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ARTICLE INFO ABSTRACT

Received: 15 Oct 2024 This paper demonstrates the application of the Starfish Optimization Algorithm (SFOA) to

solve the Economic Emission Dispatch (EED) problem considering chance constraints,

integrating wind energy sources. Wind power is modeled as a Weibull distribution, and the

Accepted: 25 Dec 2024 problem is set up in the framework of Chance-Constrained Programming (CCP) to capture the
variability of wind energy. The applied chance constraints ensure that the power flow equation
is satisfied with a specified probability, and the resulting CCP formulation is transformed into a
deterministic optimization problem using the premises of probability theory. Inspired by the
peculiar behaviours of starfish, such as exploration, preying, and regeneration, the SFOA
inspires strong global search capability and convergence efficiency. This approach effectively
minimizes both generation costs and emissions while addressing the uncertainty associated
with wind power. The method is tested on a ten-unit power system with wind energy
integration, showing the robustness and efficiency of SFOA in achieving optimal solutions for
the chance-constrained EED problem.
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INTRODUCTION

1.1 Background of Research: However, industrial growth in the past also increased energy consumption, and
more conventional power generation is expensive, time-consuming. Renewable energy - especially wind - is now
greatly used despite this intermittency factor to combat climatic change. The prediction of wind power output is
done by using physical methods such as hybrid techniques, chaos theory, and evolutionary algorithms and
statistical methods [1-2]. In thermal unit scheduling, the probabilistic nature of wind power is very crucial.
Emission dispatch minimizes costs and emissions [3-5], focusing on enhancing ELD problem-solving under
practical constraints, including dynamic/static cases with complex cost functions. Wind power uncertainty creates
stochastic optimization problems, leading to the search for optimal solutions [6-7].

1.2 Related Works: References [8, 9] are on sampling techniques for OPF formulation based on stochastic wind
farm output, with uncertainty mainly related to cost functions. Methods for solving CCPs such as sampling and
integer programming [10-12] are generally conservative, whereas analytical methods use probability distributions,
and Weibull is the most common one used for WES output modeling [13], where meteorological or statistical data
can be used for parameter estimation [14].
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These studies [15-17] incorporate wind and solar energy in the optimal power flow models that examine economic
emission dispatch, carbon trading fluctuations, and renewable-integrated systems. Major contributions include the
works on emission optimization with wind power [20], multi-objective economic dispatch using NSPSO [21], and
power flow optimization with stochastic wind power [22]. Economic and emission dispatch optimization for
renewable systems has been developed by using HSA [23] and improved flower pollination algorithms [24].

Efficient CSCA [25] and improved NSGA [26] balance cost and emissions in wind-integrated systems. Fuzziness-
based EED methods are good for the optimization of trade-off but weak for nonlinear models. Hybrid GA-PSO
approaches improve convergence but increase the computational complexity, which is reduced by the SFOA
optimization strategy [27].

1.3 Main contributions: The main contributions of this study are

e SFOA Proposal: The Starfish Optimization Algorithm (SFOA) addresses the Economic Emission Dispatch
(EED) problem with Wind Energy Sources (WESs), incorporating a chance constraint for wind power
uncertainty.

e Two-Phase Structure: SFOA combines hybrid search strategies for exploration and starfish-inspired
behaviours for exploitation.

e Comparative Analysis: SFOA outperforms other optimization algorithms in solving the chance-constrained
EED problem.

1.4 Structure of the paper: The structure of the paper is as follows: Section 2 outlines the formulation of the
CCED problem. Section 3 describes the SFOA. Section 4 provides experimental results, comparing the proposed
method for the CCEED problem, including thermal units and Wind Energy Sources (WES). Section 5 concludes
with the key findings and suggestions for future research.

Problem Formulation of Economic Dispatch with Chance Constraints

This develops a chance-constrained EED model in order to incorporate wind power uncertainty so as to minimize
total production cost and emissions -CO, CO2, NOx. The VPLE would be accounted for within the model by making
use of a sinusoidal term added into the cost function. The decision variables are the thermal unit power outputs Pi,
with total cost and emission functions defined by equations (1) and (2).

N :
Costy =) a; +biP; +Gpf +|d;singe; (R™ )} ()
i—1
. N 2
Emissiont = o +BiP; +vip{ +n;j exp(AiP) (2)

i=1
Problem Constraints: The CCEED problem's deterministic constraints are the thermal units' generation limits.
pMin < p. < pMaX i=12,...,N (3)

Introducing WES into the EED model will add a stochastic constraint. The chance constraint specifying the
permissible tolerance for power imbalance among load, thermal power, WES output (W), and system losses is as in

@P.

