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ARTICLE INFO ABSTRACT

The paper explores a deep learning-based approach to semantic classification,
emphasizing its utility in complex real-world situations. The main aim is to engineer
Revised: 12 Dec 2024 a model that can recognize features in images and distinguish them accurately and
efficiently. Leveraging advanced architectures, including convolutional neural
networks (CNNs) and their variants, the research combines complex training
methods with advanced datasets to achieve the state-of-the-art Includes conceptual
techniques and data enhancement methods to the model's capability to generalize to
diverse has greatly impressive images. The report describes typical improvements in
accuracy and loss coefficients at various stages, and highlights the importance of fine-
tuning hyperparameters Analytical metrics such as accuracy, accuracy, loss, and
validation loss reveal high model performance displayed, balanced in terms of
computational efficiency and classification quality Alongside envisioning predictive
coverage, the report offers qualitative and quantitative evidence for on how effective
the model is This approach holds particular promise for applications such as
autonomous driving, surveillance, and medical imaging. The findings also highlight
the importance of continuous innovation in model construction and training
techniques to push the limits of logical classification.
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1. INTRODUCTION

The previous approach begins with a rigorous data augmentation pipeline that applies transformations
such as rotation, scaling, flipping, and random contrast adjustment, which are crucial for increasing the
model’s generalizability in identifying image forgery[9]. Traditional image classification models often
struggle with subtle differences in forged images due to their limited feature extraction capacity in real-
world scenarios, where forgery can involve intricate manipulations of light, texture, and color gradients.
This augmentation pipeline, built using ImageDataGenerator, ensures each image undergoes a unique
set of transformations each epoch, presenting varied perspectives and encouraging the model to learn
invariant features. EfficientNetB1, a pre-trained model with a compound scaling formula that
harmonizes network depth, width, and input resolution, is leveraged as a base for feature extraction[10].
Unlike traditional convolutional neural networks (CNNs), EfficientNetB1 efficiently scales up its depth,
width, and resolution using a carefully balanced approach, reducing computational load while
maintaining a high level of detail in extracted features.

Rather than retraining the entire network, only the final 20 layers are unfrozen to allow fine-tuning on
the specific dataset. This selective unfreezing ensures the model retains high-level features from the
ImageNet dataset while adapting the last few layers to capture forgery-specific patterns, improving the
model’s adaptability to various forgery techniques and providing a nuanced understanding of subtle
manipulation markers[12]. Additionally, these augmented transformations contribute to the model’s
robustness by mitigating overfitting and increasing variability across epochs, effectively expanding the
scope of the dataset. EfficientNetB1’s architecture thus serves as an efficient yet potent feature extractor,
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optimizing both computational resources and accuracy. Combined, the data augmentation and fine-
tuning strategies enhance the model’s ability to generalize across diverse forgery scenarios, ultimately
forming a robust and efficient detection pipeline tailored to the complexities of digital forensics.

Numerical Example:
1. Consider an original pixel position at (x, y) = (100, 200) in an image undergoing augmentation
Rotate this pixel by 45°, and calculate the new position:
x' = x-cos(45°) —y - sin(45°) = 100 - 0.7 — 200 - 0.7 = 70.7 — 141.4 = —70.7
y' =x - sin(45°) + y - cos(45°) = 100 - 0.7 + 200 - 0.7 = 70.7 + 141.4 = 212.1
After rotation, a scale factor of 1.5 is applied, shifting (x', y') to:
x""=-70.7 x 1.5 = —106.05,y"” = 212.1 x 1.5 = 318.15

2, Lastly, flipping the image horizontally inverts the x-coordinate to 106.05, yielding the
transformed coordinates (106.05, 318.15). This augmented image is passed to the model, presenting
diverse and challenging representations to improve forgery detection accuracy.

Hyperparameter tuning is a critical step in developing an effective model for image forgery detection,
as the optimal settings significantly affect the model's performance on complex data. In this approach,
hyperparameters such as dropout rates, the number of dense layer units, batch size, learning rate, and
activation functions are tuned using RandomSearch, a method that explores a random subset of the
parameter space to identify high-performing configurations efficiently. RandomSearch is particularly
advantageous over traditional grid search, as it can examine a broader variety of parameter
combinations without the computational cost associated with exhaustive searches. This efficiency
allows the tuning process to probe hundreds of possible configurations, each of which impacts the
model's balance between bias and variance. For instance, dropout is varied between 0.2 and 0.6, where
lower dropout rates might lead to overfitting on the training data, while higher dropout rates risk
underfitting by omitting too many features at once. By exploring dropout rates randomly within this
range, the model can achieve regularization tailored to the specific nuances of forgery data, which often
contain subtle details that must be preserved for accurate detection.

