
Journal of Information Systems Engineering and Management 
2025, 10(31s) 

e-ISSN: 2468-4376 

 

https://www.jisem-journal.com/ Research Article  

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

A Comprehensive Framework for Residual Analysis in 

Regression and Machine Learning 
 

Vibhu Verma 
Principal Data Scientist, 

GWU, Capital One, 

NY, USA 

vvibhu1@gmail.com 

 

 

ARTICLE INFO ABSTRACT 

Received: 30 Dec 2024 

Revised: 12 Feb 2025 

Accepted: 26 Feb 2025 

Residual analysis is one of the most crucial methodologies in statistical modeling and machine 

learning. Generally, it tends to be an important tool in the evaluation of the precision of a model, 

diagnosing violations of assumptions, and refinement. This paper critically reviews residuals, 

their mathematical underpinning foundations, and how they feature in model performance 

evaluation. Key diagnostic methods that have been explored in this paper include 

heteroscedasticity, non-linearity, autocorrelation, and influential outliers. Further, we have to 

develop a new case based on the decomposition of residuals and SHAP values for the analysis of 

unexplained sales trends. This study underlines how residual patterns can indicate hidden 

deficiencies in the model and how model improvement can obtain better results. We conclude 

the length in optimizing model performance and future research directions in residual-based 

diagnostics. 
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Introduction 

Residuals play a central role in the assessment of statistical and machine learning models. In any given predictive 

framework, the residuals defined by the differences of the observed value and the prediction of the model carry a 

good deal of rich information beyond merely an error measure. The residuals, when the model is well-specified, 

should have a random pattern around zero. Such randomness would be indicative that this model captured the 

systematic part of the relationship between the independent variables and the response variable. The presence of 

visible systematic patterns of residuals-for instance, trend or curvature or clumping-might indicate important 

omission of relationships or variables, non-fulfilment of some assumptions-like homoscedasticity or normality-, 

over- or underfitting in the model performance. 

Residuals are an important part in regression and machine learning with regard to the strength assessment of a 

statistical model. From residuals, being the differences between the observed values and the predicted ones, analysts 

can diagnose problems, improve the performance of a model, and gain further insights. The main roles played by 

residual analysis in model evaluation and refinement are discussed below. 

1. Model Fit and Assumption Checking 

Some of the basic assumptions which a regression model requires are linearity-the relationship between predictors 

and response is linear-independence, homoscedasticity-the errors are uncorrelated with each other and with constant 

variance- and normality. Residual analysis helps to check these assumptions: 

Linearity: a plot of residuals versus fitted values should show no non-random pattern to suggest the failure of a model, 

in that part of the underlying relationship may have gone into the addition of polynomial terms or nonlinear 

transformation. 

Homoscedasticity: A "fanning out" pattern in residuals, with increasing variance along fitted values, is indicative of 

heteroscedasticity. This violates important assumptions of regression and may result in statistical inference that is 

not trustworthy. Possible remedies include transformation-a common example being logarithmic-and weighted least 

squares. 
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Independence & Autocorrelation: In time series models, residuals must not have a pattern over time; otherwise, it 

means there is autocorrelation, in which the previous value takes priority over the current one. Therefore, the model 

would need further modification to incorporate either autoregressive elements or lagged predictors. 

Normality: Most of the statistical tests in hypothesis testing and confidence interval estimation require residuals to 

be normally distributed. To check this assumption, one may analyze residual histograms and Q-Q plots or make use 

of a statistical test such as the Shapiro-Wilk test. 

2. Outlier and Influence Diagnostics 

Not all data points are equal in their contribution to the predictions of a model; points may be influential. Being able 

to identify such influential observations is key to ensuring models are robust: Outliers: Points with large residuals  

can indicate that something is out of the ordinary-perhaps an anomaly, or an error in collecting the data. Depending 

upon context, such outliers could be excluded, transformed, or be subject to robust regression methods. 

High-Leverage Points: Although not outliers, some points have extreme values of the predictor variables and might, 

therefore, have undue influence on the regression line. These can be obtained from leverage statistics obtained from 

the hat matrix. Cook's Distance: It measures how much an observation influences regression estimates. A high Cook's 

Distance would suggest that a particular observation's deletion would result in a massive effect on the model. 3. 