N
Pr{ZPiJrWS PD+PL}SG 4)
i=1
Here PL calculated using equation (5)
N N N
PL =D PBjjPj+>_BoiP, + Byg (5)
i=1j=1 i=1

The variability in Wind Power (WP) generation arises from fluctuating wind speeds, with the WP output W being a
function of the wind speed V [26].
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0, if V<vj, or V>vg,
—\/. *
W = w' if VinSV<Vr (6)
Vr = Vin
W, if v, <V<vg,

Wind turbine rated power is W, , cut-in/out wind speeds represented by Vj, and Vg ;¢

This study models wind speed randomness using a two-parameter Weibull distribution, expressed as:

K (v k-1 v k
wo=g{5) ool (3] @

Thus, the Cumulative Distribution Function (CDF) is expressed as:

k
F,(v) = I(;/fv(r)dr ~1- exp{—(%) ] V>0

k — Scale Factor;c — Shape Factor;v — Wind Speed

®

Mathematical Model of Starfish Optimization Algorithm
In the initialization step of the Starfish Optimization Algorithm, the starfish positions are generated randomly in
the design variable bounds as follows:

X121 X X1
x| X1 >_<22 X2p ©)
XNl XN2 XND NxD

Here, X is the NxD matrix of the starfish positions where N is the population size and D is the number of design
variables. Each starfish position is calculated using Eq. (9).
Xij:|j+rand (0,1)*(Uj—|j), j:1,2,...,D, i:1,2,....,N (10)

Fit values are calculated from the objective function and stored by equation (11).
F=[F(X) F(X2)  FOXN)] g (1)

For D>5, starfish utilize all five arms and knowledge of the finest position to guide their exploration in the search
space.

YiTp = x;l,-p + al(x-lgest,p— XIp)COS 0, rand<05

Yily = X —a1(XPest, p— X p)sin0,  rand >0.5 (12)
0 and a1 are calculated as follows:
a;=(2r-Dn (13)
n T T — Currentiteration
T2 T {Tmax — Maximumiteration (14)

For D>5, the five-dimensional search pattern updates five position dimensions to enhance search efficiency. If the
updated position exceeds the boundaries, the arms retain the previous position.

T T
Yip lp<YipSUpp

ip — . 1
P x Ip otherwise (15)

For D=5, the exploration phase uses a unidimensional search pattern, with one arm moving based on other
starfish's positions.

T T T T T T
Yig = EtXip + (X ky,p= X i,p) *Ar+ Xk, p = Xip) *Az (16)
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Here, XILp and X1k-2,p are p-dimensional positions, A1 and A2 are random numbers between (-1,1), and Et is the
starfish's energy.

E;= Tmax =T 0 (17)
max
If the position exceeds boundaries, the starfish retains the previous position. In the exploitation phase of SFOA,
starfish positions are adjusted through a dual-directional search considering the best position and relative distances
to other starfish.

T T
dm z(xbest_xmp)v m=1..5 (18)

In the predatory behaviour, the positions are updated using five distances from the global best (dm) and five
randomly selected starfish (mp).

it = X{ + %At 1 * Ao (19)

In the preying phase, starfish move towards or away from optimal solutions based on random values and selected
distances. The regeneration phase adjusts the position of the last starfish due to predator effects.

YT =exp(-T x N/ g )X{' (20)

If the location calculated from Eq. (19) or Eq. (20) exceeds the design variable limits, it is adjusted to stay within
the specified boundaries.

Y;r |bSY;rS Up
T+ T
Xi =1l Yi<lp (21)
Uy YiT> Up

Simulation Results

A ten-unit system is used to assess the performance of the proposed technique in solving the multi-objective EED
problem. The analysis takes into account transmission losses, valve point loading effect (VPLE), and generation
capacity constraints. The unit data, as provided in [25], totals a power load of 2000 MW.
Performance and accuracy of the proposed SFOA method to solve the stochastic EED problem are assessed with
two test scenarios that have different levels of complexity and system losses in a ten-unit system.
Case 1: 10-unit system without WES.
Case 2: 10-unit system with WES.

