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This paper demonstrates the application of the Starfish Optimization Algorithm (SFOA) to 

solve the Economic Emission Dispatch (EED) problem considering chance constraints, 

integrating wind energy sources. Wind power is modeled as a Weibull distribution, and the 

problem is set up in the framework of Chance-Constrained Programming (CCP) to capture the 

variability of wind energy. The applied chance constraints ensure that the power flow equation 

is satisfied with a specified probability, and the resulting CCP formulation is transformed into a 

deterministic optimization problem using the premises of probability theory. Inspired by the 

peculiar behaviours of starfish, such as exploration, preying, and regeneration, the SFOA 

inspires strong global search capability and convergence efficiency. This approach effectively 

minimizes both generation costs and emissions while addressing the uncertainty associated 

with wind power. The method is tested on a ten-unit power system with wind energy 

integration, showing the robustness and efficiency of SFOA in achieving optimal solutions for 

the chance-constrained EED problem. 

Keywords: Starfish Optimization Algorithm (SFOA), Economic Emission Dispatch (EED), 

Chance-Constrained Programming (CCP), Wind Power, Weibull Distribution. 

 

INTRODUCTION 

 1.1 Background of Research:  However, industrial growth in the past also increased energy consumption, and 

more conventional power generation is expensive, time-consuming. Renewable energy - especially wind - is now 

greatly used despite this intermittency factor to combat climatic change. The prediction of wind power output is 

done by using physical methods such as hybrid techniques, chaos theory, and evolutionary algorithms and 

statistical methods [1-2]. In thermal unit scheduling, the probabilistic nature of wind power is very crucial. 

Emission dispatch minimizes costs and emissions [3-5], focusing on enhancing ELD problem-solving under 

practical constraints, including dynamic/static cases with complex cost functions. Wind power uncertainty creates 

stochastic optimization problems, leading to the search for optimal solutions [6-7]. 

1.2 Related Works: References [8, 9] are on sampling techniques for OPF formulation based on stochastic wind 

farm output, with uncertainty mainly related to cost functions. Methods for solving CCPs such as sampling and 

integer programming [10-12] are generally conservative, whereas analytical methods use probability distributions, 

and Weibull is the most common one used for WES output modeling [13], where meteorological or statistical data 

can be used for parameter estimation [14]. 
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These studies [15-17] incorporate wind and solar energy in the optimal power flow models that examine economic 

emission dispatch, carbon trading fluctuations, and renewable-integrated systems. Major contributions include the 

works on emission optimization with wind power [20], multi-objective economic dispatch using NSPSO [21], and 

power flow optimization with stochastic wind power [22]. Economic and emission dispatch optimization for 

renewable systems has been developed by using HSA [23] and improved flower pollination algorithms [24]. 

Efficient CSCA [25] and improved NSGA [26] balance cost and emissions in wind-integrated systems. Fuzziness-

based EED methods are good for the optimization of trade-off but weak for nonlinear models. Hybrid GA-PSO 

approaches improve convergence but increase the computational complexity, which is reduced by the SFOA 

optimization strategy [27]. 

1.3 Main contributions: The main contributions of this study are 

• SFOA Proposal: The Starfish Optimization Algorithm (SFOA) addresses the Economic Emission Dispatch 

(EED) problem with Wind Energy Sources (WESs), incorporating a chance constraint for wind power 

uncertainty. 

• Two-Phase Structure: SFOA combines hybrid search strategies for exploration and starfish-inspired 

behaviours for exploitation. 

• Comparative Analysis: SFOA outperforms other optimization algorithms in solving the chance-constrained 

EED problem. 

1.4 Structure of the paper: The structure of the paper is as follows: Section 2 outlines the formulation of the 

CCED problem. Section 3 describes the SFOA. Section 4 provides experimental results, comparing the proposed 

method for the CCEED problem, including thermal units and Wind Energy Sources (WES). Section 5 concludes 

with the key findings and suggestions for future research. 

Problem Formulation of Economic Dispatch with Chance Constraints 

This develops a chance-constrained EED model in order to incorporate wind power uncertainty so as to minimize 

total production cost and emissions -CO, CO₂, NOx. The VPLE would be accounted for within the model by making 

use of a sinusoidal term added into the cost function. The decision variables are the thermal unit power outputs Pi, 

with total cost and emission functions defined by equations (1) and (2). 

N
2 min

T i i i i i i i i i
i 1

Cos t a b P c p d sin{e (P P )}

=

= + + + −                                                                                  (1) 
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Problem Constraints: The CCEED problem's deterministic constraints are the thermal units' generation limits. 

min max
i i iP P P i 1,2,...., N  =                                                                                        (3) 

Introducing WES into the EED model will add a stochastic constraint. The chance constraint specifying the 

permissible tolerance for power imbalance among load, thermal power, WES output (W), and system losses is as in 

(4). 