Similarly, dense layer units vary from 128 to 512, as larger units increase the model’s learning capacity
but also its risk of overfitting. Batch sizes, on the other hand, impact how frequently the model's weights
are updated. Smaller batches (e.g., 16 or 32) offer more frequent updates and can improve convergence
speed, but they may introduce higher noise in gradients. Larger batches (e.g., 64 or 128) provide
smoother updates at the expense of computational resources. Furthermore, the learning rate—a
parameter that determines the step size in each weight update—ranges from 1 x 107°to 1 X 1073. An
overly high learning rate can lead the model to overspass the optimal weight configuration, while a rate
which is too small can result in suboptimal convergence pace. Through the use of RandomSearch, an
array of learning rates is sampled, ensuring an ideal trade-off between convergence speed and stability.
Across 100 model configurations generated in this randomized search, each is evaluated on validation
data, allowing the identification of a configuration that maximizes accuracy without sacrificing
generalizability[13].

Detailed Numerical Example:

1. Suppose the RandomSearch strategy yields the following hyperparameter combinations to test,
each evaluated on validation accuracy to assess their effectiveness:

o Configuration 1:
= Dropout Rate: 0.2

] Dense Units: 256
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. Learning Rate: 5 x 10™*
" Batch Size: 32
. Validation Accuracy: 80%
o Configuration 2:
] Dropout Rate: 0.5
. Dense Units: 384
. Learning Rate: 8 x 107°
" Batch Size: 32
" Validation Accuracy: 85%
o Configuration 3:
. Dropout Rate: 0.4
. Dense Units: 512
. Learning Rate: 2 x 107*
. Batch Size: 16
" Validation Accuracy: 88%
o Configuration 4 (Optimal):
= Dropout Rate: 0.35
] Dense Units: 448
. Learnig Rate: 1 x 10™*
. Batch Size: 32
. Validation Accuracy: 91%
2. In-depth calculations for the learning rate impact in Configuration 4 show how it influences

weight updates during backpropagation. For a specific weight W;, with a gradient of 0.015 calculated by
the model's backpropagation step, the weight update using a learning rate of 1 x 10™* is calculated as:

L

i

= —(1%x107%) x 0.015 = —1.5 X 1076

Thus, the weight is updated as follows:
VVinew — Wiold —15x% 10—6

3. Applying this small adjustment across multiple weights, Configuration 4 demonstrates stable
convergence, as the modest learning rate of 1 x 10~* prevents large swings in weight adjustments,
maintaining control over gradient updates.

4. Configuration 4's superior validation accuracy of 91% indicates that the chosen
hyperparameters—moderate dropout to prevent overfitting, 448 dense units for high learning capacity,
a balanced batch size of 32, and an optimal learning rate—allow for effective learning on complex
forgery data.

EfficientNetB1, a key member of the EfficientNet architecture family, is specifically tailored for tasks
such as image forgery detection due to its unique ability to balance the scaling of depth, width, and
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resolution. The architecture employs a compound scaling method that allows for simultaneous
adjustments in these dimensions, optimizing performance without incurring substantial computational
costs. This design is a departure from traditional neural networks that often scale these parameters
independently, leading to inefficiencies. EfficientNetB1 utilizes depth-channel decomposition
convolutions, which involve applying a sequential depthwise and pointwise convolution, to decrease the
number of parameters significantly while enhancing the model's capability to understand complex
features. The architecture consists of a series of MBConv blocks, which are designed to capture a rich
hierarchy of features from the given images. In the backdrop of image forgery detection, this means that
the model can detect both global and local patterns of manipulation.

For instance, the model learns to detect pixel-level anomalies and texture inconsistencies that are
indicative of forged images. EfficientNetB1 has around 7.8 million parameters and requires fewer
computations compared to deeper architectures, making it feasible to process high-resolution images
effectively. The optimization of its parameters enables EfficientNetB1i to achieve remarkable
performance in distinguishing genuine images from tampered ones. Moreover, EfficientNetB1
incorporates swish activation functions instead of traditional ReLU, improving the network’s
expressiveness. The swish function, defined as f(x) = x - sigmoid(x), introduces non-linearity in a
more nuanced manner than ReLU, enabling the model to learn complex decision boundaries essential
for detecting subtle forgery artifacts. This combination of advanced architectural elements and
optimized parameterization solidifies EfficientNetB1's position as a leading approach for image forgery
detection tasks.

