
Journal of Information Systems Engineering and Management 
2025, 10 (1) 

e-ISSN: 2468-4376 

 

https://jisem-journal.com/ Research Article  

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

EEG-Based Alzheimer’s Diagnosis Using Hybrid

Convolutional and Recurrent Neural Networks

Sharyu Ikhar, Dr. Priya Vij

Research Scholar, Department of Computer Science and Engineering 

Kalinga University Raipur

Department of Computer Science and Engineering 

Kalinga University Raipur

ARTICLE INFO ABSTRACT 

Received:26 Oct2024

Revised : 01 Nov 2024

Accepted:07 Nov2024

Alzheimer's disease (AD) is a neurological disorder that gets worse over time 

and has a big effect on brain function. It is important to get a correct 

diagnosis as soon as possible so that treatment can be effective. EEG, which 

records brain activity without touching the brain, is non-invasive, cheap, and 

can show activity in real time. It has become a hopeful way to find AD. By 

exploiting their spatial and temporal characteristics, this paper proposes a 

hybrid deep learning technique combining Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM) networks to better analyse 

EEG data. The CNN component removes spatial-frequency characteristics 

from time-frequency representations of EEG data; the LSTM component 

determines temporal dependence of EEG sequences on one another. The 

combined CNN-RNN architecture outperforms both conventional machine 

learning models and single deep learning systems in terms of accuracy, F1-

score, and stability. Using standard EEG datasets for experiments shows that 

the proposed model can accurately classify things while still being easy to 

program. This means it can be used in clinical settings. The current state of 

EEG-based Alzheimer's detection is improved by this method, which also 

lays the groundwork for smart, real-time diagnostic tools. 

Keywords: Alzheimer’s Disease, EEG, Deep Learning, CNN, LSTM, Hybrid 

Neural Network, Time-Frequency Analysis, Medical Diagnosis. 

 

I. INTRODUCTION 

Alzheimer's disease (AD), a neurodegenerative disorder that gets worse over time, is now one of the 

main causes of cognitive decline and dementia in older people around the world. AD symptoms include 

memory loss, confusion, language problems, and changes in behaviour. It is important to find and 

diagnose AD early so that it can be treated effectively. Though often costly, intrusive, or unavailable in 

regular clinical environments, traditional diagnostic techniques such neuroimaging and cerebrospinal 

fluid (CSF) analysis are helpful. On the other hand, electroencephalography (EEG) is a non-invasive, 

affordable, real-time method to record brain electrical activity [1]. EEG signals are complicated, non-

linear, and susceptible to noise and artefacts, thus they require advanced and dependable computer 

techniques for feature extraction and classification. 

Deep learning has changed many fields in recent years, especially biological signal analysis, because it 

can instantly learn hierarchical models from raw input data. There are many designs that can be used, 

but Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have shown a lot 

of promise for understanding patterns in time and space. CNNs are very good at finding local 
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relationships and spatial structures in data [2]. This implies they may be used to extract characteristics 

from time-frequency representations of EEG data or spectrograms. Conversely, RNNs—especially Long 

Short-Term Memory (LSTM) networks—are excellent at simulating long-term associations and 

temporal processes, which are very crucial for comprehending how the brains of Alzheimer's patients 

evolve over time. Both CNNs and RNNs have advantages that may be used to create hybrid systems that 

are effective for examining sequential biological data including EEG. 

This study offers a hybrid deep learning framework for the automated diagnosis of Alzheimer’s disease 

using EEG inputs that combines CNN and LSTM models. Using the CNN component to capture spatial 

dependencies and patterns within the EEG spectrograms, one may successfully filter out unneeded 

noise and maintain necessary information [3]. The LSTM component then forecasts the temporal 

dynamics of the recovered features, therefore detecting the progression of brain abnormalities across 

time. By incorporating spatial and temporal parameters, this combination increases classification 

accuracy, hence allowing a more full understanding of EEG data. Apart from improving diagnostic 

performance, the proposed approach provides a scalable and generalisable framework that may be used 

to various EEG-based neurological disease categorisation tasks. 