N
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Here PL calculated using equation (5) 
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The variability in Wind Power (WP) generation arises from fluctuating wind speeds, with the WP output W being a 

function of the wind speed V [26]. 



329  
 

Dileep Kumar Mohanachandran et al.  / J INFORM SYSTEMS ENG, 10(4s) 

in out

in r
in r

r in

r r out

0, if V v or V v

(V v ) * w
W , if v V v

v v

w if v V v

  


−
=  

−
  

                                                                          (6) 

Wind turbine rated power is rw , cut-in/out wind speeds represented by inv and outv  

This study models wind speed randomness using a two-parameter Weibull distribution, expressed as: 

k 1 k

v
k v v

f (v) * *exp
c c c

−     
 = −   

     
                                                                                                       (7) 

Thus, the Cumulative Distribution Function (CDF) is expressed as: 
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Mathematical Model of Starfish Optimization Algorithm 

In the initialization step of the Starfish Optimization Algorithm, the starfish positions are generated randomly in 

the design variable bounds as follows: 
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                                                                                             (9) 

Here, X is the N×D matrix of the starfish positions where N is the population size and D is the number of design 

variables. Each starfish position is calculated using Eq. (9). 

ij j j jX l rand (0,1) * (u l ), j 1,2,...,D, i 1,2,...., N= + − = =                                                       (10) 

Fit values are calculated from the objective function and stored by equation (11). 

 
T

1 2 N N 1
F F(X ) F(X ) F(X )


=                                                                                                           (11) 

For D>5, starfish utilize all five arms and knowledge of the finest position to guide their exploration in the search 

space. 
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θ and a1 are calculated as follows: 

1a (2r 1)= −                                                                                                                                (13) 
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For D>5, the five-dimensional search pattern updates five position dimensions to enhance search efficiency. If the 

updated position exceeds the boundaries, the arms retain the previous position.  

T T
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i,p T
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Y l Y u
X
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+
  

= 
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                                                                                                 (15) 

For D≤5, the exploration phase uses a unidimensional search pattern, with one arm moving based on other 

starfish's positions. 

T T T T T T
i,q t i,p k ,p i,p 1 k ,p i,p 21 2

Y E X (X X ) * A (X X ) * A= + − + −                                                                         (16) 
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Here,  T
k ,p1

X and  T
k ,p2

X are p-dimensional positions, A1 and A2 are random numbers between    (-1,1), and Et is the 

starfish's energy. 

max
t

max

T T
E cos

T

−
=                                                                                                                            (17) 

If the position exceeds boundaries, the starfish retains the previous position. In the exploitation phase of SFOA, 

starfish positions are adjusted through a dual-directional search considering the best position and relative distances 

to other starfish. 

( )T T
m best mp

d X X , m 1,...,5= − =                                                                                        (18) 

In the predatory behaviour, the positions are updated using five distances from the global best (dm) and five 

randomly selected starfish (mp). 

T T
i i 1 m1 2 m2Y X r *d r *d= + +                                                                                                      (19) 

In the preying phase, starfish move towards or away from optimal solutions based on random values and selected 

distances. The regeneration phase adjusts the position of the last starfish due to predator effects. 

T T
i max iY exp( T N / T )X= −                                                                                                              (20) 

If the location calculated from Eq. (19) or Eq. (20) exceeds the design variable limits, it is adjusted to stay within 

the specified boundaries. 
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Simulation Results 

A ten-unit system is used to assess the performance of the proposed technique in solving the multi-objective EED 

problem. The analysis takes into account transmission losses, valve point loading effect (VPLE), and generation 

capacity constraints. The unit data, as provided in [25], totals a power load of 2000 MW. 

Performance and accuracy of the proposed SFOA method to solve the stochastic EED problem are assessed with 

two test scenarios that have different levels of complexity and system losses in a ten-unit system. 

Case 1: 10-unit system without WES. 

Case 2: 10-unit system with WES. 

Table 1: Parameters of wind turbine 

K  vr vout  C  vin  

1.7 15 45 15 5 

 

Table 2: Proposed SFOA Parameters 

Parameter  Value 

Itermax 

Population size (N) 

Global Parameter 

Number of arms 

200 

200 

0.5 

5 

 

The SFOA technique is compared with other metaheuristic techniques to evaluate its effectiveness. This chapter 

also examines the impact of wind parameters on optimal generation and the objective functions. 

 

 

 



331  
 

Dileep Kumar Mohanachandran et al.  / J INFORM SYSTEMS ENG, 10(4s) 

4.1. Case 1: 10-unit system without WES 

This section deals with EED problem irrespective of wind power. The best-cost and best emission convergence 

curves under the proposed algorithm SFOA are demonstrated, respectively in Fig. 1 and Fig. 2 where the optimum 

convergence for algorithm has occurred around 88 iterations for the lowest cost and iteration 147 regarding the 

least emitted value. 