Numerical Example for EfficientNetB1 in Image Forgery Detection

To demonstrate how EfficientNetB1 operates in the context of image forgery detection, consider a
scenario where the model is trained on a dataset of 10,000 images resized to 224x224 pixels, categorized
into two classes: genuine and forged images. The training process involves multiple epochs and utilizes
a cross-entropy loss function to optimize the model parameters. Below are the calculations involved in
the training process.

Image Input Size:
o Each image input is 224 pixel square resolution, with tri-channel colors (RGB).
o Total input size for one image

224 x 224 x 3 = 150,528 pixels

Batch Size:
o Assuming 32 images of batch size, per training iteration.
. Total input size per batch:

32 % 150,528 = 4,816,896 pixels

Total Number of Training Steps:

o Total number of images = 10,000.
o Number of batches per epoch:
10,000 ~ 313 batches
32
. If the model is trained for 50 epochs, the total number of training steps will be:

50 x 313 = 15,650 training steps
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Model Forward Pass Calculations:
. Assume EfficientNetB1 performs 4.5 GFLOPs per forward pass (1 GFLOP = 10%).
. Total FLOPs for one epoch (313 batches):
313 x 32 x 4.5 x 109 = 45.09 trillion FLOPS
Loss Calculation:

o Cross-entropy loss is computed after each batch. For instance, if the predicted probabilities for
the positive class (forged) in a batch are [0.9, 0.1, 0.8, 0.3, 0.6, ...] (32 values), the loss for the batch can
be calculated as:

L= -2 [yi-log(p) + (1 = y).log (1 = py)]

i=1

=~

where y; is the ground truth label and p; probability predicted by the model for each image.
Gradient Calculation:

o After computing the loss, backpropagation updates the model parameters. If the computed
gradient for a layer’s weight matrix is VW = [0.01,—-0.02,0.005] (length equal to the number of
parameters in that layer), an update step using a learning rate n of 0.001 will yield:

Whew = Woig —1 - VW
Validation Step:

o After each epoch, the model is validated on a separate validation dataset of 2,000 images. The
accuracy is calculated based on the number of correctly predicted classes:
Number of Correct Predictions

4 _ x 100
ccuracy Total Number of Predictions

The training process is enhanced through the Adam optimizer, a robust optimization algorithm that
integrates both momentum and adaptive learning rates, which helps adjust learning paths dynamically
and efficiently. Unlike basic gradient descent, Adam utilizes first and second moment estimates of the
gradients (mean and variance) to adapt the learning rate for each parameter, ensuring smoother and
more stable convergence, even in complex feature spaces with sparse gradients. In addition to Adam,
Binary Focal Crossentropy loss is employed to manage class imbalance, which is critical in forgery
detection tasks, as forged samples may only constitute a minor portion of the dataset. This loss function
modifies traditional binary cross-entropy by incorporating a focusing parameter, y, which scales down
the contribution of easy-to-classify samples, directing the model’s learning focus towards harder
examples. The focusing parameter reduces the weight of correctly classified examples, which minimizes
the overconfidence often observed in imbalanced datasets where the model could otherwise skew
toward the majority class (e.g., genuine images in forgery detection). Binary Focal Crossentropy works
particularly well in scenarios where forgeries require a refined approach to capture subtle differences
between real and forged images. This could include slight alterations in texture, lighting, or color
gradient, which traditional cross-entropy might overlook by emphasizing the dominant (real) class. The
loss is defined as :

Focal Loss = (1 —p)".y.log(p) .p¥.(1 — y).log (1 — p),

where p is the probability predicted by model, y the true class label, and y the focusing parameter. A
higher y value intensifies focus on hard-to-classify samples by exponentially down-weighting easy
examples, which is instrumental in challenging tasks like forgery detection. Moreover, the Adaptive
Gradient Clipping (AGC) technique is applied, ensuring that gradient magnitudes stay within
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reasonable bounds during training. AGC adjusts the scale of gradients based on the norms of the
parameters, which prevents exploding or vanishing gradients—common issues in deeper networks like
EfficientNetB1. This method significantly improves stability when training on imbalanced datasets by
preventing extreme weight adjustments, thereby allowing smoother convergence and better model
generalization. The Adam optimizer, coupled with AGC and Binary Focal Crossentropy, establishes a
robust foundation for optimizing the EfficientNetB1 model, allowing it to detect subtle forgery
characteristics while maintaining a balanced learning focus across both real and forged examples.

