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Even though Automatic Speaker Verification (ASV) systems are an essential part of biometric authentication, 

they are nevertheless vulnerable to spoofing attacks, particularly logical access attacks such as voice 

conversion and text-to-speech (TTS) synthesis. In order to increase ASV security, an effective spoof detection 

system is suggested that integrates the complementary data from Mel-Frequency Cepstral Coefficients 

(MFCC) and Constant Q Cepstral Coefficients (CQCC). The Xception model, the most advanced deep learning 

(DL) architecture created for high-dimensional extraction of feature, handles these characteristics, because 

capture both short-term and long-term spectrum properties. With the ASVspoof 2019 Logical Access dataset, 

the suggested approach achieves 92.11% accuracy, 92% precision, 93% recall, and a 92% F1-score on average. 

Outperforming traditional GMM-based and deep learning-based approaches, the system also achieves a low 

Tandem Detection Cost Function (t-DCF) score of 0.0464 and an Equal Error Rate (EER) of 0.0511. These 

findings show that the suggested approach, which offers high verification reliability and enhanced resistance 

to spoofing attacks, has potential in real-world ASV applications. 

Keywords: Spoof Detection, Speaker Verification, MFCC, CQCC, Xception Model. 

 

INTRODUCTION 

Automatic Speaker Verification (ASV) acts as a flexible and economical biometric approach for personal 
authentication that has been widely employed in many security and authentication applications, including 
secure account access and smartphone unlocking [1]. ASV systems function by capturing the unique attributes 
of an individual’s voice including their pitch, accent, and speaking style. These characteristics are then 
compared to a reference model of the speaker’s voice that has been pre-registered in the system [2]. The speaker 
is verified and granted access if the speaker’s voice characteristics match with the reference model in an 
acceptable threshold. However, spoofing attacks, in which malicious attackers attempt to circumvent security 
measures by posing as reliable users, might affect ASV systems. Spoofing attacks in speaker verification can 
range from simple tasks like playing back pre-recorded audio to more intricate ones like voice conversion (VC) 
[3] as well as speech synthesis (SS) [4], which replicate the target speaker’s tone by changing the speaker’s voice. 
These attacks cause significant risk to ASV systems, which lead to security breaches and unauthorized access to 
confidential data. With the exponential development of social networks people are sharing their audio and 
video recordings on online platforms. As the target speaker’s voiceprint information is readily available on the 
internet, an imposter can use it to create high-quality speech signals that closely resemble the target voice. The 
ASV systems can be manipulated using these spoofed speech signals. 

Four main categories can be used to classify spoofing attacks: replay attacks using pre-recorded audio, 
impersonation attacks involving vocal mimicry, with twin impersonation posing a unique challenge, SS using 
VC, and TTS technology [5] to alter the voice of one speaker to sound like that of another. These attacks 
can be further classified based on their mode of execution: physical access, where the spoofed audio is introduced 
through the microphone, and logical access, where the attack bypasses the sensor and directly targets the ASV 
system, by the application of TTS or VC techniques. Spoofing detection, often referred to as presentation attack 
detection, is becoming more and more important in ASV, as seen by the emergence of multiple unique evaluation 
challenges. Logical access attacks with TTS and VC are addressed by ASVspoof 2015 [6], logical and physical 
access attacks are addressed by BTAS 2016 [7], real replay attacks in noisy environments are addressed by 
ASV spoof 2017 [8],and ASVspoof 2019 [9] addresses logical access attacks using sophisticated TTS as well as 
VC technologies as well as simulating replay attacks under various acoustic settings. 

Several features have been studied for spoofing detection, including magnitude-based characteristics like log-
magnitude spectrum [10] along with residual LMS, phase-based features [11] like group delay and improved 
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group delay, and cepstral coefficients obtained through both spectral and phase information, that include 
Linear Frequency Cepstral Coefficients (LFCC), MFCC, [12], and their variants. Researchers have also 
investigated other features like local binary patterns, pitch patterns, i-Vectors, and modulation features for their 
potential in spoofing detection. 

