload StPStPStPStP ++= )()()(  (10) 

The battery is charged when the hybrid power surpasses the load, and discharged when the load is less than the hybrid 

power. 

Where: Spv: Control signal of the PV, Swind: Wind Control signal Sgrid: Grid Control signal and Sbat: Control signal of 

Battery. 

The simulation carried out the configuration  

❖ Dynamic load conditions  
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To evaluate how well the implemented simulation of the RES system works. A simulation of five configurations over 

0 to 0.9 seconds showed various source components, including PV insolation, wind velocity, and battery energy 

system state of charge. 

Mode of operation 

Mode l: (0.0s <t<0.15s): The PV, wind source, and grid are interconnected for (0.0 s to 0.15s), with PV irradiation 

measured at 500 W/m² and wind velocity 9 m/s. At this stage, the storage battery triggers the start of the charging 

process. 

Mode 2: (0.15s <t<0.3s): A wind velocity of 5 m/s is associated with a PV irradiation of 250 W/m² in conjunction with 

the grid. The battery is continuously kept in charging mode with this setup. 

Mode 3 3(0.3s <t<0.6s): this configuration, the grid voltage is isolated while exists a correlation between wind velocity 

and photovoltaic insolation, with respective values of 9 m/s and 1000 W/m. he battery starts to release its charge to 

the connected load 

Mode 4 (0.6s <t<0.75s): The photovoltaic insolation is measured at 750 W/m², accompanied by a wind speed of 3 

m/s. The system operates in grid-isolated mode, with a battery configured for charging. 

Mode 5 (0.75s <t<0.9s): In this sequence, the grid has been restored. with a photovoltaic (PV) insolation of 750 W/m² 

at a voltage of 750 Vdc, accompanied by a wind speed of 3 m/s, while the system operates in battery charging mode. 

TABLE VII.  HYBRID SOURCES 

Configuration 
Simulation 

duration(s) 

Wind 

elocity(m/s) 

PVInsolation 

(W/m2) 

battery 

Voltage(Vdc) Grid 

Voltage(Vdc) 
Charge Discharge 

TR1 0-.15 9 500 -21.62 - 750 

TR2 0.15s-0.3s 5 250 -21.62 - 750 

TR3 0.3s-0.45s 9 1000 - 20.87 0 

TR4 0.45s-0.6s 9 1000 - 20.81 0 

TR5 0.6s-0.75s 3 750 -21.62 - 750 

TR6 0.75s-0.9s 3 000 -21.62 - 750 
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Fig. 11 RES parameter (a) PV Insolation, (b) Turbine speed, (c) battery voltage (d) Battery Current(e) Battery-SOC 

 

Fig. 12 Source Voltages (V) 

The voltage produced by a hybrid renewable source's direct current conversion prior to the inclusion of an EMC 

controller is seen in Figure 12. Figures 13 (a) to (c) demonstrate the EMC control signal configurations, specifically the 

Modulation Index, along with a detailed view of each configuration. In Figures 14 (a), (b), and (c), Presented herein 

are the RMS values of voltage, current, and power for the three-phase RL load. 

 

A. Dynamics Load 

The RL circuit dynamically altered the values of a specified interval under varying operational climatic conditions of 

renewable hybrid system of PV, Wind and fluctuating grid voltage, while monitoring the transient behaviors of voltage, 

current, and power. The framework for the control signal generated by the proposed EMC system is defined by the 

accessible RES and their corresponding load demands. 

 

 

Fig. 13 Converter DC (a) voltage (b) Current (c) Power 
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Fig. 14 Dynamic Load (a) Load Voltage (b) Load current (c)RMS Power 

 Figure 14 (a) to (c) illustrates the AC voltage, current and RMS value of power to the allocation of the load to three 

individual controllers. In the frame work utilizing the PSO-PID control strategy is applied, the transient voltage 

overshoot reaches 431.20V in response to fluctuating load conditions, while the input source voltage experiences an 

undershoot of 348.00V. In contrast, the PSO-PID-RNN configuration results in voltages of 440.40V and 361.40V, 

whereas the PSO-PID-CNN configuration yields values of 334.00V, and 420.90V respectively. The numerical results 

of the RMS load voltage for all six configurations are presented in Table 8. The analysis presented in Figure 12(b) 

reveals the simulated outcomes of dynamic load current, which are further detailed in Table 9. The conventional PSO-

PID controller exhibits TR 1 (0s-0.15s) configuration a transient current oscillation of 14.70 A, with an undershoot of 

6.01 A and settling at 13.50A. In contrast, the intelligent algorithms, namely PSO-PID-RNN and PSO-PID-CNN, 

demonstrate transient currents of 14.97 A and 8.31 A, as well as 13.52 A and 8.35 A, respectively. 