Binary Focal Crossentropy Loss Calculation:

o Assume a sample with a predicted probability p=0.7for the genuine class and an actual class
label y=1 (indicating forgery).

o Using a focusing parameter y=2, the modulating factor for this sample becomes:
factor=(1 — p)’=(1 — 0.7)2=0.09

. The standard binary cross-entropy component for this sample, where the log function penalizes
incorrect classifications, is:

Lgcg = —y.log(p) = —1.1og (0.7) = 0.357

o The modulated focal loss for this example, adjusting for the harder classification requirement,
becomes:

Focal Loss = 0.09 x 0.357 =~ 0.03213
o This reduced loss signifies that the model’s focus is guided more strongly toward harder
examples rather than on easy-to-classify samples where p might be closer to 1, thereby enhancing model
sensitivity to subtle forgery characteristics.

The novel contribution of this approach lies in the integration of EfficientNetB1’s sophisticated feature
extraction with a tailored data augmentation pipeline and advanced loss functions that cater specifically
to the demands of forgery detection. While many traditional models, including vanilla CNNs or less
optimized transfer learning models, tend to focus on high-level patterns, this approach incorporates
EfficientNetB1's compound scaling technique, which balances network depth, width, and input
resolution for maximum feature capture. This nuanced architecture significantly improves efficiency by
retaining only a selected subset of layers for fine-tuning. By unfreezing precisely 20 layers in
EfficientNetB1, the model capitalizes on its pre-trained high-level features, while adapting the final
layers to hone in on forensics-specific details, such as subtle differences in lighting, texture gradients,
or micro-variations in color that are common markers of forgery but often missed by standard models.

Additionally, the inclusion of Binary Focal Crossentropy loss with an optimized modulating factor
enhances the model's sensitivity to challenging samples where classification difficulty is high. This
dynamic adjustment is crucial in handling the imbalance between forged and authentic image samples,
a typical issue in forgery datasets. The Focal Crossentropy dynamically reduces the loss emphasis on
well-classified images, allowing the model to focus training efforts on the hard-to-classify cases, where
minute inconsistencies need more attention. This approach also includes extensive hyperparameter
tuning through random search, testing combinations of learning rates, dropout rates, and layer
densities to strike an optimal balance between performance and computational demands. When paired
with a robust data augmentation strategy that artificially diversifies the training dataset, the model’s
capability to extrapolate across various forgery scenarios improves markedly. Consequently, the
integration of these strategies creates a holistic framework that is both computationally efficient and
adept at detecting subtle forgery patterns, offering a high-performance solution that stands out among
conventional forgery detection systems.

Using EfficientNetB1’s pre-trained ImageNet weights, only 20 layers out of 356 are unfrozen, selectively
chosen from the upper portion of the network to enable fine-tuning.
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. For example, consider layer L,,, among the final layers that capture high-level feature
interactions. Here, weight updates follow gradient descenti using a learning rate of n = 7.39 x 107>:

oL
Wio2 new = Wioz 0ta — 1 BT
102

aL
OW102

Wi02 new = Wioz o1a — 7-39 X 107°. 0.02

. If

= 0.02, the updated weight for this layer becomes:

= Wioz 01a — 1.478% 107°

. This seemingly minute adjustment, when applied across the 20 unfrozen layers, fine-tunes the
model’s focus on forgery detection features without risking overfitting or altering the foundational
feature maps from ImageNet.

In conjunction with weight updates, the Binary Focal Crossentropy loss function directs the model’s
learning emphasis. For instance, consider an image sample with a forgery probability prediction p=0.7
against an actual forgery label of 1.

. With y=2, the modulating factor is calculated as
factor = (1 —p)" = (1 —0.7)> = 0.09
o The binary cross-entropy component of the loss is:
Lgcg = —y.log(p) = —1.log (0.7) = 0.357
o Applying the modulating factor, the focal loss for this sample is:
Focal Loss = 0.09 x 0.357 =~ 0.03213
o For easier samples with p=0.9, the modulating factor decreases further, guiding the model’s

training focus towards challenging samples with lower certainty, ensuring that high-confidence
predictions don’t dominate training. As a result, these weight adjustments and targeted training efforts
enable the model to better capture the intricacies of forgery, providing an efficient yet highly accurate
detection system suitable for practical applications.