Table 1: Parameters of wind turbine

vr vout C vin
1.7 15 45 15 5

Table 2: Proposed SFOA Parameters

Parameter Value
Itermax 200
Population size (N) 200
Global Parameter 0.5
Number of arms 5

The SFOA technique is compared with other metaheuristic techniques to evaluate its effectiveness. This chapter
also examines the impact of wind parameters on optimal generation and the objective functions.
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4.1. Case 1: 10-unit system without WES

This section deals with EED problem irrespective of wind power. The best-cost and best emission convergence
curves under the proposed algorithm SFOA are demonstrated, respectively in Fig. 1 and Fig. 2 where the optimum
convergence for algorithm has occurred around 88 iterations for the lowest cost and iteration 147 regarding the
least emitted value.

The results show the performance of the optimization algorithm focused on minimizing fuel cost and emissions in a
power system. The decrease in the fuel cost is very sharp in the first iterations and eventually stabilizes at the
minimum cost after 50 iterations. Similarly, the decrease in the emissions shows steep reduction during the first 20
iterations and stabilizes at about 3800 tons/hr. The consistent trend of two plots reflects the efficiency of the
proposed algorithm in achieving considerable improvements by the limited number of iterations. Such rapid
convergence delivers low computational effort with satisfactory accuracy. The results emphasize the applicability of
the algorithm for real-time application, particularly in energy-economic dispatch. The optimization process
accurately balances cost and environmental perspectives and is hence suitable for sustainable power system
operations.
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Figure 1. Convergence characteristics of Cost minimisation Case-1
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Figure 2. Convergence characteristics of Emission minimisation Case-1
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Here, for the ED problem, SFOA yields lower fuel cost as against NSGA-II [26], namely, 111,260.30 $/hr vs.
111,497.63 $/hr. For the Emission Dispatch problem, SFOA also exhibits relatively better cost performance,
116,386.45 $/hr versus 116,412.46 $/hr. Emission outputs are much decreased in Emission Dispatch. SFOA
achieved 3859.21 tons/hr whereas NSGA-II [26] is 3932.24 tons/hr, hence indicating the high reduction of
emission as compared to the other. The power loss in Emission Dispatch is a bit lesser for both algorithms, though
marginally, with SFOA.

From the Economic Dispatch results, it is clear that SFOA had the least cost of $111260.2963 with the lowest
amount of emissions to be 4443.6699 ton/h, bettering PSO [26] ($111498.49, 4567.27 ton/h), DE [26] ($111565.71,
4572.68 ton/h), and FA [26] ($111500.79, 4581 ton/h). For Emission Dispatch, SFOA also performed well with the
lowest emissions of 3859.212 ton/h and a cost of $116386.4473, compared to PSO [26] ($116412.49, 3932.24
ton/h), DE [26] ($116418.34, 3946.24 ton/h), and FA [26] ($116443.05, 3932.62 ton/h). This shows that SFOA is
the best method in minimizing both cost and emissions.

Table 3: Optimal and Comparison results for Case-1

SFOA NSGA-II [26]
Unit Economic Emission Economic Emission
dispatch dispatch dispatch dispatch
P1 54.9992 55.0000 55.0000 55.0000
P2 80.0000 80.0000 80.0000 80.0000
P3 107.3467 63.3443 106.9408 81.1394
P4 990.9944 60.1998 100.5756 81.3666
P5 82.2685 160.0000 81.5017 160.0000
P6 82.4356 240.0000 83.0207 240.0000
P7 300.0000 300.0000 300.0000 204.4853
P8 340.0000 340.0000 340.0000 297.2669
P9 470.0000 409.9616 470.0000 3906.7628
P1io 470.0000 373.6305 470.0000 395.5738
CT ($/hr) 111260.2963 116386.4473 111497.6300 116412.4600
ET (ton/hr) 4443.6699 3859.2120 4572.1900 3932.2400
PL (MW) 87.0445 82.1401 87.0388 81.5949

4.2. Case 2: 10-unit system with WES

In this scenario, the base ten-unit system with another wind farm that has 50 turbines, 2 MW each, is used to
evaluate for a total demand of PD=2000 MW. The effects of wind power (WP) penetration on the Economic-
Emission Dispatch (EED) problem are explored based on the various threshold tolerances (o). Fig. 3 illustrates the
Pareto front generated using the SFOA, wherein a reduction in o increases costs and emissions since WP utilization
decreases. Conversely, higher o enhances WP penetration and reduces both the production cost and emissions as
summarized in Table 9.