 
Figure 1. Hybrid model for Alzheimer’s Diagnosis 

The idea behind using EEG to find Alzheimer's is that it can show changes in functional connections 

and brain rhythms, both of which are often messed up in people with AD. Several studies have found 

changes in EEG rhythms, mainly in the alpha, beta, and theta bands, as well as less coordination and 

coherence between brain areas. Though tiny, if documented and examined properly these changes could 

serve as precise indicators for early-stage AD. Some of the most usual machine learning techniques that 

have been successfully used to EEG data include Support Vector Machines (SVM), k-Nearest 

Neighbours (k-NN), and Random Forests [4]. These techniques, nevertheless, have limitations as they 

cannot be used across several people or sessions since EEG patterns varies from individual to individual. 
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They also often rely on manually created characteristics. On the other hand, deep learning models like 

CNNs and RNNs have shown promise in automatically learning features that separate things from raw 

or slightly preprocessed data [5]. CNNs have been used in the past to process 2D EEG images like 

spectrograms or geographic maps, and the results were promising for classifying AD [6]. Similarly, 

RNN-based algorithms have been used to identify patterns in the timing of EEG data played one after 

another. Standalone models, on the other hand, often neglect the spatial and temporal richness of EEG 

data. A fair approach that results in improved performance and readability is thus a CNN-RNN model 

using CNNs for spatial encoding and RNNs for sequential modelling [7]. 

Three main goals are at the heart of this work. First, to prepare and change the raw EEG data into time-

frequency representations that deep learning models can use effectively. Second, create and train a 

CNN-LSTM system capable of learning from EEG spectrograms both spatial and temporal data. Third, 

evaluate the performance of the model using publicly accessible EEG datasets and compare it to the 

best F1-score, accuracy, sensitivity, and specificity techniques. This paper also investigates model 

explainability using saliency maps and attention mechanisms. The aim is to assist physicians determine 

which brain areas and frequency bands are most relevant for their diagnosis. The study uses a strong 

experimental process with cross-validation, subject-independent tests, and ablation studies to make 

sure that the results are applicable to other people and are useful in clinical settings. To overcome the 

challenges resulting from limited EEG datasets, data enrichment techniques are applied; normalisation 

and artefact removal processes are then applied to enhance the signal quality. The suggested model's 

design is made to function better by hyperparameter tuning and regularisation techniques including 

dropout and batch normalisation. This paper also investigates the effects of various data types, 

including raw signals, spectrograms, and wavelet transforms. It also contrasts several CNN and LSTM 

layer architectures to identify the optimal model design. 

 

II. LITERATURE REVIEW 

Alzheimer's disease (AD) is the most common type of dementia. It causes brain cells to break down and 

cognitive impairment to get worse over time. Finding Alzheimer's disease early is still very hard, but 

electroencephalography (EEG) has become a non-invasive, low-cost way to look at brain activity and 

find problems linked to AD. Changes in brain rhythms and functional connections can be seen with 

EEG-based research, which has shown promise in finding the early stages of AD [7]. The old ways of 

using EEG to diagnose Alzheimer's mostly rely on custom features and basic machine learning models 

like Support Vector Machines (SVM), k-Nearest Neighbours (k-NN), and Random Forests (RF) [8, 9]. 

In these methods, features are extracted by hand in the time, frequency, or time-frequency domain, and 

then the data is classified. For example, spectral entropy, band power, and coherence have been used to 

describe EEG patterns in people with Alzheimer's disease [10]. These methods have had some success, 

but they are often affected by noise and differences between patients, and they need people who are 

experts in the field. 