The results show the performance of the optimization algorithm focused on minimizing fuel cost and emissions in a 

power system. The decrease in the fuel cost is very sharp in the first iterations and eventually stabilizes at the 

minimum cost after 50 iterations. Similarly, the decrease in the emissions shows steep reduction during the first 20 

iterations and stabilizes at about 3800 tons/hr. The consistent trend of two plots reflects the efficiency of the 

proposed algorithm in achieving considerable improvements by the limited number of iterations. Such rapid 

convergence delivers low computational effort with satisfactory accuracy. The results emphasize the applicability of 

the algorithm for real-time application, particularly in energy-economic dispatch. The optimization process 

accurately balances cost and environmental perspectives and is hence suitable for sustainable power system 

operations. 
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Figure 1. Convergence characteristics of Cost minimisation Case-1 
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Figure 2. Convergence characteristics of Emission minimisation Case-1 
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Here, for the ED problem, SFOA yields lower fuel cost as against NSGA-II [26], namely, 111,260.30 $/hr vs. 

111,497.63 $/hr. For the Emission Dispatch problem, SFOA also exhibits relatively better cost performance, 

116,386.45 $/hr versus 116,412.46 $/hr. Emission outputs are much decreased in Emission Dispatch. SFOA 

achieved 3859.21 tons/hr whereas NSGA-II [26] is 3932.24 tons/hr, hence indicating the high reduction of 

emission as compared to the other. The power loss in Emission Dispatch is a bit lesser for both algorithms, though 

marginally, with SFOA. 

 

From the Economic Dispatch results, it is clear that SFOA had the least cost of $111260.2963 with the lowest 

amount of emissions to be 4443.6699 ton/h, bettering PSO [26] ($111498.49, 4567.27 ton/h), DE [26] ($111565.71, 

4572.68 ton/h), and FA [26] ($111500.79, 4581 ton/h). For Emission Dispatch, SFOA also performed well with the 

lowest emissions of 3859.212 ton/h and a cost of $116386.4473, compared to PSO [26] ($116412.49, 3932.24 

ton/h), DE [26]  ($116418.34, 3946.24 ton/h), and FA [26]  ($116443.05, 3932.62 ton/h). This shows that SFOA is 

the best method in minimizing both cost and emissions. 

 

Table 3: Optimal and Comparison results for Case-1 

 SFOA NSGA-II [26] 

Unit 
Economic 

dispatch 

Emission 

dispatch 

Economic 

dispatch 

Emission 

dispatch 

P1 54.9992 55.0000 55.0000 55.0000 

P2 80.0000 80.0000 80.0000 80.0000 

P3 107.3467 63.3443 106.9408 81.1394 

P4 99.9944 60.1998 100.5756 81.3666 

P5 82.2685 160.0000 81.5017 160.0000 

P6 82.4356 240.0000 83.0207 240.0000 

P7 300.0000 300.0000 300.0000 294.4853 

P8 340.0000 340.0000 340.0000 297.2669 

P9 470.0000 409.9616 470.0000 396.7628 

P10 470.0000 373.6305 470.0000 395.5738 

CT ($/hr) 111260.2963 116386.4473 111497.6300 116412.4600 

ET (ton/hr) 4443.6699 3859.2120 4572.1900 3932.2400 

PL (MW) 87.0445 82.1401 87.0388 81.5949 

 

4.2. Case 2: 10-unit system with WES 

In this scenario, the base ten-unit system with another wind farm that has 50 turbines, 2 MW each, is used to 

evaluate for a total demand of PD=2000 MW. The effects of wind power (WP) penetration on the Economic-

Emission Dispatch (EED) problem are explored based on the various threshold tolerances (σ). Fig. 3 illustrates the 

Pareto front generated using the SFOA, wherein a reduction in σ increases costs and emissions since WP utilization 

decreases. Conversely, higher σ enhances WP penetration and reduces both the production cost and emissions as 

summarized in Table 9. 

The results show that maximum cost and emissions occur without WP, and higher σ yields significant reductions. 

However, practical constraints limit σ to smaller values to mitigate risks of insufficient WP. It is also interesting to 

note that the wind farm contributes only when σ≥0.14, meaning that appropriate tolerance levels are very 

important for reliable system operation. 



