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ARTICLE INFO ABSTRACT

Semantic segmentation is an integral component of computer vision, providing detailed scene analysis by
classifying each pixel in an image. It is particularly valuable in remote sensing applications, such as land
Revised: 12 Feb 2025 cover mapping, urban change detection, and environmental protection. However, semantic segmentation
Accepted: 26 Feb 2025 often faces challenges in capturing both local and global context effectively. Traditional machine learning
models encounter limitations with suboptimal feature extraction, handling noisy data, and adapting to
varying data distributions. To address these challenges, deep learning models offer improved adaptability
and feature learning capabilities. In particular, Transformer architectures have shown promise in modelling
global information, leading to enhanced performance in various vision-related tasks, including semantic
segmentation. In this work, we propose a novel approach that integrates a Transformer-based decoder into
the U-Net architecture for real-time urban scene segmentation. The model combines a CNN-based encoder,
utilizing ResNet-101 for feature extraction, with a Transformer-based decoder to capture both local and
global contexts. This hybrid architecture allows for better complex urban element segmentation, making the
model better at defining fine details and also large-scale structures. For performance evaluation, the
proposed model is tested against UAVid, which results to an 89% accuracy and an 80% of MIoU; thus,
confirming that the proposed model is effective in achieving a good outcome in the urban scene segmentation
process.
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INTRODUCTION

Semantic segmentation is a basic computer vision concept, that is comprised of assigning to each pixel of an
image a class label. This kind of pixel-level classification sets semantic segmentation apart from image classification
and region-level object detection and gives finer details about the scene. Semantic segmentation is a very crucial
application in many scenes, including autonomous driving that will enable safe navigation through the understanding
of road scenes and, in robotics and surveillance, by action localization and classification. Moreover, in remote sensing,
semantic segmentation works hand in hand with land cover mapping, urban change detection, and environmental
protection. Furthermore, in medical imaging, the key ap plication of semantic segmentation is in the detection of the
tumor and in the segmentation of organs.

Initially Semantic Segmentation was mostly done with Machine learning models which often struggled with
effectively capturing the nuances of complex scenes. To enhance performance, it is crucial to consider both local and
global contexts in the segmentation process. Local context refers to the detailed, small-scale information found in a
limited region of an image. It captures fine-grained features, such as textures, edges, and small objects. Local context
is crucial for distinguishing between objects that are close together or have subtle differences, like differentiating
between a parked car and a moving car, or detecting small details within an object. Global con text refers to the large-
scale, holistic information that spans the entire image or large portions of it. It captures relationships between objects
and their surroundings, as well as the overall structure of the scene. Understanding that a road runs through an entire
image, or that a building is part of a larger urban scene. It helps the model recognize spatial relationships between
objects, such as knowing that cars are likely on roads and trees are more likely next to buildings. It prevents
misclassification by using the scene’s overall context (e.g., not classifying a tree as a car because of its larger
environment). Traditional machine learning methods for semantic segmentation have relied on manually designed
feature extractors and classifiers, such as conditional random fields (CRFs), support vector machines (SVMs), K-
means 2 and decision trees. While these methods offer certain advantages, particularly in small-sample datasets or
low-noise images, they face limitations. CRFs, although previously popular, require extensive manual feature
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engineering and parameter tuning, resulting in high computational complexity and inefficiency. SVMs, though
effective for binary classification, struggle with multiclass problems. Decision trees, despite being simple and
interpretable, are often hindered by high-dimensional data and noise, leading to poor generalization.

The advent of deep learning has revolutionized semantic segmentation. Convolutional neural networks (CNNs),
Deep Neural Networks(DNN)[14] with their automated feature extraction capabilities, have replaced traditional
manual methods. Pioneering models like LeNet-5 paved the way for more sophisticated architectures such as
GooglLeNet, VGG, ResNet and AlexNet. These networks have significantly advanced the field, enabling end-to-end
processing and pixel-level classification through fully convolutional networks (FCNs). However, FCNs have
limitations in label localization, global context handling, and multiscale processing. To address these, various
architectures have been proposed. U-Net, for instance, employs a U-shaped structure to enhance context and location
information, particularly in medical image seg mentation. The DeepLab family, through versions V1 to V3+, has
introduced innovations like atrous spatial pyramid pooling (ASPP) and encoder-decoder architectures to maintain
resolution and improve performance[11,13].