In recent years, audio spoofing detection has advanced significantly. Unfortunately, the majority of current 
techniques are only designed to identify particular kinds of attacks, which reduces their usefulness in practical 
situations. Additionally, these methods frequently have issues with robustness against hostile environments, 
generalization, and feature extraction. To overcome these limitations, a DL-based spoof detection framework 
has been brought ahead, which combines complementary feature representations of characteristics with an 
advanced classification model to improve the accuracy and efficacy of autonomous speaker verification systems. 
The following are the key elements of this work: 

1. Hybrid feature extraction for enhanced spoofing detection: Both short-term and long-term 
spectrum features of speech are captured by combining MFCCs and constant Q cepstral coefficients 
(CQCCs). These characteristics offer a more thorough depiction of the speech signal, making it possible to 
identify various spoofing techniques, such as VC and TTS synthesis. 

2. Deep learning-based classification using the Xception model: The Xception model, a deep 
learning framework specialized for high- dimensional feature extraction, is used to process the extracted 
features. Xception’s depthwise separable convolutions increase classification accuracy and processing 
efficiency. 

3. Comprehensive performance evaluation and benchmarking: With an accuracy of 92.11%, 
an EER of 0.0511, and a t-DCF score of 0.0464, the suggested framework exhibits strong detection 
performance when tested on the ASVspoof 2019 Logical Access dataset. 

The following is how this document is structured: Section 2 discusses current studies in the areas of spoofing audio 
detection. A thorough discussion of the suggested methodology is given in Section 3. The dataset and evaluation 
metrics used for performance assessment are described in detail in Section 4. Section 5 discusses the findings and 
an in-depth analysis of them. The paper is finally concluded in Section 6. 

RELATED WORKS 

During Interspeech 2013, the first symposium on spoofing countermeasures em- phasized the necessity of a 
consistent dataset, methods, and metrics for Au- tomatic Speaker Verification systems [13]. This led to the 
development of the ASV Spoofing and Countermeasures (ASVspoof). After that, the Interspeech 2015 ASVspoof 
challenge was organized, and its second iteration was held in 2017. The replay attack detection, one of the most 
prevalent and easily accessi- ble types of spoofing in ASV systems, was the main goal of the ASVspoof 2017 
competition. 

ASVspoof 2019 was the first competition to use spoofing methods such as VC, voice synthesis, and replay assaults 
[14]. It featured sep- arate scenarios for logical and physical access, allowing a more comprehensive evaluation of 
ASV systems under different types of attacks. ASVspoof 2021 [15] presented a more comprehensive assessment 
approach that encompassed novel spoofing attack types, including adversarial attacks. 

For speaker verification and spoofing detection, a multitask Conformer model based on Conformer blocks [16] 
and X-vector model is proposed. This method was the very first to apply Conformer for combined tasks in 
speaker verifica- tion and anti-spoofing, achieving a 70% improvement in SASV-EER on the ASVspoof2019 
LA dataset. A method for detecting playback spoofing in ASV systems by combining temporal and spectral 
features with ML and DL tech- niques using Recursive Feature Elimination (RFE) and XGBoost was 
introduced in [17], the approach achieved significant performance improvements, with ac- curacy rising to 99.86% 
and EER dropping to 0.69%. The CQCCs are used in ASV systems to identify spoofing attacks, using the 
constant Q transform for improved time-frequency analysis was proposed in [18]. Studies employing the 
ASVspoof 2015 database show that CQCCs with a Gaussian mixture model outperform other methods by 
72% in detecting unknown spoofing attempts. The MFCC, Constant Q Transform (CQT), CQCC, and LFCC 
are commonly used speech features and extraction techniques for spoofing detection. A common baseline 
classification technique is the Gaussian Mixture Model (GMM) [19]. A few more DL methods that are used 
include Convolutional Neural Networks (CNN), Deep Neural Networks (DNN), Siamese neural networks 
(Siamese CNN), and Deep Residual Networks (ResNet). On the ASVspoof 2019 dataset, this study [20] 
suggests a replay attack detection technique for ASV utilizing an 18-layer ResNet algorithm containing 
LFCCs, producing findings with an EER of 0.29%. 
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METHODOLOGY 

The proposed method combines MFCCs and CQCCs [21] features for enhanced spoof detection. MFCCs uses a 
logarithmic frequency scale based on the mel scale, which effectively captures broad perceptual features of human 
speech, they offer uniform frequency resolution and are primarily sensitive to low-frequency components. This 
can make them less effective in identifying fine-grained spectral details in higher frequencies where certain 
spoofing artifacts may reside. However, by using the constant-Q transform (CQT), CQCCs provide changing 
resolution of frequency with more accuracy at the lower frequencies, enabling a more thorough depiction of 
minute spectral changes over the whole frequency spectrum. Combining the advantages of MFCCs and CQCCs 
makes it more resistant to various spoofing strategies, improving detection accuracy and dependability. The 
suggested approach is shown in Figure 1. 