Informed Model Improvement 

One of the most powerful diagnostics to suggest model improvement is residual analysis: Unmodeled Structures: A 

systematic residual pattern may reflect an important model omission, such as a missing quadratic or interaction 

effect. The addition of new features or polynomial terms could help this model. 

Feature Engineering: When residuals vary systematically with an omitted variable, this is a sign that there may be 

more predictors. Such a pattern helps feature selection and engineering find all relevant factors. 

Transformation: A log, square root, or Box-Cox transformation often resolves skewness in residuals and is better 

interpretable than the model itself. 

4. Modern Applications in Machine Learning 

Residuals are not only helpful within conventional regression, but they also play a central role in machine learning, 

most especially in: Ensemble Learning: Techniques such as gradient boosting fit models iteratively to residuals or 

pseudo-residuals, refining their predictions at every step. This can yield very accurate models that progressively 

reduce the error. 

Deep Learning: ResNets model residual functions explicitly. Instead of learning the target function, they are learned 

how to iteratively update their predictions. It helps address the vanishing gradient problem by making it easier to 

construct a deep, yet efficient network. This will avoid errors in the target variable from modeling and also help in 

class balance and generalized improvement over segments of data. 

5. Case Studies and Business Applications 

Besides theoretical diagnostics, residual analysis has great practical significance in many industrial segments. The 

financial segment involves analysts in an attempt to refine forecasts, detect anomalies in the markets while adjusting 

their risk weights in a portfolio; correcting bathymetric (depth) readings includes sensor calibration in the 

environmental science. Residuals are useful in checking any predictive model, whether systematic underestimation 

or overestimation of a target condition occurs to inform clinical decisions. Retail & Business Analytics: Unexplained 

residuals may point to some of the exogenous factors at play, including economic fluctuations or marketing 

campaigns. It uses a method for residual decomposition, such as SHAP values, which might be known to the 

businesses if something happens when the performance goes up or down. 

 

Theoretical Background 

Consider a simple model of linear regression where one wants to forecast some response variable y on grounds of 

some predictor variable x. There, there is a modeled assumption which claims that the response observed is just a 

sum, plus residual error: which should be independent and identically distributed with means equal to zero and 

constant variances. 

The fitted values from the model are the predicted responses for each observation. The residual for each observation 

is the difference between the observed value and the fitted value. One of the key properties of the OLS method is that 

the sum of all residuals is zero, meaning the model fits the data without any overall bias. 

However, the residual variances are not constant for all observations; they are a function of the leverage of each 

observation. Leverage refers to the degree to which each particular observation influences its own fitted value. The 
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higher the leverage, the more influence an observation has on the fit, and the smaller its residual variance is likely to 

be. 

2.2 Standardization 

Residuals are often standardized or studentized for diagnostics because residual variances might be dependent on 

leverage. Standardizing changes the residuals by dividing them by an estimate of the standard deviation of the error 

and accounting for leverage of the particular observation. This standardizes the residual in a way that gives a better 

sense of model fit across all the different observations. 

Studentized residuals are similar, except that in the latter case we estimate the standard deviation of the error without 

using the particular observation. That is one common method for detecting outliers, because it identifies observations 

whose removal greatly reduces the estimate of model error. 

2.3 The Role of the Hat Matrix 

One of the most important matrices in the linear regression analysis is the hat matrix. It projects the observed 

responses onto the fitted responses, in essence projecting the observed data onto the space spanned by the predictors. 

The diagonal elements of this matrix show the influence each observation has on its own prediction, and the larger 

the value, the greater the leverage. Observations with high leverage have an inordinately large influence on the 

regression model, especially regarding the fitted coefficients and variances of the residuals. 
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Diagnostic Uses of Residual Analysis 

3.1 Checking Model Fit 

Residual analysis is a serious diagnostic tool that gives insights into whether a model is correctly specified and how 

it might be improved. In this section, we discuss several such diagnostic uses of these residuals. For each there is an 

explanation and Python code examples using dummy data. We further explain how one can check the model fit, 

homoscedasticity, linearity, serial correlation, outliers, influential observations, normality of residuals, perform 

support feature selection, compare various models, and at last diagnosis the bias-variance problem. 

Summary 

3.1 Model Fit Check 

A well-fitted model will present residuals which randomly scatter around zero. The indication of any pattern in 

residual plot shows the existence of misspecification in model. 