Despite these advancements, challenges remain, especially in efficiently capturing global context and hierarchical
features. The recent introduction of transformer-based architectures, originally developed for natural language
processing, has shown promise in addressing these issues. The Vision Trans former (ViT) like Swin Transformer[15]
and its variants leverage long-range dependency modeling capabilities, offering significant performance gains in
vision tasks. The encoder-decoder attention mechanism within transformers facilitates effective sequence-to-
sequence transformations, enhancing predictions and providing a new direction for semantic segmentation research.
In this work, we propose an innovative approach that integrates a Transformer-based decoder into the U-Net
architecture for real-time urban scene segmentation. By combining a CNN-based encoder, specifically ResNet 101,
with a Transformer-based decoder, we aim to harness both local and global contexts within the image while reducing
computational complexity. ResNet-101’s robust feature extraction capabilities enhance segmentation accuracy,
providing a detailed and comprehensive understanding of urban 3 scenes. Our approach addresses the limitations of
traditional and deep learning models, offering a promising solution for complex semantic segmentation tasks in
diverse and dynamic environments.

RELATED WORK

Xiujuan Li et al.[1] proposed a Multi-Feature Fusion and Channel Attention Network(MFCA-Net) which is built
on an encoding-decoding structure, with an improved MobileNet V2 (IMV2) and Multi-Feature Dense Fusion
(MFDF) in the encoding section. The authors of this paper uses two datasets, they are Vaihingen and Gaofen Image
Dataset (GID).The experimental results of this paper shows that MFCA-Net achieves 76.77 MIoU on Vaihingen and
73.94 on GID dataset. Although this model improves segmentation ac curacy and provides accurate boundary
delineation of easily confused low vegetation and trees, Sometimes this model typically require large amounts of
annotated training data to achieve optimal performance.

Zhongchen Wang et al.[2] proposes a Dual Encoder-Decoder Network for land cover remote sensing image
segmentation. The authors of this paper uses CNN based encoder-decoder and Transformer based encoder-decoder.
For CNN based encoder they used ResNet and transformer based encoder as Swin-T for parallel extraction of
features. The authors used CF mod ule and NAG unit in decoder 1 by integrating self attention technique and BiseNet
approach. These modules help to fully integrate the outputs of the CNN based Encoder and Transformer based
Encoder at the same stage during decoding. They also use MFE module in decoder 2 along with skip connections for
performing multiscale fusion of low-resolution high-channel feature maps after preliminary feature aggregation. The
authors created a dataset named building and water dataset and used Gaofen Image Dataset (GID), LESPARCS
Dataset. The authors achieved 90.52 MIoU. Although the Accurate extraction of both local and global features,
Effectively handling inter class ambiguity and intra class inconsistency this model results in Increase in
Computational Complexity, results in overfitting for small datasets.

Venugopal et al.[3] introduce the Adaptive DeepLabv3+ model, a novel approach for semantic segmentation of
UAYV images that integrates DeepLabv3 with the Improved Golden Eagle Optimization Algorithm. This model lever
ages ASPP with more dilation rates in encoder to efficiently capture multi-scale context information. The authors
used MBRSC satellite data and aerial image segmentation dataset. The authors achieved Accuracy of 98.4% on 98.3%
respectively. One of the key advantages of this approach is its ability to prevent premature convergence to suboptimal
solutions. The proposed model requires adequate and diverse training data. The proposed model re quires adequate
and diverse training data and computation time for dataset 1 and 2 was 136.8912 and 147.2684 seconds, respectively,
which might be considered high for real-time application.

