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The paper explores a deep learning-based approach to semantic classification, 
emphasizing its utility in complex real-world situations. The main aim is to engineer 
a model that can recognize features in images and distinguish them accurately and 
efficiently. Leveraging advanced architectures, including convolutional neural 
networks (CNNs) and their variants, the research combines complex training 
methods with advanced datasets to achieve the state-of-the-art Includes conceptual 
techniques and data enhancement methods to the model's capability to generalize to 
diverse has greatly impressive images. The report describes typical improvements in 
accuracy and loss coefficients at various stages, and highlights the importance of fine-
tuning hyperparameters Analytical metrics such as accuracy, accuracy, loss, and 
validation loss reveal high model performance displayed, balanced in terms of 
computational efficiency and classification quality Alongside envisioning predictive 
coverage, the report offers qualitative and quantitative evidence for on how effective 
the model is This approach holds particular promise for applications such as 
autonomous driving, surveillance, and medical imaging. The findings also highlight 
the importance of continuous innovation in model construction and training 
techniques to push the limits of logical classification. 

Keywords:  Binary classification, precision-recall analysis, model convergence, 
training-validation accuracy, loss stabilization, class imbalance, forgery detection, 
performance evaluation. 

 

1. INTRODUCTION 

The previous approach begins with a rigorous data augmentation pipeline that applies transformations 

such as rotation, scaling, flipping, and random contrast adjustment, which are crucial for increasing the 

model’s generalizability in identifying image forgery[9]. Traditional image classification models often 

struggle with subtle differences in forged images due to their limited feature extraction capacity in real-

world scenarios, where forgery can involve intricate manipulations of light, texture, and color gradients. 

This augmentation pipeline, built using ImageDataGenerator, ensures each image undergoes a unique 

set of transformations each epoch, presenting varied perspectives and encouraging the model to learn 

invariant features. EfficientNetB1, a pre-trained model with a compound scaling formula that 

harmonizes network depth, width, and input resolution, is leveraged as a base for feature extraction[10]. 

Unlike traditional convolutional neural networks (CNNs), EfficientNetB1 efficiently scales up its depth, 

width, and resolution using a carefully balanced approach, reducing computational load while 

maintaining a high level of detail in extracted features.  

Rather than retraining the entire network, only the final 20 layers are unfrozen to allow fine-tuning on 

the specific dataset. This selective unfreezing ensures the model retains high-level features from the 

ImageNet dataset while adapting the last few layers to capture forgery-specific patterns, improving the 

model’s adaptability to various forgery techniques and providing a nuanced understanding of subtle 

manipulation markers[12]. Additionally, these augmented transformations contribute to the model’s 

robustness by mitigating overfitting and increasing variability across epochs, effectively expanding the 

scope of the dataset. EfficientNetB1’s architecture thus serves as an efficient yet potent feature extractor, 
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optimizing both computational resources and accuracy. Combined, the data augmentation and fine-

tuning strategies enhance the model’s ability to generalize across diverse forgery scenarios, ultimately 

forming a robust and efficient detection pipeline tailored to the complexities of digital forensics. 

Numerical Example: 

1. Consider an original pixel position at (x, y) = (100, 200) in an image undergoing augmentation 

Rotate this pixel by 45∘ , and calculate the new position: 

𝑥′ = 𝑥 ⋅ 𝑐𝑜𝑠(45∘) − 𝑦 ⋅ 𝑠𝑖𝑛(45∘) = 100 ⋅ 0.7 − 200 ⋅ 0.7 = 70.7 − 141.4 = −70.7 

𝑦′ = 𝑥 ⋅ 𝑠𝑖𝑛(45∘) + 𝑦 ⋅ 𝑐𝑜𝑠(45∘) = 100 ⋅ 0.7 + 200 ⋅ 0.7 = 70.7 + 141.4 = 212.1 

After rotation, a scale factor of 1.5 is applied, shifting (x', y') to: 

𝑥′′ = −70.7 × 1.5 = −106.05, 𝑦′′ = 212.1 × 1.5 = 318.15 

2. Lastly, flipping the image horizontally inverts the x-coordinate to 106.05, yielding the 

transformed coordinates (106.05, 318.15). This augmented image is passed to the model, presenting 

diverse and challenging representations to improve forgery detection accuracy. 

Hyperparameter tuning is a critical step in developing an effective model for image forgery detection, 

as the optimal settings significantly affect the model's performance on complex data. In this approach, 

hyperparameters such as dropout rates, the number of dense layer units, batch size, learning rate, and 

activation functions are tuned using RandomSearch, a method that explores a random subset of the 

parameter space to identify high-performing configurations efficiently. RandomSearch is particularly 

advantageous over traditional grid search, as it can examine a broader variety of parameter 

combinations without the computational cost associated with exhaustive searches. This efficiency 

allows the tuning process to probe hundreds of possible configurations, each of which impacts the 

model's balance between bias and variance. For instance, dropout is varied between 0.2 and 0.6, where 

lower dropout rates might lead to overfitting on the training data, while higher dropout rates risk 

underfitting by omitting too many features at once.  By exploring dropout rates randomly within this 

range, the model can achieve regularization tailored to the specific nuances of forgery data, which often 

contain subtle details that must be preserved for accurate detection.  