Summary 

• Random Scatter: Residuals that are randomly scattered with no pattern would indicate that the model picked up 

the underlying trend.  

 

• Systematic Patterns: Curved or clustered residuals may indicate missing variables, wrong functional forms-for 

example, a linear model for a nonlinear relationship- or omitted interactions. 

 

Interpretation 

If the plot shows a curved pattern that indicates that a linear model is insufficient for quadratic data. This diagnosis 

drives model improvement through either transformation or choosing a non-linear model. 

 

3.2 Detecting Heteroscedasticity 

Heteroscedasticity occurs when the variance of residuals is not constant across all levels of an independent variable 

in a regression model. This violates the assumption of homoscedasticity in Ordinary Least Squares (OLS) regression, 

leading to unreliable standard errors, misleading hypothesis tests, and inefficient estimates. 

A common method for detecting heteroscedasticity is plotting residuals against fitted values. If the residuals exhibit 

a systematic pattern, such as a fan shape where variance increases with fitted values, heteroscedasticity is present. 

Formal statistical tests, such as the Breusch-Pagan test and White’s test, can confirm this issue by checking if 

residual variance depends on predictor variables. The Goldfeld-Quandt test is another method that compares 

variance across subsets of data. 

To address heteroscedasticity, analysts can apply logarithmic or square root transformations to stabilize 

variance. Alternatively, robust standard errors can be used to correct statistical inference. In cases where the 

variance structure is known, Weighted Least Squares (WLS) or Generalized Least Squares (GLS) 

regression can be effective solutions. 

Detecting and correcting heteroscedasticity is crucial for ensuring accurate regression modeling. By analyzing 

residual patterns and applying appropriate corrective measures, models become more reliable and generalizable for 

real-world applications. 
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Identifying Non-Linearity 

Non-linearity occurs when the relationship between independent and dependent variables is not well captured by a 

linear model. This can be diagnosed by analyzing residuals—if they exhibit a systematic pattern rather than random 

scatter, the model may be misspecified. 

A U-shaped or inverted-U pattern in a residual vs. fitted values plot suggests that the model is missing a quadratic 

or higher-order term. This indicates that a simple linear model does not adequately describe the relationship. Another 

common sign of non-linearity is when residuals consistently increase or decrease over the range of predictor values, 

violating the assumption that residuals should be randomly distributed. 

To address non-linearity, one approach is feature engineering, where polynomial terms (e.g., X2X^2, X3X^3) are 

introduced to better capture curved relationships. Another solution is to use non-linear regression models, such 

as decision trees, random forests, or neural networks, which do not assume a strict linear form. Additionally, 

spline regression and Generalized Additive Models (GAMs) allow for flexible, data-driven modeling of non-

linear patterns. 

Detecting and correcting non-linearity ensures that a model better represents real-world relationships, improving 

predictive accuracy and inference reliability.  

 
 

Detecting Autocorrelation 

Autocorrelation occurs when residuals in sequential observations are correlated, meaning past errors influence future 

errors. This violates the assumption of independence in regression models and is common in time series data, leading 

to biased estimates and unreliable confidence intervals. 
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A Residual vs. Time plot is a simple way to detect autocorrelation. If residuals exhibit patterns, such as cycles or 

trends instead of random scatter, it suggests that errors are dependent over time. For instance, positive 

autocorrelation means residuals remain high or low for consecutive periods, while negative autocorrelation indicates 

alternating patterns. 

A formal statistical test for detecting autocorrelation is the Durbin-Watson (DW) test. The DW statistic ranges 

from 0 to 4: 

• ~2: No autocorrelation. 

• <2: Positive autocorrelation (common in financial and economic time series). 

• >2: Negative autocorrelation (less common but occurs in differenced data). 

To address autocorrelation, models like ARIMA (AutoRegressive Integrated Moving Average) or 

Generalized Least Squares (GLS) can be used. Additionally, introducing lagged variables or using robust 

standard errors can help account for time-dependent structures. 

 
Checking for Outliers and Influential Points 

Outliers and high-leverage points can disproportionately impact a regression model, leading to biased estimates and 

misleading interpretations. Outliers are observations with large residuals, while high-leverage points have 

extreme predictor values that can significantly affect the regression line. 