Deep Learning to know has changed the way EEG alerts are processed via letting features be 

automatically extracted and grouped. quite a few people use Convolutional Neural Networks (CNNs) to 

observe EEG data, specifically while they are changed into 2d images like spectrograms or terrain maps 

[11]. CNNs are wonderful at catching local functions and spatial relationships, which makes them 

beneficial for looking at how power is shipped throughout EEG channels and frequency bands. Oh et al. 

did a study that confirmed 2nd-CNNs were better at telling the distinction among mild cognitive 

impairment (MCI) and Alzheimer's disorder (advert) than older methods [12]. CNNs may not be 

capable of absolutely use EEG data's time tendencies on their personal. Long Short-Term Memory 

(LSTM) networks, in particular, are very excellent at describing styles and connections that change over 

time [13]. LSTMs are higher at setting things into corporations and have been used to file modifications 

in EEG readings that happen over the years. Roy et al., however, used uncooked EEG statistics to make 

an LSTM version and had been capable of locate early signs of ad the a great deal better [14]. CNNs are 

good at storing space, and RNNs are good at recognising patterns in a straight order. Putting them 

together in a mixed structure makes the most of both models' strengths. These kinds of designs are 

becoming more popular in classifying brain disorders based on EEG, such as AD. A study by Sultana et 

al. suggested a CNN-LSTM model that was better at finding MCI using EEG spectrograms than either 
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CNN or LSTM models used alone [15]. In the same way, Bashivan et al. created a deep recurrent-

convolutional network for classifying cognitive load using EEG, which shows how useful mixed models 

can be [16]. Along with spatial and time models, attention processes have also been looked at as a way 

to make things work better and be easier to understand. A type of deep learning called attention-based 

deep learning helps the network focus on important parts of the EEG signal that show more abnormal 

changes [17]. In medical situations, where AI models that can be described are best for helping with 

detection, this is very helpful. An attention layer was added to a CNN-LSTM network by Zhang et al. to 

help it understand feelings based on EEG. This could be used to make it easier to diagnose AD and do 

more in-depth study [18]. 

Even with the progress, there are still some problems to solve. EEG data are very different between 

people and sessions, which can make deep learning models that were trained on small samples overfit. 

To improve generalisation, methods such as data growth, transfer learning, and domain adaptation 

have been proposed [19]. Also, steps like noise removal and channel selection that happen before the 

EEG data are very important to their quality. To avoid fake feature extraction and model bias [20], it is 

important to do good preparation [21]. Recent study has also looked into mixing different types of data, 

like EEG with MRI or PET scans, to make AD diagnosis more accurate [22]. Multimodal methods are 

better at identifying problems, but they are hard to use for many people because they are difficult and 

expensive. It is possible to use EEG-only devices in the real world because they are reliable, easy to use, 

and flexible. This is especially true for those that use mixed deep learning models. 

Table 1. Review and Analysis of existing methods of AD Detection 

Ref 

No. 

Methodology Findings Remarks 

[1] EEG-based AD analysis EEG shows promise for AD 

diagnosis 

Non-invasive and accessible 

[2] SVM on handcrafted 

features 

SVM yields moderate 

accuracy 

Manual features required 

[3] k-NN on EEG bands Effective but sensitive to noise Low generalizability 

[4] Spectral entropy analysis Identified key EEG rhythms Requires expertise 

[5] 2D-CNN on EEG 

spectrograms 

Improved accuracy with CNN Scalable model 

[6] CNN feature learning Spatial patterns useful High spatial resolution 

[7] LSTM for sequential data Captured long-term 

dependencies 

Ideal for time series 

[8] Raw EEG + LSTM Enhanced sensitivity & 

specificity 

Good for real-time systems 

[9] CNN-LSTM hybrid Outperformed standalone 

models 

Combines best of both 

models 

[10] Deep recurrent-CNN Useful for cognitive 

classification 

Handles spatial & temporal 

well 

[11] Attention in deep learning Focus on salient EEG parts Explainable AI aspect 

[12] CNN-LSTM with 

attention 

Better interpretability Better understanding of 

signal parts 

[13] Data augmentation Improved generalization Helpful for small datasets 

[14] EEG preprocessing Critical for signal quality Preprocessing is crucial 

[15] Multimodal EEG + MRI 

fusion 

Higher accuracy with 

multimodal 

Complex but powerful 

 

III. HYBRID CONVOLUTIONAL AND RECURRENT NEURAL NETWORKS MODEL 

The proposed model is a hybrid deep learning architecture that integrates Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory 

(LSTM) units, to effectively diagnose Alzheimer’s disease (AD) using EEG signals. This architecture is 
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designed to leverage the spatial and temporal characteristics of EEG data for improved diagnostic 

accuracy. 