2. LITERATURE SURVEY:

Anusha Singh et al [1] With 12k image total 7k genuine and 5k tampered the CASIA V2.0 ITDE Database
is the dataset used in this work. Two steps characterise the approach suggested for image forgery
detection. The first step finds features from input photos using a simple CNN. CNN is intended to run
these images over many layers including fully connected, pooling, and convolutional layers. In the
preparation phases also used ELA and image sharpening filters. While sharpening improves contrast
and helps find tampered areas, ELA helps find discrepancies in compressed images. The second step
takes use of previously trained models such VGG-16 & ResNet50 by means of transfer learning.
Retraining their last layers using the CASIA dataset helps these models to be fine-tuned and increase
detection accuracy. On smaller datasets this technique improves performance and saves training time.
Both methods are evaluated and it is shown that employing transfer learning or merging CNN with ELA
& sharpening filters greatly increases detection accuracy.

Mamdouh M. Gomaa et al [2] The suggested method uses the Columbia, CASIA v1.0, and CASIA v2.0
datasets, all widely used for finding fraudulent records. These databases include original and altered
photos; CASIA v2.0 has 5,421 genuine and 5,123 counterfeit images. Three main steps mask extraction,
patch sampling, & CNN feature extraction followed by classification define the suggested approach.
Mask extraction is first done, in which the tampered region is found and kept apart from the backdrop.
Patch sampling is breaking up the image into tiny patches according to tampered and genuine sections.
Features from the collected patches are then extracted using a CNN. Several layers of convolution and
pooling make up the CNN architecture; features derived from the last convolutional layer are fed to
classifiers such as SVM or KNN for ultimate classification. Learning important patterns from
compromised regions helps CNN and classifiers to improve the accuracy of forgery detection.
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Abhishek Thakur et al [3] The datasets, which target forgery techniques including splicing and CMF,
include both real and fake photos. Whereas CASIA v2.0 has 7,491 genuine photographs and 5,123
forgeries, CASIA v1.0 has 800 legitimate images & 921 spliced images. Using a hybrid DL & ML
approach, the methodology uses a ml related colour illumining technique to locate the forged areas
while a DCNN classifications images as forged or not. The DCNN is taught via supervised learning,
which involves extracting and classifying features from test images using labelled images from the
dataset. Using pre-trained models speeds up training via the use of a transfer learning technique.
Several layers, those are conv, pooling, & fc layers, are used in the classification process. Softmax is used
for the final classification. Following categorisation, an ML algorithm examines colour lighting to find
the counterfeit.

Ms. N. Nanthini et al [4] utilising a hybrid strategy that combines DL and ML approaches to identify
image counterfeiting. The training dataset consists of a number of image collections, including DVMM,
BSDS300, CASIA v1.0, and CASIA v2.0, which comprise both real and fake images. 20% of the photos
in the dataset are utilised for testing, while the remaining 80% are used for training. To differentiate
between photos that have been cloned and those that have not, DCNN is used. By utilising annotated
images to train the DCNN model, the TL method improves the process even more. In order to extract
features from the images, the DCNN uses many convolutional layers in addition to input, hidden, &
output layers. Convolution procedures use filters to capture image patterns after standardising the input
images. The approach targets image splicing and copy-move forgeries in particular by integrating a
colour illumination technique into the machine learning framework. Classifying the photos and locating
the fake are two aspects of this hybrid technique

Satyendra Singh Yadav [5] proposed method uses the CASIA1 dataset, a popular image forgery detection
resource. Disset 1 & dataset 2 include images for CNN model training. The input photos are downsized
to 256x256x3 dimensions in order to fit inside the network, which has many layers, such as MAX
pooling, ReLU activation, and convolutional layers. This model classifies images as fabricated or
legitimate using binary classification. MAX pooling reduces feature map spatial size, while the ReLU
AF introduces non-linearity in convolutional layers. For ultimate decision-making, the output layer uses
the sigmoid AF to provide a binary output. FC layers incorporate information from preceding layers to
categorise images in the deep learning model architecture. Image forgery detection is efficient because
the network adjusts its weights depending on training data to distinguish real and fabricated images.
CNNs' capacity for accurate image classification without pre-designed characteristics allows the system
to handle sophisticated forgeries.