Similarly, dense layer units vary from 128 to 512, as larger units increase the model’s learning capacity 

but also its risk of overfitting. Batch sizes, on the other hand, impact how frequently the model's weights 

are updated. Smaller batches (e.g., 16 or 32) offer more frequent updates and can improve convergence 

speed, but they may introduce higher noise in gradients. Larger batches (e.g., 64 or 128) provide 

smoother updates at the expense of computational resources. Furthermore, the learning rate—a 

parameter that determines the step size in each weight update—ranges from  1 × 10−5 𝑡𝑜 1 × 10−3. An 

overly high learning rate can lead the model to overspass the optimal weight configuration, while a rate 

which is too small can result in suboptimal convergence pace. Through the use of RandomSearch, an 

array of learning rates is sampled, ensuring an ideal trade-off between convergence speed and stability. 

Across 100 model configurations generated in this randomized search, each is evaluated on validation 

data, allowing the identification of a configuration that maximizes accuracy without sacrificing 

generalizability[13]. 

Detailed Numerical Example: 

1. Suppose the RandomSearch strategy yields the following hyperparameter combinations to test, 

each evaluated on validation accuracy to assess their effectiveness: 

o Configuration 1: 

▪ Dropout Rate: 0.2 

▪ Dense Units: 256 
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▪ Learning Rate: 5 × 10−4 

▪ Batch Size: 32 

▪ Validation Accuracy: 80% 

o Configuration 2: 

▪ Dropout Rate: 0.5 

▪ Dense Units: 384 

▪ Learning Rate: 8 × 10−5 

▪ Batch Size: 32 

▪ Validation Accuracy: 85% 

o Configuration 3: 

▪ Dropout Rate: 0.4 

▪ Dense Units: 512 

▪ Learning Rate: 2 × 10−4 

▪ Batch Size: 16 

▪ Validation Accuracy: 88% 

o Configuration 4 (Optimal): 

▪ Dropout Rate: 0.35 

▪ Dense Units: 448 

▪ Learnig Rate: 1 × 10−4 

▪ Batch Size: 32 

▪ Validation Accuracy: 91% 

2. In-depth calculations for the learning rate impact in Configuration 4 show how it influences 

weight updates during backpropagation. For a specific weight 𝑊𝑖, with a gradient of 0.015 calculated by 

the model's backpropagation step, the weight update using a learning rate of 1 × 10−4 is calculated as: 

∆𝑊𝑖 = −𝜂 ⋅
𝜕𝐿

𝜕𝑊𝑖

= −(1 × 10−4) × 0.015 = −1.5 × 10−6 

Thus, the weight is updated as follows: 

𝑊𝑖
𝑛𝑒𝑤 = 𝑊𝑖

𝑜𝑙𝑑 − 1.5 × 10−6 

3. Applying this small adjustment across multiple weights, Configuration 4 demonstrates stable 

convergence, as the modest learning rate of 1 × 10−4  prevents large swings in weight adjustments, 

maintaining control over gradient updates. 

4. Configuration 4's superior validation accuracy of 91% indicates that the chosen 

hyperparameters—moderate dropout to prevent overfitting, 448 dense units for high learning capacity, 

a balanced batch size of 32, and an optimal learning rate—allow for effective learning on complex 

forgery data.  

EfficientNetB1, a key member of the EfficientNet architecture family, is specifically tailored for tasks 

such as image forgery detection due to its unique ability to balance the scaling of depth, width, and 
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resolution. The architecture employs a compound scaling method that allows for simultaneous 

adjustments in these dimensions, optimizing performance without incurring substantial computational 

costs. This design is a departure from traditional neural networks that often scale these parameters 

independently, leading to inefficiencies. EfficientNetB1 utilizes depth-channel decomposition 

convolutions, which involve applying a sequential depthwise and pointwise convolution, to decrease the 

number of parameters significantly while enhancing the model's capability to understand complex 

features. The architecture consists of a series of MBConv blocks, which are designed to capture a rich 

hierarchy of features from the given images. In the backdrop of image forgery detection, this means that 

the model can detect both global and local patterns of manipulation.  