 

Figure 1: Block Diagram of Proposed Method 

1.1 MFCC 

By inversely transforming the logarithm of the spectrum, the cepstrum of the time series y(n) may be 
determined. The spectrum in voice processing is often calculated using the “discrete Fourier transform” 
(DFT), whereas the inverse transform is computed using the “discrete cosine transform” (DCT). The 
cepstrum offers a modified spectrum representation, capturing the spectral information in a more condensed and 
frequently decorrelated fashion. In particular, it reduces duplication and efficiently summarizes the most important 
spectrum properties by converting K Fourier coefficients with q ≪ K independent cepstral coefficients. Prior to 
cepstral analysis, the Mel-cepstrum employs a frequency scale based on auditory significant bands. The resulting 
features are usually extracted and shown in the Equation (1) and (2) as Mel frequency cepstral coefficients. 

𝑀𝐹𝐶𝐶(𝑞) = ∑ log[𝑇(𝑛)] cos [
𝑞 (𝑛 −

1
2) 𝜋

𝑁
]                                                

𝑁

𝑛=1

(1) 

And the Mel frequency spectrum is as follow: 

𝑇(𝑛) = ∑|𝑌𝐷𝐹𝑇(𝑘)|2𝐺𝑛(𝑘)

𝐾

𝑘=1

                                                                           (2) 

𝐺𝑛(𝑘) indicates the triangle filter function for the 𝑛𝑡ℎ  Mel-scaled bandpass filter, and 𝑘 represents the DFT 
index. Using the function 𝑀𝐹𝐶𝐶(𝑞), the number of coefficients usually smaller than the number of Mel-
filters, and 𝑁,  is retrieved. 𝑞, often falls between 13 and 20. In Figure 2, the MFCC extraction of features 
process is shown. 

 

Figure 2: Schematic Diagram of MFCC Feature Extraction. 

1.2 CQCC 

Youngberg and Boll first introduced the CQT, a time-frequency analysis method, in 1978. [21]. The CQT scale's 
core frequencies are dispersed geometrically, as opposed to using traditional Fourier-based techniques. When 
comparedto the Short-time Fourier transform (STFT), the CQT provides higher frequency resolution for lower 
frequencies and better temporal resolution for higher frequency bands. The procedure of CQCC feature 
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extraction is depicted in Figure 3. 

Equation (3) describes the CQCC characteristics that may be retrieved from the audio signals utilizing the 
Constant Q Transform: 

 

Figure 3: Schematic Diagram of CQCC feature Extraction. The CQT is calculated as follows: 

𝐶(𝑞, 𝑡) = ∑ 𝑠[𝑟] ∗ 𝑤[𝑟 − 𝑡] ∗ 𝑒
−𝑗2𝜋

𝑟𝑞
𝑄                  (3)

𝐾−1

𝑟=0

 

Where s[r] represent the input speech signal, w[r-t] is the window function, q is the frequency bin in the CQT 

domain, and 𝑒
−𝑗2𝜋

𝑟𝑞

𝑄  represents the frequency-based transformation. After obtaining the CQT, the power 
spectrum is derived by taking the magnitude of the CQT coefficients. The dynamic range is then compressed by 
applying a logarithmic function to the power spectrum, as shown in Equation (4): 

𝑆(𝑞, 𝑡) = log( |𝐶(𝑞, 𝑡)|) 

The Discrete Cosine Transformation (DCT) is applied to this log-scaled signal to obtain the CQCC features, as 
shown in Equation (5): 

𝐶𝑄𝐶𝐶(𝑛) = ∑ 𝑆(𝑟) cos (
𝜋

𝐾
(𝑟 +

1

2
) 𝑛) , 𝑓𝑜𝑟 𝑛 = 0,1,2, … . . , 𝑁 − 1

𝐾−1

𝑟=0

                 (5) 

1.3 Xception Model for Classification 

One prominent deep CNN architecture is the Xception model (Extreme Inception), which uses depth-wise 
separable convolutions [22]. It replaces traditional Inception modules with depth-wise separable convolutions, 
significantly improving efficiency and performance. Depth-wise separable convolutions, in contrast to 
conventional convolutional layers, divide the entire process into two separate stages: a pointwise convolution 
(combining the output) and a depth-wise convolution (spatial filtering). This approach reduces the 
computational complexity while maintaining accuracy. 