Wang et al.[4] introduce the Adaptive Feature Fusion U-Net (AFF-UNet).The model incorporates dense skip
connections, an Adaptive Feature Fusion Mod ule, a Channel Attention Convolution Block(CACB), and a Spatial
Attention Module by addressing the challenges like handling different sizes of objects and easily confused geo-objects
by fusing context information and automatically assigning weights to different levels of feature blocks. The authors
of this paper use the Potsdam and BDCI dataset and achieve 71.44,70.5 MIoU respectively.
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Xing et al. [5] introduces FCUnet, which integrates. FCUnet is designed to enhance remote sensing image analysis
through three main components: a deep convolution U-Net for multi scale feature abstraction, fuzzy logic units to
handle uncertainties and refine segmentation, and a CRF module to incorporate spatial context and reduce spectral
variability. This combination improves feature representation and segmentation accuracy by addressing the inherent
uncertainties in remote sensing images. The authors used featured prediction competition (FPC) automobile data
set, ISPRS, (CCF) China Computer federation. The authors achieves 0.9204 + 0.0031 MIoU, 0.7941+0.0039 MIoU,
0.8926+0.0040 MIoU respectively. Although FCUnet provides faster inference time, It lacks of Sensitivity to
shadows and misclassification of ground images.

Xin-Yi Tong et al.[6] proposed semi-automatic land cover classification scheme integrates convolutional neural
network (CNN)-based image classification with interactive segmentation guided by user inputs. Initially, a CNN is
employed to classify images patch-wise, providing preliminary object positions and categories. Subsequently, an
interactive segmentation process is initiated, where user-guided clicks on object boundaries inform the segmentation
within the patches. This interactive approach allows for finer delineation of objects and improves accuracy. The
methodology is evaluated using a comprehensive dataset from Jiangsu Province, China, comprising aerial and
satellite imagery, and encompasses five common land cover categories.

Zhang et al. [7] introduces TrSeg, a novel semantic segmentation network that leverages transformer architecture
to efficiently capture multi-scale contextual information. Unlike traditional methods that incorporate multi scale
information by integrating individual single-scale features, TrSeg integrates a transformer decoder to dynamically
capture multi-scale information. The model is evaluated on two benchmark datasets: Cityscapes and RUGD. The
authors of this paper uses ResNet-101 as backbone and model TrSeg achieves 79.9 MIoU on Cityscapes, ResNet- 50
as backbone and model TrSeg achieves 33.91 MIoU. Although TrSeg Outperforms other methods in capturing multi-
scale information by large margins it requires additional parameters compared to other methods, which may increase
the computational cost.

Wang et al.[8]. proposed a model EGDE-Net, is a specialized neural network architecture that integrates edge-
guided features to enhance change detection performance. It incorporates an FDE module designed to learn and
emphasize discriminative change feature maps, which are crucial for identifying differences in building structures
over time. The model is evaluated on two datasets: the WHU Building Change Detection (CD) dataset and the LEVIR-
CD dataset. EGDE-Net include its accurate boundary detection and its robust feature learning enabled by the FDE
module, which improves the identification of changed and unchanged areas. However, the model faces challenges
such as class inconsistencies and its heavy dependency on the quality and variety of datasets, which could affect its
performance in unseen scenarios.

Chowdhury et al.[9]. proposed ResUNet-a model. The methodology in volves using a UNet backbone with
residual connections to facilitate better gradient flow, atrous convolutions for capturing multi-scale contextual
information, and Pyramid Scene Parsing Pooling to enhance scene understanding. A multi-tasking inference
approach is also employed to sequentially predict object boundaries and segmentation masks. The model includes
superior segmentation accuracy and improved handling of class imbalance, aided by a novel variant of the
Generalized Dice loss function. However, there is an increased computational complexity, which may limit real-time
applications. When evaluated on the ISPRS Potsdam dataset, ResUNet-a achieves an impressive average F1 score of
92.9%, demonstrating its effectiveness in remote sensing tasks.

Gupta et al.[10]. aim to develop a deep learning framework for aerial image segmentation to aid in disaster impact
assessment and management, particularly in post-disaster scenarios like hurricanes and tsunamis. This research
focuses to improve segmentation performance, along with open data from OpenStreetMap (OSM) to bypass the need
for manual annotation, graph theory is applied to update road network data and identify changes caused by natural
disasters highlighting the use of open-source data, eliminating time-consuming annotations, and a reduction in
model complexity with ENetSeparable, which uses 30 percent fewer parameters than ENet while delivering
comparable performance to state-of-the-art networks. However, the reliance on OSM data could pose a challenge,
that if the data is outdated or incomplete, potentially affecting the accuracy of the model.