For instance, the model learns to detect pixel-level anomalies and texture inconsistencies that are 

indicative of forged images. EfficientNetB1 has around 7.8 million parameters and requires fewer 

computations compared to deeper architectures, making it feasible to process high-resolution images 

effectively. The optimization of its parameters enables EfficientNetB1 to achieve remarkable 

performance in distinguishing genuine images from tampered ones. Moreover, EfficientNetB1 

incorporates swish activation functions instead of traditional ReLU, improving the network’s 

expressiveness. The swish function, defined as 𝑓(𝑥) = 𝑥 ⋅ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥), introduces non-linearity in a 

more nuanced manner than ReLU, enabling the model to learn complex decision boundaries essential 

for detecting subtle forgery artifacts. This combination of advanced architectural elements and 

optimized parameterization solidifies EfficientNetB1's position as a leading approach for image forgery 

detection tasks. 

Numerical Example for EfficientNetB1 in Image Forgery Detection 

To demonstrate how EfficientNetB1 operates in the context of image forgery detection, consider a 

scenario where the model is trained on a dataset of 10,000 images resized to 224x224 pixels, categorized 

into two classes: genuine and forged images. The training process involves multiple epochs and utilizes 

a cross-entropy loss function to optimize the model parameters. Below are the calculations involved in 

the training process. 

Image Input Size: 

• Each image input is 224 pixel square resolution, with tri-channel colors (RGB). 

• Total input size for one image 

224 × 224 × 3 = 150,528 𝑝𝑖𝑥𝑒𝑙𝑠 

Batch Size: 

• Assuming 32 images of batch size, per training iteration. 

• Total input size per batch: 

32 × 150,528 = 4,816,896 𝑝𝑖𝑥𝑒𝑙𝑠 

Total Number of Training Steps: 

• Total number of images = 10,000. 

• Number of batches per epoch: 

10,000

32
≈ 313 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 

• If the model is trained for 50 epochs, the total number of training steps will be:  

50 × 313 = 15,650 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑒𝑝𝑠 
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Model Forward Pass Calculations: 

• Assume EfficientNetB1 performs 4.5 GFLOPs per forward pass (1 GFLOP = 109). 

• Total FLOPs for one epoch (313 batches):  

313 × 32 × 4.5 × 109 = 45.09 𝑡𝑟𝑖𝑙𝑙𝑖𝑜𝑛 𝐹𝐿𝑂𝑃𝑆 

Loss Calculation: 

• Cross-entropy loss is computed after each batch. For instance, if the predicted probabilities for 

the positive class (forged) in a batch are [0.9, 0.1, 0.8, 0.3, 0.6, ...] (32 values), the loss for the batch can 

be calculated as: 

𝐿 = −
1

𝑁
∑[𝑦𝑖 . log(𝑝𝑖) + (1 − 𝑦𝑖). log (1 − 𝑝𝑖)]

𝑁

𝑖=1

 

where 𝑦𝑖  is the ground truth label and 𝑝𝑖  probability predicted by the model for each image. 

Gradient Calculation: 

• After computing the loss, backpropagation updates the model parameters. If the computed 

gradient for a layer’s weight matrix is 𝛻𝑊 = [0.01, −0.02,0.005] (length equal to the number of 

parameters in that layer), an update step using a learning rate 𝜂 of 0.001 will yield: 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝜂 ⋅ 𝛻𝑊 

Validation Step: 

• After each epoch, the model is validated on a separate validation dataset of 2,000 images. The 

accuracy is calculated based on the number of correctly predicted classes: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100 

The training process is enhanced through the Adam optimizer, a robust optimization algorithm that 

integrates both momentum and adaptive learning rates, which helps adjust learning paths dynamically 

and efficiently. Unlike basic gradient descent, Adam utilizes first and second moment estimates of the 

gradients (mean and variance) to adapt the learning rate for each parameter, ensuring smoother and 

more stable convergence, even in complex feature spaces with sparse gradients. In addition to Adam, 

Binary Focal Crossentropy loss is employed to manage class imbalance, which is critical in forgery 

detection tasks, as forged samples may only constitute a minor portion of the dataset. This loss function 

modifies traditional binary cross-entropy by incorporating a focusing parameter, γ, which scales down 

the contribution of easy-to-classify samples, directing the model’s learning focus towards harder 

examples. The focusing parameter reduces the weight of correctly classified examples, which minimizes 

the overconfidence often observed in imbalanced datasets where the model could otherwise skew 

toward the majority class (e.g., genuine images in forgery detection). Binary Focal Crossentropy works 

particularly well in scenarios where forgeries require a refined approach to capture subtle differences 

between real and forged images. This could include slight alterations in texture, lighting, or color 

gradient, which traditional cross-entropy might overlook by emphasizing the dominant (real) class. The 

loss is defined as : 

𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠 = (1 − 𝑝)𝛾 . 𝑦. log(𝑝) . 𝑝𝛾 . (1 − 𝑦). log (1 − 𝑝),  

where p is the probability predicted by model, y the true class label, and γ the focusing parameter. A 

higher γ value intensifies focus on hard-to-classify samples by exponentially down-weighting easy 

examples, which is instrumental in challenging tasks like forgery detection. Moreover, the Adaptive 

Gradient Clipping (AGC) technique is applied, ensuring that gradient magnitudes stay within 
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reasonable bounds during training. AGC adjusts the scale of gradients based on the norms of the 

parameters, which prevents exploding or vanishing gradients—common issues in deeper networks like 

EfficientNetB1. This method significantly improves stability when training on imbalanced datasets by 

preventing extreme weight adjustments, thereby allowing smoother convergence and better model 

generalization. The Adam optimizer, coupled with AGC and Binary Focal Crossentropy, establishes a 

robust foundation for optimizing the EfficientNetB1 model, allowing it to detect subtle forgery 

characteristics while maintaining a balanced learning focus across both real and forged examples. 

Binary Focal Crossentropy Loss Calculation: 

• Assume a sample with a predicted probability p=0.7for the genuine class and an actual class 

label y=1 (indicating forgery). 

• Using a focusing parameter γ=2, the modulating factor for this sample becomes: 

factor=(1 − 𝑝)𝛾=(1 − 0.7)2=0.09 

• The standard binary cross-entropy component for this sample, where the log function penalizes 

incorrect classifications, is: 

𝐿𝐵𝐶𝐸 = −𝑦. log(𝑝) = −1. log (0.7) ≈ 0.357 

• The modulated focal loss for this example, adjusting for the harder classification requirement, 

becomes: 

𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠 = 0.09 × 0.357 ≈ 0.03213 

• This reduced loss signifies that the model’s focus is guided more strongly toward harder 

examples rather than on easy-to-classify samples where p might be closer to 1, thereby enhancing model 

sensitivity to subtle forgery characteristics. 

The novel contribution of this approach lies in the integration of EfficientNetB1’s sophisticated feature 

extraction with a tailored data augmentation pipeline and advanced loss functions that cater specifically 

to the demands of forgery detection. While many traditional models, including vanilla CNNs or less 

optimized transfer learning models, tend to focus on high-level patterns, this approach incorporates 

EfficientNetB1's compound scaling technique, which balances network depth, width, and input 

resolution for maximum feature capture. This nuanced architecture significantly improves efficiency by 

retaining only a selected subset of layers for fine-tuning. By unfreezing precisely 20 layers in 

EfficientNetB1, the model capitalizes on its pre-trained high-level features, while adapting the final 

layers to hone in on forensics-specific details, such as subtle differences in lighting, texture gradients, 

or micro-variations in color that are common markers of forgery but often missed by standard models. 

Additionally, the inclusion of Binary Focal Crossentropy loss with an optimized modulating factor 

enhances the model's sensitivity to challenging samples where classification difficulty is high. This 

dynamic adjustment is crucial in handling the imbalance between forged and authentic image samples, 

a typical issue in forgery datasets. The Focal Crossentropy dynamically reduces the loss emphasis on 

well-classified images, allowing the model to focus training efforts on the hard-to-classify cases, where 

minute inconsistencies need more attention. This approach also includes extensive hyperparameter 

tuning through random search, testing combinations of learning rates, dropout rates, and layer 

densities to strike an optimal balance between performance and computational demands. When paired 

with a robust data augmentation strategy that artificially diversifies the training dataset, the model’s 

capability to extrapolate across various forgery scenarios improves markedly. Consequently, the 

integration of these strategies creates a holistic framework that is both computationally efficient and 

adept at detecting subtle forgery patterns, offering a high-performance solution that stands out among 

conventional forgery detection systems. 

Using EfficientNetB1’s pre-trained ImageNet weights, only 20 layers out of 356 are unfrozen, selectively 

chosen from the upper portion of the network to enable fine-tuning. 
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• For example, consider layer 𝐿102 among the final layers that capture high-level feature 

interactions. Here, weight updates follow gradient descenti using a learning rate of 𝜂 = 7.39 × 10−5: 

𝑊102 𝑛𝑒𝑤 = 𝑊102 𝑜𝑙𝑑 − 𝜂 ⋅
𝜕𝐿

𝜕𝑊102

 

• If 
𝜕𝐿

𝜕𝑊102
= 0.02, the updated weight for this layer becomes: 

𝑊102 𝑛𝑒𝑤 = 𝑊102 𝑜𝑙𝑑 − 7.39 × 10−5. 0.02 

               = 𝑊102 𝑜𝑙𝑑 − 1.478× 10−6 

• This seemingly minute adjustment, when applied across the 20 unfrozen layers, fine-tunes the 

model’s focus on forgery detection features without risking overfitting or altering the foundational 

feature maps from ImageNet. 