333  
 

Dileep Kumar Mohanachandran et al.  / J INFORM SYSTEMS ENG, 10(4s) 

E
m

is
si

o
n

 (
to

n
/h

r)
 

 

 

Fuel Cost ($/hr) 

Figure 3. Impact of Threshold Tolerance on Pareto Solutions 

The figure 4  show the effect of integration of WES into a power system on fuel cost and emissions analyzed over 

200 iterations in three scenarios: no WES, WES (tolerance = 0.2), and WES (tolerance = 0.3). From figure 3, the 

fuel cost graph, the lowest cost occurs without WES, as the conventional generators are fully utilized. With WES at 

lower tolerance (σ=0.2), fuel costs are slightly higher due to less wind power integration. At higher tolerance 

(σ=0.3), fuel costs are highest because of the increased reliance on wind power, which introduces variability and 

requires compensatory adjustments from conventional units. 

The figure 5 shows that emissions are highest without WES since the system is fully dependent on conventional 

generation. In addition, the integration of WES reduces emissions, and higher tolerance (σ=0.3) results in the 

lowest emissions due to increased penetration of wind power. The results show that there is a trade-off between fuel 

cost and emissions: increasing wind power penetration reduces emissions but increases costs. All scenarios 

converge within the first 50 iterations, which prove the efficiency of the optimization process and the importance of 

balancing economic and environmental goals in power system operations. 
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Figure 5. Convergence characteristics of Emission minimisation Case-2 

Table 4: Optimal results for Case-2 SFOA 

  Economic dispatch   Emission Dispatch 

σ(Tolerance) 0.2 0.3 0.2 0.3 

P1 55.0000 55.0000 55.0000 55.0000 

P2 80.0000 80.0000 80.0000 80.0000 

P3 99.4419 98.0780 79.1093 74.1897 
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P4 89.5834 85.1351 78.1815 81.0133 

P5 89.9765 69.2188 160.0000 160.0000 

P6 79.9445 70.6700 240.0000 240.0000 

300.0000 

340.0000 
P7 300.0000 300.0000 300.0000 300.0000 

P8 340.0000 340.0000 340.0000 340.0000 

P9 470.0000 470.0000 364.6705 373.0324 

P10 470.0000 470.0000 364.4611 325.5479 

WP 17.0373 45.6885 17.1171 47.5989 

CT, $/hr 110160.0199 108266.3721 115342.5480 113685.0657 

ET, tonnes/hr 4433.9483 4323.1712 3847.4873 3684.5482 

PL(MW) 85.8598 84.0536 79.3843 76.5148 

 

The integration of wind energy systems under ED and EmD scenarios proves to be one of the essential advantages 

with increased tolerance levels at σ=0.3. In both ED and EmD, the high WP contribution diminishes the 

contribution of conventional units, especially the units P5 to P10, thus augmenting the total penetration of 

renewable energy. WP contribution increases up to 45.69 MW in ED and 47.60 MW in EmD under σ=0.3. Thus, the 

overall cost and emission decrease, where ED decreases from $110,160.02/h (σ=0.2) to $108,266.37/h (σ=0.3), 

and emission decreases from 4433.95 tons/h to 4323.17 tons/h. EmD decreases in a similar pattern, implying that 

the use of higher WP is beneficial from both economic and environmental perspectives. 

 

Moreover, the power losses (PL) also decrease with increasing WP integration; ED reduces from 85.86 MW to 

84.05 MW, and EmD reduces from 79.38 MW to 76.51 MW. Here, EmD focuses on emissions reduction, which 

implies lower emissions at σ=0.3; for example, 3684.55 tons/h as against ED. It is, however, at a cost of overall 

expenses being a little higher. The results show the efficiency of higher tolerance levels in optimizing WES 

integration, with a balance between economic objectives, such as lower costs, and environmental goals, such as 

reduced emissions, and also with reduced power losses. 

 

CONCLUSION 

RESs, such as wind turbine systems, are increasingly included in power grids to reduce dependence on fossil fuels 

and mitigate the detrimental effects of conventional generation technologies on the environment. However, the 

nature of RESs, especially wind power due to weather fluctuations, presents difficulties for stable grid operation. To 

address the aforementioned problem, this study suggests a meta-heuristic-based solution to the combined EED 

problem integrated with wind turbine power generation. This solution includes the randomness in wind power 

generation through the Weibull distribution function and then transforms the traditional deterministic power 

balance constraint into a chance constraint. In addition to these constraints, the problem statement also accounts 

for additional operating constraints such as generation limits, ramp rate limits, and POZ. Because the problem is 

complex, nonlinear, and nonconvex, this research study will employ an elitist optimization method known as 

Stochastic Fish Optimization Algorithm (SFOA) in the finding of optimal solutions. The suggested strategy will be 

tested on a ten-unit power system with its results compared with other optimization techniques. It highlights the 

success of the method and suggests this method can be extended to cover hybrid EED problems, for example, 

integration of wind farms and photovoltaic (PV) systems. 
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