MFCCs are highly effective in capturing phonetic information because they mimic how humans perceive sound, 
focusing on the formant structure and spectral envelope. CQCCs are highly sensitive to pitch-related features 
due to the constant-Q transform, which offers better frequency resolution in lower-frequency bands. By 
combining these features, the model becomes more resilient to speech variations. The hybrid features were 
obtained by concatenating 128 MFCC features and 98 CQCC features, which were then provided as input to 
the fed into the Xception architecture. The Xception model acts as a feature extractor, and the following Dense 
layers perform the classification task. The architecture of Xception [22] is shown in Figure 4. 

The Xception model is highly effective for tasks like spoof detection in speaker verification systems due to its 
ability to learn complex patterns efficiently through depthwise separable convolutions. Unlike standard 
convolutions, which simultaneously capture spatial and channel-wise correlations, Xception decouples these 
processes. In the context of speaker verification, the model can better distinguish between authentic and 
spoofed audio features by extracting relevant patterns more precisely, such as voice characteristics across 
different channels. 

The Xception model is divided into Entry Flow, Middle Flow, and Exit Flow. For spoof detection, the Entry 
Flow helps capture lower-level audio features from inputs, such as spectral properties or feature maps derived 
from combined MFCC and CQCC features. The Middle Flow, repeated multiple times, progressively extracts 
higher-level patterns that may indicate spoofing attempts. Global Average Pooling and completely connected 
layers come after the Exit Flow, which gathers the learned features and makes categorization easier. 

To enhance generalization and prevent overfitting, techniques like weight decay and dropout are employed. 
Additionally, residual connections help maintain gradient flow in the network, ensuring efficient learning even 
in deep architecture. Because of this, Xception is an effective tool for speaker verification systems to identify 
minute distinctions between bonafide and spoofed sounds. 

In training phase, t h e  model is fine-tuned using an appropriate loss function, such as cross-entropy loss, which 
is particularly effective for multi-class classification tasks. The Adam optimizer adjusts the learning rate during 
training to enhance convergence. To guide the training process, a number of hyperparameters are set, such as 
learning rate, batch size, and epoch count. The model is evaluated using validation data and trained using the 
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training dataset to reduce the likelihood of overfitting. 

 

Figure 4: Architecture of Xception Model [22] 

2 Dataset and Evaluation Metrics 

The suggested approach was assessed using the ASVspoof 2019 dataset, which comprises two scenarios: logical 
access (LA) and physical access (PA), as indicated in Table 1. The ASVspoof 2019 LA data collection was 
utilized. The 2019 edition is the first to concentrate on defenses against the three primary attack types of replay 
spoofing, VC, and TTS. EER and t-DCF serve as the evaluation metrics. 

Table 1: ASVspoof 2019 LA Dataset [23] 

Partition Male Female Bonafide Spoof 

Train 8 12 2580 22800 

Development 8 12 2548 22296 

Evaluation 30 37 7355 63882 

 

4.0.1 EER and tDCF 

EER and tDCF are the evaluation measures. The False Rejection Rate (FRR) and the False Acceptance 
Rate (FAR) are comparable at the EER. In mathematical terms, it can be expressed as: 

𝐸𝐸𝑅 = 𝐹𝐴𝑅(𝜃𝐸𝐸𝑅) =  𝐹𝑅𝑅(𝜃𝐸𝐸𝑅)                                                                 (6) 

where 𝜃𝐸𝐸𝑅 is the threshold where the FAR and FRR are equal, and: 

𝐹𝐴𝑅(𝜃) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑠 𝑎𝑡 𝜃

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
 

𝐹𝑅𝑅(𝜃) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝜃

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
 

The EER is a commonly used metric in biometric and authentication systems to evaluate the system’s 
accuracy, with a lower EER indicating better performance. 
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tDCF, introduced as the primary metric for the 2019 challenge, evaluates the tandem performance of ASV and 
countermeasure (CM) systems by incorporating real-world costs and prior probabilities, reflecting their 
combined effectiveness in mitigating spoofing attacks which is calculated as: 

the normalized minimum t-DCF is defined as: 