Based on the various approaches discussed, we decided to adopt ResNet 101 for feature extraction and a Transformer-
based decoder for feature map ping. This combination allows us to effectively capture both local and global context,
which is critical for achieving accurate segmentation results. While many existing models face challenges such as
requiring large datasets, mis classification of ground features, overfitting, and increased computational complexity,
our approach addresses these limitations by leveraging the strengths of CNN-based encoders for capturing fine-
grained local features and Transformer-based decoders for integrating global context.

METHODOLOGY

1.1. Data Collection
The dataset we have collected is the UAVid Dataset that is publicly available in ISPRS. The dataset features
images and videos captured from both oblique. These images are recorded at high resolutions ensuring clear visibility
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and the ability to differentiate objects effectively, even those at a distance. To introduce diversity and prevent
overfitting in learning algorithms, the dataset captured 30 different video sequences in different locations under
favourable weather conditions with ample lighting. The data collection pro cess utilized modern, lightweight drones
like the DJI Phantom 3 Pro and DJI Phantom 4, ensuring steady flight and clear imagery necessary for effective
analysis and model training. UAVid 2020 version has 42 sequences in total. Besides the original 30 sequences
(UAVid1o version), another 12 sequences have been collected to further strengthen the dataset.

Segmentation Model
(U-Net)

Data Decoder
Preprocessing S
Data Encoder | Feature Refining
Collection —— | Fesinglmages PocMele
Channel Reduction Bacher10 | Transformer
,,,,,,,,,,,,,,,,, ! : | Block
Fine | performance :";‘IH J
Tuning Evaluation NS

Figure 1- Proposed Model
Classes: 8(Building, Road, Static car, Tree, Low vegetation, Human, Moving car, Background, clutter).
Number of Images : 420.
Train set size: 200.
Test set size: 150.
Validation set size: 70.
Image resolution: 4096 x 2160 or 3840 x 2160.
1.2, Data Preprocessing

Data preprocessing refers to a series of essential steps undertaken to refine raw image data before it is fed into
a segmentation model. This preparatory phase is pivotal in enhancing the quality of input data and subsequently
improving the segmentation model’s accuracy and performance.

1.2.1. Image Resizing

It is a fundamental preprocessing step in data preprocessing and computer vision tasks like image
classification, object detection, and semantic segmentation. This is where one resizes the dimensions of an image
concerning width and height but maintains the aspect ratio or allows the change to it, if necessary. This was a method
that facilitated the model processing a smaller portion of the image but helped it better preserve spatial detail and
improve segmentation accuracy. To maintain the consistency, every one high-resolution image was padded and then
cropped into eight patches of size 1024 x 1024 pixels. This way, the model handles these regions of the image as
segments to preserve spatial detail for further improvement of the accuracy of segmentation.

Algorithm 1 Image Resizing for Data Preprocessing

Input: lmage dataset I = [Iy, fs, ..., [,], Target size T°
Output: Resized dataset D = (17, 05, 1))
1: for i = 1 to n do
Load image f;
Resize {; to target size T' using interpolation
{: Store the resized image I in 1,0
5 end for
i Return resized dataset £

Algorithm 1, titled “Image Resizing for Data Preprocessing” takes an input image dataset and resizes each image in
the dataset to a specified target size. It uses interpolation during the resizing process to maintain image quality and
aspect ratio. The output is a resized dataset containing images with dimensions matching the target size.