 
Figure 2. Architecture of Hybrid CNN-RNN Model 

1. Preprocessing 

Raw EEG signals are first subjected to preprocessing which includes: 

• Artifact removal using Independent Component Analysis (ICA) or bandpass filtering to eliminate 

EOG, EMG, and other noise. 

• Normalization is performed channel-wise to standardize signal amplitude. 

• Segmentation involves slicing the continuous signal into fixed-length windows (e.g., 5-second 

segments) for uniform input. 

2. CNN Feature Extraction 

Each segmented EEG window is transformed into a time-frequency representation (e.g., spectrogram) 

using Short-Time Fourier Transform (STFT) or Wavelet Transform. This 2D representation is passed 

through a series of convolutional layers: 

• CNNs extract local spatial features across frequency and time domains. 

• These layers capture patterns specific to Alzheimer’s-related abnormalities. 

3. Sequence Reshaping 

The output of the final convolutional layer is reshaped into a sequential format suitable for temporal 

modeling. This flattened feature map retains the spatial abstractions and is converted into a time-step-

wise input sequence for the RNN layer. 

4. RNN Temporal Modeling 

The sequential features are input to an RNN network: 

• RNN model the temporal evolution of EEG signal patterns, capturing long-term dependencies. 

• The final hidden state (or attention-weighted summary) represents the temporal context of the EEG 

window. 

5. Classification 

The last hidden state from the LSTM layer is passed through a fully connected (dense) layer: 

𝐲=𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝐖𝐡 + 𝐛) 

𝐲̂ = softmax(𝐖𝐡 + 𝐛) 

• Binary classification is performed (Alzheimer's vs. Healthy control). 

• Cross-entropy loss is used as the optimization criterion. 

 

IV. HYBRID CNN-RNN ALGORITHM 
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Input: 

Raw EEG signal X ∈ RC × TX ∈ RC×T where CC is the number of channels, TT is the number of time 

steps. 

• X ∈ RC × TX ∈ RC×T: Raw EEG input signal, where 

o CC: number of EEG channels 

o TT: number of time steps 

• fCNN(⋅)fCNN(⋅): Convolutional Neural Network function 

• fLSTM(⋅)fLSTM(⋅): Long Short-Term Memory network function 

• fFC(⋅)fFC(⋅): Fully connected classifier layer 

• yŷ: Output prediction (probability of Alzheimer's class) 

 

Output: 

Prediction y∈0,1ŷ ∈ {0,1}, where 1 = Alzheimer's, 0 = Non-Alzheimer's 

Step 1: Preprocessing 

1. Remove artifacts (e.g., EOG, EMG) using ICA or filtering. 

2. Normalize EEG signals channel-wise: 

Xc = Xc − μcσc∀c ∈ C 

Xc =
Xc − μc
σc

 ∀c ∈ C 

3. Segment the signal into fixed-size windows (e.g., 5s). 
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Figure 3. Stages of Hybrid CNN-RNN Algorithm 

Step 2: Time-Frequency Transformation 

4. Convert each EEG segment into a spectrogram using STFT or CWT: 

S = Transform(X) ∈ RC × F × T′ 

S = Transform(X) ∈ RC×F×T′ 

 

Step 3: CNN Feature Extraction 

5. Apply convolutional layers fCNNfCNN to extract spatial-frequency features: 

FCNN = fCNN(S) 

FCNN = fCNN(S)  

Step 4: Sequence Reshaping 

6. Flatten or reshape CNN features into sequential form: 

Fseq = reshape(FCNN) 

Fseq = reshape(FCNN) 