𝑡 − 𝐷𝐶𝐹𝑛𝑜𝑟𝑚
𝑚𝑖𝑛 = min{𝛼𝑃𝑚𝑖𝑠𝑠

𝑐𝑚 (𝑠) + 𝑃𝑓𝑎
𝑐𝑚(𝑠)}                       (7)  

Here, α is determined by ASV performance (miss, false alarm, and spoof failure rates) and application factors 
(priors, cost), while 𝑃𝑚𝑖𝑠𝑠

𝑐𝑚 (𝑠) + 𝑃𝑓𝑎
𝑐𝑚(𝑠) are the countermeasure miss and false alarm rates at threshold 𝑠. 

False acceptance arises when an imposter is mistakenly identified as the target speaker during speaker 
verification, and false rejection occurs when a real speaker is incorrectly identified as an impostor. When it 
comes to spoof detection, false acceptance happens when a spoofed speech is incorrectly identified as authentic, 
whereas false rejection happens when a genuine statement is wrongly identified as spoofed. For the combined 
ASV and anti-spoofing system, an utterance is accepted only if it is identified as both the target speaker and 
bonafide. Consequently, false rejection occurs when a bonafide utterance from the target speaker is misclassi- 
fied, and false acceptance happens when an utterance from an impostor or spoof is mistakenly accepted as a 
bonafide target speaker. EER provides a balanced evaluation point for analyzing system performance across 
these error types. 

RESULTS AND DISCUSSION 

The research addressed the challenge of detecting spoofing attempts in automatic speaker-verification systems, 
utilizing the ASVspoof 2019 dataset. The focus was on extracting two widely recognized audio features: MFCC 
and CQCC. These features were selected due to their demonstrated efficacy in capturing both spectral and 
temporal aspects of audio signals. By integrating these two features, the study aimed to exploit their 
complementary strengths and enhance the model’s capacity to differentiate between authentic and artificially 
generated audio samples. 

Table 2: Performance of Proposed System 

Feature+Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

MFCC and CQCC features, Xception 
model 

92.11 92 93 92 

 

The integrated set of features was input into the Xception model, a sophisti- cated CNN prominent for its well-
organized and effective feature learning abilities. A highly effective 92.11% accuracy, 92% precision, 93% recall, and 
92% F1-score were all achieved by the model. These metrics show a robust equilibrium between the capacity of the 
model to recognize authentic samples (high precision) and identify spoofed samples (high recall), which is crucial 
in this field. Additional assessments using the EER and t-DCF offered more comprehensive insights into the 
model’s resilience as depicted in Table 2. The obtained t-DCF of.0464 and EER of 0.0511 demonstrate that 
the recommended approach successfully lowers the rates of false rejection and false acceptance, satisfying 
the exacting requirements of actual speaker verification systems. These outcomes highlight the efficacy of 
merging MFCC and CQCC features, which capture the complementary aspects of audio signals, and the 
capability of the Xception model to process high-dimensional input data. Ta- ble 3 shows that this method 
yields competitive results compared with current techniques, suggesting its potential for practical applications. 
Figure 5 shows the suggested system's model accuracy and loss. 

Table 3: Performance Comparison of the Proposed Approach with Existing Approaches. 

Model t-DCF EER (%) 

LFCC and GMM [24] 0.2116 8.09 

CQCC and GMM [24] 0.2366 9.57 

DNNS and 1024D [25] - 15.3 

MFCC and GMM [26] 0.1826 7.56 

MFCC+ CQCC and Xception (Our Model) 0.0511 0.0464 
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Figure 5: Model Accuracy and Loss 

CONCLUSION 

A deep convolutional architecture and hybrid cepstral features enable the system to demonstrate great 
generalization against a range of logical access spoofing attacks, such as VC and TTS synthesis. Using the 
complementing advantages of MFCC and CQCC as input characteristics to the Xception DL model, a strong 
spoof detection solution for ASV was suggested in this study. The experimental assessment conducted on the 
ASVspoof 2019 Logical Access dataset showed the efficacy of the proposed technique with a t-DCF score of 0.0464, 
an EER of 0.0511, and a high detection accuracy of 92.11%. Compared to previous deep learning-based 
countermeasures and conventional Gaussian Mixture Model-based countermeasures, the results show a notable 
improvement. 
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