1.2.2. Channel Reduction

In semantic segmentation, labelled images often contain multiple channels representing different classes or
categories (e.g., RGB channels for different semantic labels such as road, buildings, trees). However, for training a
model, it is common to convert these multi-channel labelled images into single-channel images where each pixel
value represents a specific class label. Algorithm 2, titled “Convert Labelled Channels to Single-Channel Images” The
algorithm begins by taking a dataset of labelled images, where each image has multiple channels corresponding to
different classes. It then iterates through each image in the dataset. For each image, it combines the multiple channels
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Algorithm 3 U-Net with ResNet-101 Encoder and Transformer-based De-
coder
Input: Input image {. Labeled image L
Output: Semantic segmentation mask M
1: Encoder (ResNet-101):
2: Load pre-trained ResNet-101 model as the encoder
: Extract multi-scale features F' = {Fy, F5, ..., F,} from the input image
I
: Decoder (Transformer-based):
f: Initialize Transformer blocks (TB) and Refinement Heads (RH)
6 for i =1 ton do
Apply Transformer block (TB) to feature map F; from the encoder
and the previous decoder layer

Algorithm 2 Convert Labeled Channels to Single-Channel Images

8 Apply Refinement Head (RH) to further refine features from 75 Input: Labeled image dataset [ = [Ly, La, ..., L,] where each L; is a labeled
a0 end for image with multiple channels.

10: Output Layer: Output: Single-channel  labeled  image dataset Do canne

11: Generate semantic segmentation mask M from the final decoder output  [£3, L5, ..., L] where each L] is a single-channel labeled image.

12: Loss Function: 1: for i = 1 ton do

13: Caleulate Dice loss £y and cross-entropy loss £, between M and L Load labeled image L;.
14: Linpnl = Loice + L Convert L; to a single-channel image by combining multiple channels
15 Optimization: into one channel
16: Update model parameters using backpropagation and an optimization Store the single-channel labeled image L In Dyiogie channel-
algorithm {e.g., Adam) 5 end for
17: Return segmentation mask M i Return the single-channel labeled image dataset Duogie channel

into a single channel by merging them using a specific method (e.g., taking the maximum value across channels to
assign the pixel with the highest probability to a class).

This merging process condenses the information from multiple channels into a single channel, making the image
suitable for training with models that expect single-channel input, such as many semantic segmentation networks.
After merging the channels, the algorithm stores the resulting single-channel labeled image in a new dataset. This
new dataset contains single-channel labeled images that are ready to be used for training a semantic segmentation
model.
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Figure 2: RseNet-101 Architecture[12]

1.3. Segmentation Model

The segmentation model architecture leverages the strengths of ResNet 101 for feature extraction, Transformer-based
decoders for contextual understanding, and a multi-head loss function for effective training, resulting in accurate and
robust semantic segmentation of complex urban scenes. Algorithm 3, titled “U-Net with ResNet-101 Encoder and
Transformer based Decoder” contains the components as follows

1.3.1. Encoder (ResNet-101)

The encoder is based on ResNet-101, which is known for its effective ness in semantic segmentation tasks.
ResNet-101 utilizes Residual Blocks (Resblocks) that enable the model to learn multi-scale features from input
images. Each Resblock stage progressively down-samples the feature maps, capturing information at different levels
of abstraction.

This hierarchical feature extraction is crucial for understanding the content of the images at varying
levels of detail. The below Fig:2 shows the simple architecture of ResNet-101.
1.3.2. Decoder

The decoder module recovers the segmented output using features that were extracted by the encoder. It
consists of Transformer Blocks specially designed to capture the global semantic contexts along with local spatial
details. These blocks enhance the model’s ability to interpret complex urban scenes by incorporating broad scene
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semantics with detailed spatial information. Furthermore, the decoder incorporates a module called Feature
Refinement Module. This will refine features further for better extraction. This stage reduces the semantic gap among
various feature representations, ultimately increasing the accuracy in segmentation.

1.4. Performance Metric

The assessment of our model’s performance entails the evaluation of its ac curacy through various metrics, including
Overall Accuracy (OA), F1 Score, and Mean Intersection over Union (mIoU). MIoU is the average IoU computed
across multiple classes or instances in a dataset. MIoU is an important metric for the evaluation of overall
performance of a Semantic Segmentation model where the ability of how well the model identifies and delineates
different objects or regions in the images was discovered. More the mloU, better it is; less the mIoU, then there is
scope for improvement in the model.