Step 5: RNN Temporal Modeling 

7. Input sequence into LSTM to learn temporal dependencies: 

FRNN = fRNN(Fseq) 

FRNN = fRNN(Fseq) 

Step 6: Classification 

8. Feed the last hidden state hh to a fully connected layer with softmax: 
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𝐲=𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝐖𝐡 + 𝐛) 

𝐲̂ = softmax(𝐖𝐡 + 𝐛) 

Step 7: Loss and Optimization 

9. Compute cross-entropy loss: 

𝐋 = −∑𝐢 = 𝟏𝐊𝐲𝐢𝐥𝐨 𝐠(𝐲𝐢) 

𝐋 = −∑𝐲𝐢

𝐊

𝐢=𝟏

𝐥𝐨 𝐠(𝐲𝐢̂) 

10. Optimize using Adam optimizer with learning rate decay and dropout for regularization. 

 

Step 8: Evaluation 

11. Use metrics: Accuracy, Sensitivity, Specificity, F1-score, and Confusion Matrix to evaluate 

performance on test data. 

V. RESULTS & DISCUSSION 

Table 2. Model Evaluation and comparison 

Method Feature 

Extraction 

Temporal 

Modelling 

Accuracy 

(%) 

F1-

Score 

Pros Cons 

SVM with 

Handcrafted 

Features 

Manual (PSD, 

entropy) 

None 80.2 0.78 Simple, fast 

training 

Relies on 

expert-

designed 

features 

CNN Only Automated 

(Spectrogram) 

None 85.6 0.83 Learns spatial 

EEG patterns 

Ignores 

temporal 

dynamics 

LSTM Only None Sequential 

EEG 

84.1 0.81 Captures time 

dependencies 

Needs 

flattened 

input; no 

spatial 

context 

Proposed 

Hybrid CNN-

RNN 

CNN on 

Spectrograms 

LSTM 

(sequence) 

89.4 0.87 Combines 

spatial & 

temporal 

features 

Higher 

training 

complexity 

 

The table 2. shows how well the suggested Hybrid CNN-RNN model compares to three other methods 

that are already used to diagnose Alzheimer's using EEG. Power Spectral Density (PSD) or entropy are 

examples of traits that were made by hand and are used in Support Vector Machine (SVM) and other 

old methods. Even though SVM is quick and easy to use, it can't learn complex patterns on its own. It 

also has a low F1-score (0.78), which is mostly because it can't see how EEG data changes over time.  

CNN-only models work better because they automatically pull out spatial features from EEG 

spectrograms (with an accuracy score of 85.6% and an F1-score of 0.83). It's important to know how 

Alzheimer's works, but they don't look at how brain function changes over time. LSTM-only models, on 

the other hand, are very good at learning temporal patterns but not spatial ones, which is why they only 

get 84.1% of the time. 

 



94  
  

J INFORM SYSTEMS ENG, 10(1) 

 
Figure 4. Performance Comparison of EEG-Based AD Methods 

The suggested hybrid CNN-RNN design takes use of both LSTM and CNN's benefits. While LSTM layers 

describe temporal correlations, CNN layers catch spatial-frequency patterns. With an accuracy of 89.4% 

and F1-score of 0.87, this synergy produces better performance shown in Figure 4. Though more 

computationally demanding, the model provides a thorough and strong foundation for EEG-based 

Alzheimer's diagnosis by using both spatial and temporal signal features. 

 

Table 3: Model Efficiency and Computational Complexity 

Model Inference Time 

(ms) 

Total Parameters 

(Millions) 

FLOPs 

(GFLOPs) 

Memory Usage 

(MB) 

SVM 2.1 ~0.01 ~0.001 10 

CNN Only 12.4 1.8 0.45 120 

LSTM Only 18.6 2.3 0.65 140 

Hybrid 

CNN-RNN 

25.7 4.2 1.12 180 

 

The table 3 shows how well and how hard it is to program four models used for diagnosing Alzheimer's 

using EEG data: SVM, CNN, LSTM, and the new Hybrid CNN-RNN model. A conventional approach 

not based on deep learning is the Support Vector Machine (SVM). With an estimated duration of only 