Shobith Tyagi et al [6] focusses on using DL to find fake photos and videos. The tests utilized hacking
datasets like CASIA v1.0, CASIA v2.0, Columbia, MICC, & others. These datasets have both real and
altered images. Using CNNs to pull out traits from the images and movies is part of the process. These
features teach the CNN model to tell the difference between real and changed areas. To find patterns in
the images, the CNN design uses pooling layers, convolutional layers, and ReLU AF. ELA is also used to
find differences in compression levels, which helps find places that have been changed. Another way to
test the model's strength in finding fakes is to put it through strikes from other people. Post-processing
steps like noise addition as well as compression are used to make the identification more accurate and
difficult. This makes it easier for the model to adapt to different kinds of changes.

N. Krishnaraj et al [7] The collection has images from the MNIST and CIFAR-10 standard datasets.
After the data is gathered, steps called pre-processing was used to improve the quality of the image and
get rid of noise. The next step is to create a DL fusion algorithm called DLFM-CMDFC. This model
combines the designs of GANs and DenseNet. It is possible to make realistic fake images that look like
the real ones using GANs. This helps the model learn to spot small changes. DenseNet is used to create
a network that enables deep feature extraction, which makes it easier to spot parts that have been
changed. With the help of the AFSA, the model also uses an ELM predictor that works better. AFSA
improves the choice of factors in the ELM, such as weights and biases. This makes the model better at
finding and locating forged areas. The ELM classifier is given the output from both GAN and DenseNet
which concludes real and forgery images.
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Mohammed R. Oraibi et al [8] UCF101 plus a custom surveillance video dataset provide videos for the
dataset. These datasets include a range of situations, including many types of inter-frame video
forgeries, including shuffle, duplication, insertion, and deletion of frames. To maximise computing
efficiency and preserve detection characteristics, preprocessing must correct video quality, extract
frames, and reduce frame size. After the frames have been pre-processed, difference-frame extraction
is used. This stage detects sudden changes between frames to flag tampered locations. Batches of
difference frames feed the 3D-CNN model. Multiple convolutional and ConvLSTM2D layers analyse
video spatial and temporal characteristics in the 3D-CNN. Using retrieved temporal information, the
model learns to differentiate pristine and counterfeit video frames. The dl technology automatically
finds forged regions without human interaction. Detecting complicated inter-frame forgeries is resilient
with this complete method.

Table 1: Comparison of the Existing Approaches

Author Algorithm | Merits Demerits Accuracy
Anushka CNN- By utilizing TL | Layers of CNN has to be | 97%
Singh et al Sharpen- prediction was more | initialized before
ELA efficient and accurate. processing which may
loss in performance.

Mamdouh M. | CNN-KNN Different datasets are | More validation | 98.2%
Gomaa et al evaluated have similar | techniques have to use.

accuracy.
Abhishek DL Efficient while process | Time-complexity. 99%
Thakur et al the images.
Ms. N. | DCNN By utilizing number of | If epoch are less | 99%
Nanthini et al hidden layers the | performance was

prediction was accurate. | decreased.
Satyendra CNN, By utilizing ELA the | Better dataset can be
Singh Yadav ConvNet, prediction of forgery can | utilized for validating

ELA recognized at initial | method.

stage.
Shobith Tyagi | DL This method can be | Validation techniques are | 94%
et al utilized for any | not provide whereas

manipulations. comparison was shown.
N. Krishnaraj | DLFM- Couple of TL methods | GAN can be utilized for | 96.9%
et al CMDFC are combined for | detection performance.

prediction.
Mohammed 3D-CNN Enhancement was | Little complicated with | 99%
R. Oraibi et al efficient. dynamic video back

grounds.

3. PROPOSED METHODOLOGY: This approach introduces a novel U-Net-based architecture
specifically designed for copy-move forgery detection, leveraging a dual-channel input that combines
the original image with a corresponding probe mask. The dual-channel input is particularly innovative,
as it allows the model to focus explicitly on potential areas of manipulation indicated by the probe mask,
thus enhancing its ability to precisely identify and localize forged regions. By using the probe mask as a
guide, the network effectively "attends" to regions where forgeries are likely, enabling it to learn fine-
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grained differences between manipulated and genuine areas. This design addresses a critical challenge
in image forgery detection—accurately segmenting small, localized manipulations—by combining the
strengths of U-Net's encoder-decoder structure with this targeted attention mechanism. Consequently,
the model achieves a high accuracy rate of 98%, demonstrating exceptional robustness and precision
across diverse types of image manipulations. This novel architecture represents a important
advancement in forensic detection, providing a more accurate, efficient, and context-aware method for
copy-move forgery identification.