The results show that maximum cost and emissions occur without WP, and higher o yields significant reductions.
However, practical constraints limit o to smaller values to mitigate risks of insufficient WP. It is also interesting to
note that the wind farm contributes only when 0>0.14, meaning that appropriate tolerance levels are very
important for reliable system operation.
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Figure 3. Impact of Threshold Tolerance on Pareto Solutions

The figure 4 show the effect of integration of WES into a power system on fuel cost and emissions analyzed over
200 iterations in three scenarios: no WES, WES (tolerance = 0.2), and WES (tolerance = 0.3). From figure 3, the
fuel cost graph, the lowest cost occurs without WES, as the conventional generators are fully utilized. With WES at
lower tolerance (0=0.2), fuel costs are slightly higher due to less wind power integration. At higher tolerance
(0=0.3), fuel costs are highest because of the increased reliance on wind power, which introduces variability and
requires compensatory adjustments from conventional units.

The figure 5 shows that emissions are highest without WES since the system is fully dependent on conventional
generation. In addition, the integration of WES reduces emissions, and higher tolerance (0=0.3) results in the
lowest emissions due to increased penetration of wind power. The results show that there is a trade-off between fuel
cost and emissions: increasing wind power penetration reduces emissions but increases costs. All scenarios
converge within the first 50 iterations, which prove the efficiency of the optimization process and the importance of
balancing economic and environmental goals in power system operations.
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Table 4: Optimal results for Case-2 SFOA
Economic dispatch Emission Dispatch
o(Tolerance) 0.2 0.3 0.2 0.3
P1 55.0000 55.0000 55.0000 55.0000
P2 80.0000 80.0000 80.0000 80.0000
P3 99.4419 98.0780 79-1093 74.1897
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P4 89.5834 85.1351 78.1815 81.0133
P5 89.9765 69.2188 160.0000 160.0000
P6 79.9445 70.6700 240.0000 240.0000
Py 300.0000 300.0000 300.0000 300.0000
P8 340.0000 340.0000 340.0000 340.0000
P9 470.0000 470.0000 364.6705 373.0324
P10 470.0000 470.0000 364.4611 325.5479
WP 17.0373 45.6885 17.1171 47.5989

CT, $/hr 110160.0199 108266.3721 115342.5480 113685.0657

ET, tonnes/hr 4433.9483 4323.1712 3847.4873 3684.5482
PL(MW) 85.8598 84.0536 79.3843 76.5148

The integration of wind energy systems under ED and EmD scenarios proves to be one of the essential advantages
with increased tolerance levels at 6=0.3. In both ED and EmD, the high WP contribution diminishes the
contribution of conventional units, especially the units P5 to P10, thus augmenting the total penetration of
renewable energy. WP contribution increases up to 45.69 MW in ED and 47.60 MW in EmD under 6=0.3. Thus, the
overall cost and emission decrease, where ED decreases from $110,160.02/h (0=0.2) to $108,266.37/h (06=0.3),
and emission decreases from 4433.95 tons/h to 4323.17 tons/h. EmD decreases in a similar pattern, implying that
the use of higher WP is beneficial from both economic and environmental perspectives.

Moreover, the power losses (PL) also decrease with increasing WP integration; ED reduces from 85.86 MW to
84.05 MW, and EmD reduces from 79.38 MW to 76.51 MW. Here, EmD focuses on emissions reduction, which
implies lower emissions at 0=0.3; for example, 3684.55 tons/h as against ED. It is, however, at a cost of overall
expenses being a little higher. The results show the efficiency of higher tolerance levels in optimizing WES
integration, with a balance between economic objectives, such as lower costs, and environmental goals, such as
reduced emissions, and also with reduced power losses.

CONCLUSION

RESs, such as wind turbine systems, are increasingly included in power grids to reduce dependence on fossil fuels
and mitigate the detrimental effects of conventional generation technologies on the environment. However, the
nature of RESs, especially wind power due to weather fluctuations, presents difficulties for stable grid operation. To
address the aforementioned problem, this study suggests a meta-heuristic-based solution to the combined EED
problem integrated with wind turbine power generation. This solution includes the randomness in wind power
generation through the Weibull distribution function and then transforms the traditional deterministic power
balance constraint into a chance constraint. In addition to these constraints, the problem statement also accounts
for additional operating constraints such as generation limits, ramp rate limits, and POZ. Because the problem is
complex, nonlinear, and nonconvex, this research study will employ an elitist optimization method known as
Stochastic Fish Optimization Algorithm (SFOA) in the finding of optimal solutions. The suggested strategy will be
tested on a ten-unit power system with its results compared with other optimization techniques. It highlights the
success of the method and suggests this method can be extended to cover hybrid EED problems, for example,
integration of wind farms and photovoltaic (PV) systems.
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