In conjunction with weight updates, the Binary Focal Crossentropy loss function directs the model’s 

learning emphasis. For instance, consider an image sample with a forgery probability prediction 𝑝=0.7 

against an actual forgery label of 1. 

• With γ=2, the modulating factor is calculated as 

𝑓𝑎𝑐𝑡𝑜𝑟 = (1 − 𝑝)𝛾 = (1 − 0.7)2 = 0.09 

• The binary cross-entropy component of the loss is: 

𝐿𝐵𝐶𝐸 = −𝑦. 𝑙𝑜𝑔(𝑝) = −1. 𝑙𝑜𝑔 (0.7) ≈ 0.357 

• Applying the modulating factor, the focal loss for this sample is: 

𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠 = 0.09 × 0.357 ≈ 0.03213 

• For easier samples with p=0.9, the modulating factor decreases further, guiding the model’s 

training focus towards challenging samples with lower certainty, ensuring that high-confidence 

predictions don’t dominate training. As a result, these weight adjustments and targeted training efforts 

enable the model to better capture the intricacies of forgery, providing an efficient yet highly accurate 

detection system suitable for practical applications. 

2. LITERATURE SURVEY: 

Anusha Singh et al [1] With 12k image total 7k genuine and 5k tampered the CASIA V2.0 ITDE Database 

is the dataset used in this work. Two steps characterise the approach suggested for image forgery 

detection. The first step finds features from input photos using a simple CNN. CNN is intended to run 

these images over many layers including fully connected, pooling, and convolutional layers. In the 

preparation phases also used ELA and image sharpening filters. While sharpening improves contrast 

and helps find tampered areas, ELA helps find discrepancies in compressed images. The second step 

takes use of previously trained models such VGG-16 & ResNet50 by means of transfer learning. 

Retraining their last layers using the CASIA dataset helps these models to be fine-tuned and increase 

detection accuracy. On smaller datasets this technique improves performance and saves training time. 

Both methods are evaluated and it is shown that employing transfer learning or merging CNN with ELA 

& sharpening filters greatly increases detection accuracy. 

Mamdouh M. Gomaa et al [2] The suggested method uses the Columbia, CASIA v1.0, and CASIA v2.0 

datasets, all widely used for finding fraudulent records. These databases include original and altered 

photos; CASIA v2.0 has 5,421 genuine and 5,123 counterfeit images. Three main steps mask extraction, 

patch sampling, & CNN feature extraction followed by classification define the suggested approach. 

Mask extraction is first done, in which the tampered region is found and kept apart from the backdrop. 

Patch sampling is breaking up the image into tiny patches according to tampered and genuine sections. 

Features from the collected patches are then extracted using a CNN. Several layers of convolution and 

pooling make up the CNN architecture; features derived from the last convolutional layer are fed to 

classifiers such as SVM or KNN for ultimate classification. Learning important patterns from 

compromised regions helps CNN and classifiers to improve the accuracy of forgery detection. 
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Abhishek Thakur et al [3] The datasets, which target forgery techniques including splicing and CMF, 

include both real and fake photos. Whereas CASIA v2.0 has 7,491 genuine photographs and 5,123 

forgeries, CASIA v1.0 has 800 legitimate images & 921 spliced images. Using a hybrid DL & ML 

approach, the methodology uses a ml related colour illumining technique to locate the forged areas 

while a DCNN classifications images as forged or not. The DCNN is taught via supervised learning, 

which involves extracting and classifying features from test images using labelled images from the 

dataset. Using pre-trained models speeds up training via the use of a transfer learning technique. 

Several layers, those are conv, pooling, & fc layers, are used in the classification process. Softmax is used 

for the final classification. Following categorisation, an ML algorithm examines colour lighting to find 

the counterfeit. 

Ms. N. Nanthini et al [4] utilising a hybrid strategy that combines DL and ML approaches to identify 

image counterfeiting. The training dataset consists of a number of image collections, including DVMM, 

BSDS300, CASIA v1.0, and CASIA v2.0, which comprise both real and fake images. 20% of the photos 

in the dataset are utilised for testing, while the remaining 80% are used for training. To differentiate 

between photos that have been cloned and those that have not, DCNN is used. By utilising annotated 

images to train the DCNN model, the TL method improves the process even more. In order to extract 

features from the images, the DCNN uses many convolutional layers in addition to input, hidden, & 

output layers. Convolution procedures use filters to capture image patterns after standardising the input 

images. The approach targets image splicing and copy-move forgeries in particular by integrating a 

colour illumination technique into the machine learning framework. Classifying the photos and locating 

the fake are two aspects of this hybrid technique 

Satyendra Singh Yadav [5] proposed method uses the CASIA1 dataset, a popular image forgery detection 

resource. Disset 1 & dataset 2 include images for CNN model training. The input photos are downsized 

to 256x256x3 dimensions in order to fit inside the network, which has many layers, such as MAX 

pooling, ReLU activation, and convolutional layers. This model classifies images as fabricated or 

legitimate using binary classification. MAX pooling reduces feature map spatial size, while the ReLU 

AF introduces non-linearity in convolutional layers. For ultimate decision-making, the output layer uses 

the sigmoid AF to provide a binary output. FC layers incorporate information from preceding layers to 

categorise images in the deep learning model architecture. Image forgery detection is efficient because 

the network adjusts its weights depending on training data to distinguish real and fabricated images. 