To detect them, Cook’s Distance measures the influence of each observation on regression coefficients—values 

above 0.5 or 1 indicate potential issues. Leverage plots (based on the hat matrix) identify points with excessive 

influence on predictions. 
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FIGURE 

Assessing Normality of Residuals 

The normality of residuals is a key assumption in regression, affecting hypothesis tests and confidence intervals. If 

residuals deviate significantly from normality, p-values and standard errors may be unreliable. 

Diagnostic tools include: 

• Histograms: A bell-shaped distribution suggests normality. 

• Q–Q Plots: Compare residual quantiles to a normal distribution—deviations from the diagonal indicate 

non-normality. 

• Shapiro-Wilk Test: A formal test where a low p-value (<0.05) suggests non-normal residuals. 
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Feature Engineering & Model Improvement 

Residual analysis helps identify missing features or interactions in a model. If residuals plotted against a predictor 

show a pattern (e.g., a trend or curve), it suggests that the predictor’s effect may be non-linear or dependent on 

another variable. 

Adding polynomial terms or interaction effects can improve model fit. For instance, if residuals display 

structure in a model without interactions but become randomly scattered after including an interaction term, it 

confirms that the added feature enhances predictive accuracy. 

 

Comparing Multiple Models 

Residual analysis helps evaluate and compare different models by assessing their predictive accuracy and assumption 

validity. Residual-based metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE) quantify model performance—lower values indicate better fit. 
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Residual plots also provide insights: a good model should have randomly scattered residuals with no discernible 

patterns. If one model shows a systematic structure while another has more evenly distributed residuals, the latter is 

preferred. 

 
 

Bias–Variance Tradeoff Diagnosis 

Residual analysis helps diagnose the bias-variance tradeoff, which affects a model’s generalization ability. By 

comparing residuals on the training and test sets, we can assess whether a model underfits or overfits the data. 

• High bias (underfitting): If residuals exhibit large errors on both training and test sets, the model is too 

simplistic and fails to capture underlying patterns. 

• High variance (overfitting): If training errors are low but test errors are significantly higher, the model 

is too complex and sensitive to noise. 
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This section has detailed how residual analysis can be used diagnostically to: 

• Check model fit and confirm randomness of residuals. 

• Detect heteroscedasticity, non-linearity, autocorrelation, and outliers. 

• Guide feature engineering and model improvement. 

• Compare multiple models using quantitative and graphical diagnostics. 

• Diagnose the bias-variance tradeoff via training/test comparisons. 

 

 

Applications and Case Studies of Residual Analysis 

Residual analysis is a crucial component of model validation across various domains. While it is often discussed in 

theoretical contexts, its real-world applications span finance, environmental science, healthcare, and machine 

learning. By identifying patterns in residuals, analysts can refine models, detect missing variables, and improve 

predictive accuracy. This section explores several key applications and presents a case study using SHAP (Shapley 

Additive exPlanations) values to attribute sales impact changes. 

4.1 Financial and Environmental Applications 

In finance, residual analysis plays a key role in evaluating risk models and asset pricing models. Financial analysts 

use residuals to assess whether a model’s predictions align with actual market behavior. For example, in stock return 

modeling, heteroscedastic residuals suggest that market volatility is time-dependent. This insight leads to the 

adoption of more sophisticated models, such as GARCH (Generalized Autoregressive Conditional 

Heteroskedasticity), which explicitly accounts for changing variance over time. Similarly, in credit risk 

assessment, non-random residuals may indicate that borrower-specific factors are missing from the model, 

prompting further refinement. 

In environmental science, residual analysis is widely used in spatial modeling and remote sensing. One notable 

example is bathymetry modeling, where researchers estimate water depth using remote sensing data. If residuals 

show spatial correlation, it suggests that the model has failed to capture certain environmental factors, such as 

variations in seafloor reflectance. This prompts the use of geostatistical corrections or the inclusion of additional 

variables, such as temperature or sediment composition, to improve depth predictions. 
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4.2 Healthcare and Dynamic Treatment Regimes 

In healthcare, residual analysis is essential in validating models used for dynamic treatment regimes (DTRs). 