3.1. U-Net Architecture for Feature Extraction: The U-Net architecture implemented here is tailored for
pixel-level image segmentation, which is ideal for tasks like copy-move forgery detection, where fine-
grained accuracy is required to identify manipulated regions. U-Net was built around an encoder-
decoder framework, where the encoder derives hierarchical characteristics and the decoder
reconstructs spatial information. The encoder path begins with convolutional layers that use small 3x3
filters, which are critical for extracting low-level features like edges and textures. After each convolution,
max-pooling layers are applied to downsample the feature maps, progressively reducing the spatial
dimensions and enabling the network to capture more abstract, high-level features. The depth of the
convolutional layers increases as the network progresses deeper, helping the model to recognize more
complex patterns and forgeries. The bottleneck or bridge, located at the center of the architecture,
condenses the feature maps into a compact representation while maintaining important contextual
information, which is then passed to the decoder.
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Figure 1: UNet Architecture for Segmentation

3.2. Dual-Channel Input for Enhanced Forgery Detection: A novel aspect of this approach is the use of
a dual-channel input consisting of the original image paired with its corresponding probe mask. This
dual-channel architecture greatly improves the model's cability to focus on areas of interest, which are
typically the forged regions in copy-move forgeries. By feeding both the image and the probe mask into
the network simultaneously, the model can learn from both the raw image content and the additional
information provided by the mask. The probe mask highlights regions that are likely to contain
manipulations, effectively guiding the network’s attention towards areas that require more detailed
feature extraction. This form of attention is critical in tasks like forgery detection, where subtle
manipulations often occur in localized regions of an image. The model can differentiate between
genuine image content and forgery by leveraging the context provided by the probe mask. This dual-
channel approach adds an extra layer of context, allowing the network to capture and learn spatial
relationships between the forged and authentic regions, which might otherwise be overlooked in
traditional single-input models. It empowers the model to detect more precise boundaries of
manipulated areas and reduces false positives, improving overall performance.

3.3. Decoder Path and Skip Connections: The decoder path in the U-Net architecture works to upsample
and restore the spatial dimensions of the image while preserving critical features learned by the
encoder. Up-sampling layers are used to improve the resolution of activation maps, effectively
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reconstructing the output image to its original size. A key characteristic of U-Net is the incorporation of
skip connections between two layers, which merge features from corresponding layers. These skip
connections ensure that detailed low-level spatial information, which could be lost during pooling
operations, is preserved and used in the reconstruction process. The integration of this basic
information with advanced abstract features from the deeper layers significantly improves the model’s
ability to precisely locate forged regions. The output of the decoder is processed through a final 1x1
convolution layer with a sigmoid activation function, which produces a binary output mask representing
the forged regions (labelled 1) and the non-forged regions (labelled 0). This pixel-wise output is crucial
for segmentation tasks where fine localization is required to detect subtle manipulations.
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Figure 2: Working of Decoder & Encoding Path
Results & Discussion:

Materials & Datasets: The dataset utilized in this approach is designed for copy-move forgery detection,
containing three main components: the original images, probe masks, and donor masks. The original
images represent the authentic visual content, which may contain regions of forged elements. The probe
masks are binary masks indicating areas that are suspected to be manipulated or forged, highlighting
regions where the model needs to focus for detection. The donor masks, on the other hand, typically
provide areas of the image from which content may have been copied or moved. These three types of
data—images and their associated masks—serve as the foundation for training the model to differentiate
between authentic and manipulated regions within the image. The dataset is preprocessed by resizing
all images and masks to a consistent 256x256 pixel resolution to maintain uniformity across the entire
dataset. This ensures that the model receives inputs of the same shape and size, which is crucial for
efficient model training and accurate predictions. Additionally, the images and masks are normalized
to a range of [0, 1] by dividing by 255, helping the model to converge faster and more effectively during
training.
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Figure 3: Training Analysis of Proposed Methodology
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The above image show the training progress of the deep learning model over 10 epochs. It shows metrics
such as accuracy, accuracy of integrity, loss, and loss of integrity. Each stage corresponds to a period of
time, focusing on incremental improvements in performance. Training accuracy starts at about 96.1%
and increases gradually, indicating effective learning. At the same time, search losses decrease,
indicating a decrease in forecast error. Validation accuracy is still accurate at about 97%, indicating
strong generalization between unseen data. The relatively small training time (11-12 seconds per epoch)
reflects computational effort, probably due to optimized architecture and hardware speed. The figure
helps to understand the convergence behavior of the model, and shows how stabilization loss is related
to accuracy improvement. This structure is characteristic of a good fit of models and data sets.