CNNs' capacity for accurate image classification without pre-designed characteristics allows the system 

to handle sophisticated forgeries. 

Shobith Tyagi et al [6] focusses on using DL to find fake photos and videos. The tests utilized hacking 

datasets like CASIA v1.0, CASIA v2.0, Columbia, MICC, & others. These datasets have both real and 

altered images. Using CNNs to pull out traits from the images and movies is part of the process. These 

features teach the CNN model to tell the difference between real and changed areas. To find patterns in 

the images, the CNN design uses pooling layers, convolutional layers, and ReLU AF. ELA is also used to 

find differences in compression levels, which helps find places that have been changed. Another way to 

test the model's strength in finding fakes is to put it through strikes from other people. Post-processing 

steps like noise addition as well as compression are used to make the identification more accurate and 

difficult. This makes it easier for the model to adapt to different kinds of changes. 

N. Krishnaraj et al [7] The collection has images from the MNIST and CIFAR-10 standard datasets. 

After the data is gathered, steps called pre-processing was used to improve the quality of the image and 

get rid of noise. The next step is to create a DL fusion algorithm called DLFM-CMDFC. This model 

combines the designs of GANs and DenseNet. It is possible to make realistic fake images that look like 

the real ones using GANs. This helps the model learn to spot small changes. DenseNet is used to create 

a network that enables deep feature extraction, which makes it easier to spot parts that have been 

changed. With the help of the AFSA, the model also uses an ELM predictor that works better. AFSA 

improves the choice of factors in the ELM, such as weights and biases. This makes the model better at 

finding and locating forged areas. The ELM classifier is given the output from both GAN and DenseNet 

which concludes real and forgery images. 
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Mohammed R. Oraibi et al [8] UCF101 plus a custom surveillance video dataset provide videos for the 

dataset. These datasets include a range of situations, including many types of inter-frame video 

forgeries, including shuffle, duplication, insertion, and deletion of frames. To maximise computing 

efficiency and preserve detection characteristics, preprocessing must correct video quality, extract 

frames, and reduce frame size. After the frames have been pre-processed, difference-frame extraction 

is used. This stage detects sudden changes between frames to flag tampered locations. Batches of 

difference frames feed the 3D-CNN model. Multiple convolutional and ConvLSTM2D layers analyse 

video spatial and temporal characteristics in the 3D-CNN. Using retrieved temporal information, the 

model learns to differentiate pristine and counterfeit video frames. The dl technology automatically 

finds forged regions without human interaction. Detecting complicated inter-frame forgeries is resilient 

with this complete method. 

Table 1: Comparison of the Existing Approaches 

Author Algorithm Merits Demerits Accuracy 

Anushka 

Singh et al 

CNN-

Sharpen-

ELA 

By utilizing TL 

prediction was more 

efficient and accurate. 

Layers of CNN has to be 

initialized before 

processing which may 

loss in performance. 

97% 

Mamdouh M. 

Gomaa et al 

CNN-KNN Different datasets are 

evaluated have similar 

accuracy.  

More validation 

techniques have to use. 

98.2% 

Abhishek 

Thakur et al 

DL Efficient while process 

the images. 

Time-complexity. 99% 

Ms. N. 

Nanthini et al 

DCNN By utilizing number of 

hidden layers the 

prediction was accurate. 

If epoch are less 

performance was 

decreased. 

 99% 

Satyendra 

Singh Yadav 

CNN, 

ConvNet, 

ELA 

By utilizing ELA the 

prediction of forgery can 

recognized at initial 

stage. 

Better dataset can be 

utilized for validating 

method. 

 

Shobith Tyagi 

et al  

DL This method can be 

utilized for any 

manipulations. 

Validation techniques are 

not provide whereas 

comparison was shown. 

94% 

N. Krishnaraj 

et al 

DLFM-

CMDFC 

Couple of TL methods 

are combined for 

prediction. 

GAN can be utilized for 

detection performance. 

96.9% 

Mohammed 

R. Oraibi et al 

3D-CNN Enhancement was 

efficient. 

Little complicated with 

dynamic video back 

grounds. 