These regimes guide sequential medical decisions, such as adjusting drug dosages based on patient response over 

time. Methods like Q-learning, a reinforcement learning technique, rely on residuals to ensure the model accurately 

captures patient reactions. If residuals show systematic patterns—such as clustering based on patient 

demographics—it may indicate that key predictors, such as genetic markers or coexisting conditions, are missing. 

This insight helps refine personalized treatment plans, leading to better patient outcomes. 

Residual analysis is also used in clinical trials to verify the effectiveness of new treatments. In survival analysis, 

non-random residuals might suggest that a treatment’s effect varies among subpopulations, prompting further 

investigation into potential interactions. 

4.3 Machine Learning: Boosting and Deep Residual Networks 

Modern machine learning techniques leverage residuals in fundamental ways. 

1. Gradient Boosting: Many ensemble models, such as XGBoost, LightGBM, and CatBoost, build trees 

sequentially by fitting each new model to the residuals of the previous one. This approach ensures that new 

models correct the errors of earlier iterations, leading to improved predictions. 

2. Deep Residual Networks (ResNets): In deep learning, ResNets explicitly model residual functions. 

Instead of learning the full mapping from inputs to outputs, these networks learn the difference (residual) 

between the current prediction and the true target. This architecture prevents the problem of vanishing 

gradients, enabling the training of extremely deep neural networks that achieve state-of-the-art 

performance in image recognition, natural language processing, and other fields. 

Residual analysis, therefore, is not just a diagnostic tool but an integral part of how modern machine learning models 

learn and improve. 
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4.4 Sales Impact Attribution Using SHAP Values 

A powerful business application of residual analysis is found in sales impact attribution. Understanding the 

drivers of sales fluctuations is crucial for businesses, yet standard regression models may fail to explain all variations. 

This case study demonstrates how SHAP values can quantify the contribution of different factors to sales changes 

while identifying unexplained residual effects. 

Case Study Setup: 

• Sales data from two time periods (July and December) is used. 

• Separate Random Forest models are trained for each period. 

• SHAP values are computed to determine feature importance. 

Methodology: 

1. Compute the average SHAP values for each feature in July and December. 

2. Calculate the difference in SHAP values between the two periods to determine each feature’s 

contribution to the sales change. 

3. The sum of all feature contributions provides an estimate of the total explained sales change. 

4. Any difference between the actual observed sales change and the sum of SHAP-based 

contributions is classified as residual (unexplained) impact. 

Insights Gained: 

• If most of the sales change is explained by known factors (e.g., pricing, marketing spend, seasonal demand), 

it confirms that the model captures key drivers effectively. 

• If a significant portion remains unexplained, it suggests missing variables, external shocks (e.g., 

macroeconomic changes), or data quality issues. 

This approach provides businesses with a transparent, interpretable method for diagnosing model gaps and 

refining their sales forecasting strategies. 

 

 

 
 

4.5 Summary of Applications 

Residual analysis is an indispensable tool across industries. Whether ensuring the robustness of financial risk models, 

refining environmental predictions, improving healthcare treatments, or powering modern machine learning 

algorithms, residuals offer critical insights. Additionally, business applications such as SHAP-based sales 

attribution demonstrate how residual analysis can drive data-driven decision-making. 
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Across all these applications, understanding the “unexplained” portion of model predictions leads to better models, 

improved forecasts, and actionable insights. As data science continues to evolve, residual analysis will remain 

a key technique for model validation and enhancement. 

 

REFERENCES 

[1] Alevizos, E. (2020). A combined machine learning and residual analysis approach for improved retrieval 

of shallow bathymetry from hyperspectral imagery and sparse ground truth data. Remote Sensing, 12(21), 

3489. https://doi.org/10.3390/rs12213489 

[2] Ertefaie A, Shortreed S, Chakraborty B. Q-learning residual analysis: application to the effectiveness of 

sequences of antipsychotic medications for patients with schizophrenia. Stat Med. 2016 Jun 15;35(13):2221-

34. doi: 10.1002/sim.6859. Epub 2016 Jan 10. PMID: 26750518; PMCID: PMC4853263. 

[3] Ramosaj, B., & Pauly, M. (2018). Consistent estimation of residual variance with random forest out‐of‐bag 

errors [Preprint]. arXiv. https://arxiv.org/abs/1812.06270 

 

https://doi.org/10.3390/rs12213489
https://arxiv.org/abs/1812.06270