TABLE VIII.   LOAD VOLTAGE 

Simulation 

configuration 

PSO-PID PSO-PID-RNN PSO-PID-CNN 

Transient Steady state Transient Steady state Transient Steady state 

TR1 141.40 405.15 440.40 403.40 344.00 381.00 

TR2 382.60 400.70 380.80 405.50 360.40 400.70 

TR3 345.90 399.40 361.40 406.50 368.50 410.90 

TR4 365.80 400.50 379.10 406.00 367.70 397.60 

TR5 375.40 412.30 372.90 401.70 370.40 408.50 

TR6 420.88 416.27 422.061 418.64 426..292 421.561 

TABLE IX.  LOAD CURRENT 

Simulation configuration 
PSO-PID PSO-PID-RNN PSO-PID-CNN 

Transient Steady state Transient Steady state Transient Steady state 

TR1 13.83 13.50 14.97 13.38 12.99 12.47 

TR2 8.373 8.306 14.39 8.31 13.52 8.35 

TR3 9.46 5.783 9.45 6.03 9.41 6.12 

TR4 12.79 12.68 12.85 12.98 12.74 12.84 

TR5 14.10 10.70 14.22 10.55 14.08 10.80 

TR6 13.62 11.33 13.62 11.12 13.56 11.24 

TABLE X.  CONVERTER DC POWER 

Simulation 

configuration 

PSO-PID PSO-PID-RNN PSO-PID-CNN 

Transient Steady state Transient Steady state Transient Steady state 

TR1 9488 8898 6185 5822 5620 5249 

TR2 7133 4921 3368 3811 3461 3829 

TR3 6303 3536 1942 2736 2204 3004 

TR4 9429 8113 5676 5599 5639 5662 

TR5. 8156 6828 4510 4825 4582 4901 

TR6 7194 6219 7216 6255 7153 6828 
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TABLE XI.  AC LOAD POWER 

Simulation configuration 
PSO-PID PSO-PID-RNN PSO-PID-CNN 

Transient Steady state Transient Steady state Transient Steady state 

TR1 7201 5914 6185 5822 5620 5249 

TR2 3475 3784 3368 3811 3461 3829 

TR3 2188 2927 1942 2736 2204 3004 

TR4 5683 5780 5676 5599 5639 5662 

TR5 4476 4745 4510 4825 4582 4901 

TR6 4676 4619 4735 4702 4939 4778 

 

Figure 12(c) and Table 10 provide a comparative analysis of all configurations (TR1-TR6) the simulated and numerical 

results concerning the of dynamic RL loads. During the interval from 0 s to 0.15 s, when a load of RL (7.5 KW + 7.5 

KVAR) is connected, the observe simulated output converter dc transient power 9488W and settling steady state at 

8988W in the algorithm of PSO-PID, as well as the PSO-PID –RNN and PSO-PID CNN, transients and settling power 

of 6185W and 5822W and 5620Wand 5249W respectively, all six configuration of converter simulated response 

presented in table 10. In the configuration of ac RMS power transient power recorded is 7201 W, stabilizing at 5914 

W under the PSO-PID controller. Conversely, the PSO-PID-RNN controller achieves a power output of 6185  W, an 

increase from the stable output of 5822 W, the PSO-PID-CNN ultimately achieves an overshoot of 5620W and 

stabilizes at 52249W, respectively. All the six load configuration of ac RMS power details display the table 11. The 

examination of both static and dynamic outcomes reveals that the PSO-PID-CNN power management system 

effectively reduces both The enhancement of settling time within the simulation environment, along with the 

management of upper and lower peak transients and oscillations. 

V. CONCLUSION 

This study has examined the comparative output responses of four distinct modeled EMC controllers for the controlled 

grid-integrated HRPS. The HRPS was developed and verified using simulations conducted in MATLAB. The 

simulations were evaluated under both constant and fluctuating conditions, considering different durations and 

environmental factors affecting renewable resource generation. The overall results detailing the transient and The 

settling periods for current, voltage, and power to the load are included in the data that is demonstrated. Through both 

simulation and numerical validation. Observational results indicate that the PSO-PID-CNN controller demonstrates a 

significantly response compared to the other three control strategies. 
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