99% 

 

3. PROPOSED METHODOLOGY: This approach introduces a novel U-Net-based architecture 

specifically designed for copy-move forgery detection, leveraging a dual-channel input that combines 

the original image with a corresponding probe mask. The dual-channel input is particularly innovative, 

as it allows the model to focus explicitly on potential areas of manipulation indicated by the probe mask, 

thus enhancing its ability to precisely identify and localize forged regions. By using the probe mask as a 

guide, the network effectively "attends" to regions where forgeries are likely, enabling it to learn fine-
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grained differences between manipulated and genuine areas. This design addresses a critical challenge 

in image forgery detection—accurately segmenting small, localized manipulations—by combining the 

strengths of U-Net's encoder-decoder structure with this targeted attention mechanism. Consequently, 

the model achieves a high accuracy rate of 98%, demonstrating exceptional robustness and precision 

across diverse types of image manipulations. This novel architecture represents a important 

advancement in forensic detection, providing a more accurate, efficient, and context-aware method for 

copy-move forgery identification. 

3.1. U-Net Architecture for Feature Extraction: The U-Net architecture implemented here is tailored for 

pixel-level image segmentation, which is ideal for tasks like copy-move forgery detection, where fine-

grained accuracy is required to identify manipulated regions. U-Net was built around an encoder-

decoder framework, where the encoder derives hierarchical characteristics and the decoder 

reconstructs spatial information. The encoder path begins with convolutional layers that use small 3x3 

filters, which are critical for extracting low-level features like edges and textures. After each convolution, 

max-pooling layers are applied to downsample the feature maps, progressively reducing the spatial 

dimensions and enabling the network to capture more abstract, high-level features. The depth of the 

convolutional layers increases as the network progresses deeper, helping the model to recognize more 

complex patterns and forgeries. The bottleneck or bridge, located at the center of the architecture, 

condenses the feature maps into a compact representation while maintaining important contextual 

information, which is then passed to the decoder. 

 
Figure 1: UNet Architecture for Segmentation 

3.2. Dual-Channel Input for Enhanced Forgery Detection: A novel aspect of this approach is the use of 

a dual-channel input consisting of the original image paired with its corresponding probe mask. This 

dual-channel architecture greatly improves the model's cability to focus on areas of interest, which are 

typically the forged regions in copy-move forgeries. By feeding both the image and the probe mask into 

the network simultaneously, the model can learn from both the raw image content and the additional 

information provided by the mask. The probe mask highlights regions that are likely to contain 

manipulations, effectively guiding the network’s attention towards areas that require more detailed 

feature extraction. This form of attention is critical in tasks like forgery detection, where subtle 

manipulations often occur in localized regions of an image. The model can differentiate between 

genuine image content and forgery by leveraging the context provided by the probe mask. This dual-

channel approach adds an extra layer of context, allowing the network to capture and learn spatial 

relationships between the forged and authentic regions, which might otherwise be overlooked in 

traditional single-input models. It empowers the model to detect more precise boundaries of 

manipulated areas and reduces false positives, improving overall performance. 

3.3. Decoder Path and Skip Connections: The decoder path in the U-Net architecture works to upsample 

and restore the spatial dimensions of the image while preserving critical features learned by the 

encoder. Up-sampling layers are used to improve the resolution of activation maps, effectively 
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reconstructing the output image to its original size. A key characteristic of U-Net is the incorporation of 

skip connections between two layers, which merge features from corresponding layers. These skip 

connections ensure that detailed low-level spatial information, which could be lost during pooling 

operations, is preserved and used in the reconstruction process. The integration of this basic 

information with advanced abstract features from the deeper layers significantly improves the model’s 

ability to precisely locate forged regions. The output of the decoder is processed through a final 1x1 

convolution layer with a sigmoid activation function, which produces a binary output mask representing 

the forged regions (labelled 1) and the non-forged regions (labelled 0). This pixel-wise output is crucial 

for segmentation tasks where fine localization is required to detect subtle manipulations. 

 
Figure 2: Working of Decoder & Encoding Path 

Results & Discussion: 

Materials & Datasets: The dataset utilized in this approach is designed for copy-move forgery detection, 

containing three main components: the original images, probe masks, and donor masks. The original 

images represent the authentic visual content, which may contain regions of forged elements. The probe 

masks are binary masks indicating areas that are suspected to be manipulated or forged, highlighting 

regions where the model needs to focus for detection. The donor masks, on the other hand, typically 

provide areas of the image from which content may have been copied or moved. These three types of 

data—images and their associated masks—serve as the foundation for training the model to differentiate 

between authentic and manipulated regions within the image. The dataset is preprocessed by resizing 

all images and masks to a consistent 256x256 pixel resolution to maintain uniformity across the entire 

dataset. This ensures that the model receives inputs of the same shape and size, which is crucial for 

efficient model training and accurate predictions. Additionally, the images and masks are normalized 

to a range of [0, 1] by dividing by 255, helping the model to converge faster and more effectively during 

training. 