2.1 milliseconds, a very low number of parameters, and very little computer power required, it is very 

quick. But this simplicity of usage comes at the expense of less capacity to learn and apply what you 

have acquired. The CNN-only model learns spatial characteristics from EEG data by adding 

convolutional layers. It may be utilised in real-time systems that don't need many processors with 1.8 

million factors and a short inference time of 12.4 ms. With 2.3 million parameters and an inference time 

of 18.6 ms, the LSTM-only model, which emphasises simulating temporal sequences, requires greater 

memory and computing capacity. Of the four models, the recommended Hybrid CNN-RNN one 

produces the greatest outcomes but consumes the most computational resources. With 4.2 million 

components, inference runs in 25.7 ms and consumes around 180 MB of memory. Because the dual 

structure has both convolutional and recurrent layers, this is the case. The mixed model needs a lot of 

resources, but its ability to learn all features makes it perfect for high-accuracy detection systems in 

hospitals.  
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Figure 5. Inference time (in milliseconds) required for processing a single EEG sample. 

 

In Figure 5. SVM is significantly faster at 2.1 ms due to its non-deep learning structure. CNN takes 12.4 

ms as it processes multi-dimensional data through convolutional layers. LSTM, which models temporal 

dependencies, takes 18.6 ms. The Hybrid CNN-RNN model, combining both feature and sequence 

learning, takes 25.7 ms, indicating the trade-off between accuracy and processing time. 

 

 
Figure 6: Number of trainable parameters (in millions) indicating model size. 

 

In Figure 6. With just 0.01M, SVM is quite efficient for computers with little memory. Due to many 

convolutional layer filters, CNN has 1.8M. With memory cells and gates, LSTM has 2.3M. Doubly CNN's 

size because of its dual architecture, the hybrid model calls for 4.2M parameters, hence affecting 

memory and training time. 
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Figure 7: Computational complexity measured in billions of operations. 

 

In Figure 7. SVM calls for just 0.001 GFLOPs. Because it calculates several feature maps, CNN requires 

0.45 GFLOPs. LSTM uses 0.65 GFLOPs to handle time sequences. Peaking at 1.12 GFLOPs, the hybrid 

model reflects the whole burden of spatial and temporal feature extraction, which might restrict its use 

in edge devices without optimisation. 

 
Figure 8: Peak memory consumption during inference in megabytes. 

 

The smallest footprint is 10 MB. LSTM (140 MB) and CNN (120 MB) need for intermediate resources 

(Figure 8). Driven by intermediate feature maps and sequential memory, the hybrid model needs 180 

MB. Though its use is more, it is appropriate for current systems and has a great performance benefit. 

 

VI. CONCLUSION 

This study shows a new deep learning system for using electroencephalogram (EEG) data to 

automatically diagnose Alzheimer's disease. Feature extraction from space is done using Convolutional 

Neural Networks (CNNs), whereas Long Short-Term Memory (LSTM) networks are employed for time 

sequence modelling. The suggested mixed model does both of these tasks well. Because it combines the 

spatial and temporal data located in EEG data, the model outperforms previous approaches. It 

significantly increases F1-score and accuracy. The combined CNN-RNN architecture not only 

outperforms conventional machine learning models like SVM and independent deep learning models 

like CNNs or LSTMs, but it also finds a reasonable compromise between its diagnostic accuracy and its 
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operational cost. Though it consumes more memory and has more parameters, the hybrid model 

provides a consistent and scalable approach to detect Alzheimer's in real time without touching the 

individual. Including time-frequency models to EEG characteristics also helps to clarify and improve 

their ability to distinguish them. This study shows how advanced deep learning methods could be used 

to find neurodegenerative diseases and lays the groundwork for using EEG-based clinical decision 

support systems. Model compression, real-world clinical evaluation, and adding multi-modal data 

merging for even more reliable diagnostics may be things that need to be worked on in the future. 
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