i [ntersection;
loll;, = —
Uniomn,

hY
1
mloll = N ;]nl

RESULTS

1.5. Preprocessing Results
1.5.1. Image Resizing

As the initial UAVid dataset had a much higher resolution, each individual image was each high-resolution
picture—measuring either 4096 by 2160 pixels or 3840 by 2160 pixels—was padded systematically to dimensions of
1024 by 1024 pixels and then divided into eight segments, each measuring 1024 by 1024 pixels.
1.5.2. Channel Reduction

In training the model, the multiple channel images were rendered as representations consisting of a single
channel (that is, a single grey-scale channel). This reduction in channels was achieved by integrating the channels
into one such that each pixel in the resulting image is associated with a specific class label determined by the
maximum likelihood.
1.6. Segmentation Model Results

The segmentation model was trained for the total epochs of 70 and showed progressive improvement in the

performance metrics during the training time. For the evaluation of the performance of the segmentation model,
accuracy and mean Intersection over Union mIoU were the primary metrics applied.
. Accuracy: 89%
. mloU: 79.8%

The results indicate the capacity of the model to accurately classify many of the elements of an urban scene as
depicted in the UAVid dataset. Training the model was done over 70 epochs; performance measures stabilized at
epoch 69. Evaluation was done with mean Intersection over Union (mIoU), F1 score, and Overall Accuracy (OA). At
the end of the final epoch, on the training set, the following were reached:

° mloU: 0.79
. F1-score: 0.615
o Overall Accuracy (OA): 0.896

The training mIoU stands at 0.415, which signifies the accuracy of ap proximately 79.8% of the total area across
all classes by the model. This Fi-score value of 0.615 reflects a balance between precision and recall during
segmentation.
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1.7.

Class-wise Segmentation Results

Building: 0.817 N
Road: 0.642 1l

Tree: 1.741

Low Vegetation: (.751
Moving Car: (1L.G21 |
Static Car: (.506 N

Clutter: 0.495

An extensive evaluation of the effectiveness of the model on different object classes was considered. The results for
each class are presented be low with their respective color code labels along with their Intersection over Union (IoU)
metrics:

1.8.  Overall Observations

The model had shown excellent efficiency in establishing a general range characteristics of a city, effectively covering
large parts such as buildings, roads and trees, more detailed such as low vegetation, and vehicles. The elevated
Intersection over Union (IoU) associated with categories like buildings (0.817), roads (0.642), and trees (0.741)
reflect the model’s ability to distinguish essential urban components, rendering it an invaluable instrument for
intricate scene analysis comprehensiveness across various applications. Integration of a global-local framework
makes the framework balance large and small elements more effectively. This hierarchical methodology improves the
model’s ability to Divide the major entities (such as buildings, roads) and less major elements, factors such as low
vegetation and disorder. Grouping of cars—both Static and dynamic elements exemplify the model’s capacity to
encapsulate variability.

mioU and Accuracy over Epochs

Figure 5: Graph of Mloll and Overall aceuracy.
Fig 5: shows the miou and overall accuracy. These results show this global-local context framework is effective in
generating precise outcomes and large semantic segmentation over a variety of object classes, for deep knowledge of
complex cityscapes. More in the series, it could therefore go on to amplify its successes through further improvement
of the segmentation. The process of adaptation aims to tackle increasingly complex aspects of the urban environment.

CONCLUSION AND FUTURE WORK

The current model based on U-Net architecture has proved to be very successful in capturing local details and
global contextual semantic segmentation of urban environments. Nevertheless, despite robust performance, several
limitations exist, particularly regarding domain shift and com plex textures. This translates into the challenges that
come with the highly variable real-world conditions applied, more notably when the segmentation needs to be precise.

In future research studies, our aim will be to address these limitations by incorporating advanced learning
frameworks that could feature adversarial training mechanisms. These frameworks have already shown the potential
to enhance segmentation quality through boundary precision sharpening and augmenting global-local consistency.

The investigation into new techniques for handling concept drifts along with techniques for reducing reliance
on large amounts of annotated training data will also be considered. Implementing these strategies will eventually
lead to a better segmentation model that is adaptive and accurate, with increased generalization capabilities, making
it applicable to more practical applications.
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