 
Figure 3: Training Analysis of Proposed Methodology 
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The above image show the training progress of the deep learning model over 10 epochs. It shows metrics 

such as accuracy, accuracy of integrity, loss, and loss of integrity. Each stage corresponds to a period of 

time, focusing on incremental improvements in performance. Training accuracy starts at about 96.1% 

and increases gradually, indicating effective learning. At the same time, search losses decrease, 

indicating a decrease in forecast error. Validation accuracy is still accurate at about 97%, indicating 

strong generalization between unseen data. The relatively small training time (11-12 seconds per epoch) 

reflects computational effort, probably due to optimized architecture and hardware speed. The figure 

helps to understand the convergence behavior of the model, and shows how stabilization loss is related 

to accuracy improvement. This structure is characteristic of a good fit of models and data sets. 

 
Figure 4: Prediction of Image Forgery 

The image above shows the results of the semantic classification task. The "original image" shows a 

street scene with various objects such as cars, equipment, and pedestrians. The "Truth Mask" represents 

the ground truth classification, with a particular region (e.g., truck in this case) highlighted, the 

"Predicted Mask" of target areas for classification shows patterns have been produced, highlighting the 

regions identified by the model. Although the predicted cover captures all the structures and features 

present at the site, it lacks the sharpness and specificity of the actual cover These differences identify 

areas for improvement, such as better or less edge detection the representation of small objects has 

improved. Overall, image comparisons are necessary to qualitatively assess model performance. 

 
Figure 5: Metric Analysis using the Proposed Methodology 

This table details the analysis of the model's efficiency in the binary classification task focusing on 

"background" and "forgery" learning. It has a recall of exactly 1.00, indicating that all posterior samples 

are correctly labeled with no false positives. This lead to a high F1-score of 0.99, indicating a optimum 

equilibrium between accuracy and recall for the background class. However, the model performs poorly 

in the "Forgery" class, where precision, recall, and F1-score are all 0.00. This means that the model fails 

to detect any fraud, which could be due to class imbalance or insufficient deceptive samples in the 

training dataset Despite this shortcoming, the overall accuracy of the model is 98%, with a high rate is 

greatly affected by the composition of background samples. Looking at both classes equally, the average 

total score is low at 0.49, indicating poor performance in the cheating group. In contrast, the weighted 

values due to the control of the posterior part are significantly higher. This highlights the impact of class 

imbalances on research standards and the need for targeted changes to control for underrepresented 

classes. 
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The above figures show the evolution of training and validation accuracy at different times, and provide 

insight into the learning process of the model. The blue line representing the training accuracy starts at 

about 96.2% and shows a gradual increase over the different periods, indicating the model’s capability 

to learn from the learning data. The near horizontal trends in both lines indicate that the model has 

already reached convergence, with little improvement observed in successive periods Furthermore, the 

matching training and validation accuracy indicates that the model generalizes well to unseen data It 

may be, through or in the training process The best architecture gets little room for further optimization 

without further changes. 

 

Figure 6: Model Performance by Proposed Methodology 

The above figures provide a general view of the decrease in training and validation loss with age, 

showing how the model changed over time. The validation loss shown for the orange line starts lower 

than the training loss, starting around 0.14, is relatively strong with little variation throughout the 

epochs The consistent characteristics of the validation loss are indicated by model is able to maintain 

good performance on unseen data without significant overfitting. Both loss curves are stable by 6 

epochs, indicating that the model has reached convergence and is unlikely to benefit from further 

training but slight variations in validation losses reveal potential areas for further fine-tuning to 

increase generalization and reduces residual error mean. 

5. CONCLUSION:  

The study demonstrates the efficacy of advanced deep learning models in achieving high-performance 

semantic segmentation, even in complex scenarios. The iterative training process, as evidenced by 

improving accuracy and decreasing loss metrics, highlight the importance of proper model architecture 

and hyperparameter optimization. Visual differentiations between the actual images, reference masks, 

and forecasted masks validate the model's ability to generalize effectively. However, the study identifies 

challenges such as the occasional misclassification of objects, pointing to the need for further 

refinements in training techniques and dataset diversity. The results emphasize the practical 

applicability of the model in various domains, including urban planning, disaster response, and 

precision agriculture. Future work aims to integrate multi-scale feature extraction and real-time 

processing capabilities to enhance performance further. The research highlights the potential of deep 

learning to revolutionize image-based analysis tasks, paving the way for more intelligent and 

autonomous systems. Continuous efforts in refining loss functions, incorporating domain-specific 

knowledge, and leveraging larger datasets will contribute to the evolution of semantic segmentation 

technologies. 
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