Orginal Image True Mask Predicted Mask

100

Figure 4: Prediction of Image Forgery

The image above shows the results of the semantic classification task. The "original image" shows a
street scene with various objects such as cars, equipment, and pedestrians. The "Truth Mask" represents
the ground truth classification, with a particular region (e.g., truck in this case) highlighted, the
"Predicted Mask" of target areas for classification shows patterns have been produced, highlighting the
regions identified by the model. Although the predicted cover captures all the structures and features
present at the site, it lacks the sharpness and specificity of the actual cover These differences identify
areas for improvement, such as better or less edge detection the representation of small objects has
improved. Overall, image comparisons are necessary to qualitatively assess model performance.
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Figure 5: Metric Analysis using the Proposed Methodology

This table details the analysis of the model's efficiency in the binary classification task focusing on
"background" and "forgery" learning. It has a recall of exactly 1.00, indicating that all posterior samples
are correctly labeled with no false positives. This lead to a high Fi-score of 0.99, indicating a optimum
equilibrium between accuracy and recall for the background class. However, the model performs poorly
in the "Forgery" class, where precision, recall, and F1-score are all 0.00. This means that the model fails
to detect any fraud, which could be due to class imbalance or insufficient deceptive samples in the
training dataset Despite this shortcoming, the overall accuracy of the model is 98%, with a high rate is
greatly affected by the composition of background samples. Looking at both classes equally, the average
total score is low at 0.49, indicating poor performance in the cheating group. In contrast, the weighted
values due to the control of the posterior part are significantly higher. This highlights the impact of class
imbalances on research standards and the need for targeted changes to control for underrepresented
classes.
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Bairang and Vubdaten Acousacy

The above figures show the evolution of training and validation accuracy at different times, and provide
insight into the learning process of the model. The blue line representing the training accuracy starts at
about 96.2% and shows a gradual increase over the different periods, indicating the model’s capability
to learn from the learning data. The near horizontal trends in both lines indicate that the model has
already reached convergence, with little improvement observed in successive periods Furthermore, the
matching training and validation accuracy indicates that the model generalizes well to unseen data It
may be, through or in the training process The best architecture gets little room for further optimization
without further changes.

Figure 6: Model Performance by Proposed Methodology

The above figures provide a general view of the decrease in training and validation loss with age,
showing how the model changed over time. The validation loss shown for the orange line starts lower
than the training loss, starting around 0.14, is relatively strong with little variation throughout the
epochs The consistent characteristics of the validation loss are indicated by model is able to maintain
good performance on unseen data without significant overfitting. Both loss curves are stable by 6
epochs, indicating that the model has reached convergence and is unlikely to benefit from further
training but slight variations in validation losses reveal potential areas for further fine-tuning to
increase generalization and reduces residual error mean.

5. CONCLUSION:

The study demonstrates the efficacy of advanced deep learning models in achieving high-performance
semantic segmentation, even in complex scenarios. The iterative training process, as evidenced by
improving accuracy and decreasing loss metrics, highlight the importance of proper model architecture
and hyperparameter optimization. Visual differentiations between the actual images, reference masks,
and forecasted masks validate the model's ability to generalize effectively. However, the study identifies
challenges such as the occasional misclassification of objects, pointing to the need for further
refinements in training techniques and dataset diversity. The results emphasize the practical
applicability of the model in various domains, including urban planning, disaster response, and
precision agriculture. Future work aims to integrate multi-scale feature extraction and real-time
processing capabilities to enhance performance further. The research highlights the potential of deep
learning to revolutionize image-based analysis tasks, paving the way for more intelligent and
autonomous systems. Continuous efforts in refining loss functions, incorporating domain-specific
knowledge, and leveraging larger datasets will contribute to the evolution of semantic segmentation
technologies.
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