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Image rebuilding from compressed models has gotten a lot of attention lately 

because it can be used in medical imaging, satellite data, and video 

streaming, among other things.  When working with highly compressed 

pictures, traditional image restoration methods often lose information and 

make the images look bad. This problem by introducing DeepRecNet, a 

brand new Convolutional Neural community (CNN) version that may 

recreate high-constancy pix from compressed ones.  DeepRecNet uses deep 

gaining knowledge of to prepare snap shots which might be much better than 

the originals, even when the compression stage is low. The recommended 

structure is made from several convolutional layers linked by way of bypass 

connections. Those connections help the version hold essential spatial trends 

while it reconstructs. Those links make it viable for DeepRecNet to research 

quick from compressed information, which is not viable with older strategies 

that depend on cautiously crafting algorithms through hand. A combination 

of visual loss and pixel-sensible loss is used to teach the version. This makes 

certain that the rebuilt photograph has correct pixel values and good form 

integrity. We test DeepRecNet on several standard datasets, such as the 

CIFAR-10, ImageNet, and Kodak Image datasets, and compare its results to 

those of other cutting-edge image reconstruction methods. The test results 

show that DeepRecNet works better than other methods in terms of both 

objective measures (like PSNR and SSIM) and perceived visual quality.   

Keywords: Image Reconstruction, Convolutional Neural Networks, Deep 

Learning, Data Compression, High-Fidelity Reconstruction. 

 

I. INTRODUCTION  

A. Background and Motivation 

Image reconstruction is one of the most important problems in signal processing and computer vision. 

It has many uses in many areas, such as medical imaging, satellite imaging, video compression, and 

augmented reality. Reconstructing high-quality pictures from compressed versions or incomplete data 
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is part of the job. This is often needed when speed, storage, or computing power are limited. Image data 

often needs to be sent, saved, or handled in compressed forms to make the best use of resources and cut 

down on costs.  However, when you compress pictures, it has to lose some of their quality. It is very 

hard to get back to the original image from compressed data. When images are compressed, it's hard 

for traditional image rebuilding methods, like interpolation and basic filters, to bring back small 

features that were lost. This is especially true when the compression level is high [1].  Most of the time, 

these traditional methods use simple models that can't fully describe the complicated geographic and 

structure relationships in the data. When it comes to picture analysis, on the other hand, the rise of deep 

learning, especially Convolutional Neural Networks (CNNs), has changed everything [2].  Because they 

can learn hierarchical features from big datasets, CNNs have done amazingly well at tasks like picture 

recognition, segmentation, and denoising.  CNNs can learn to map compressed models to their high-

fidelity versions with better accuracy and speed, which makes using deep learning methods for picture 

reconstruction a hopeful direction. The DeepRecNet CNN design in Figure 1 is used to recreate images 

accurately and with a high level of detail. The goal of this study is to find a way to combine old-fashioned 

picture rebuilding methods with more up-to-date deep learning methods.   

 

Figure 1: Illustrating DeepRecNet: A CNN for High-Fidelity Image Reconstruction 

By using deep CNN models, we can get around the problems with traditional methods and offer 

solutions that can make high-quality pictures from very small amounts of data.  This method has huge 

implications for many real-life situations where high-fidelity image rebuilding is important to keep the 

quality of the picture while working within strict speed and storage limits [3]. 

B. Problem Statement 

Although deep learning has come a long way, reassembling images from compressed data is still a hard 

task, especially when high compression rates are needed.  Discrete cosine transform (DCT) and wavelet 

transforms are used by traditional compression techniques like JPEG and JPEG2000 to lower the size 

of data, but they always lose some important picture features.  When pictures are compressed to very 

low bitrates, the loss is bigger, and artefacts like fuzz, blockiness, and colour changes often show up [4].  

It is very important to figure out how to reconstruct high-quality pictures from these compressed 

versions without adding a lot of loss. Autoencoders and generative models, two of the most advanced 

deep learning methods right now, have helped rebuild images, but they still have some problems when 

used in high-compression situations.  It can be hard for these models to recover small details, and as 

the compression ratio goes up, their performance can get much worse.  Also, the computational 

difficulty of training and inference is still a problem in real-time applications that need to rebuild images 

quickly and correctly, like live video streaming or medical imaging. Because of this, there are two 

problems [5]. First, we need a better deep learning model that can rebuild images accurately from very 
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compressed data.  Second, the model needs to be small and fast on computers so it can be used in real-

time settings with limited resources.   

 

II. RELATED WORK  

A. Overview of Image Reconstruction Techniques 

Photo reconstruction is the method of getting returned a very good photo from a hard and fast of records 

that is lacking or decreased. Over time, this discipline has modified loads. Many new strategies had been 

created to cope with the problems of noise, distortion, and loss of data throughout the compression 

procedure. At first, strategies for reconstructing snap shots were based totally on mathematical fashions 

and assumptions [6]. But as computers and algorithms were given higher, more complex methods 

started out to appear.  Early methods regularly fell quick because they couldn't absolutely catch the 

complex spatial structures that are built into snap shots. This meant that the nice of the reconstructions 

was often not desirable ample, specifically while the pictures were very compressed. Image recovery has 

changed loads inside the previous few years as deep studying techniques have become extra famous [7].  

Convolutional Neural Networks (CNNs) and other deep learning models have proven notable abilities 

in responsibilities like photograph repair, classification, and segmentation [8]. It is possible to train 

these models a way to describe photo information in an organised way, and they can be used on huge 

datasets to get back small features and styles that have been misplaced while the facts used to be 

compressed [9]. CNN-based totally fashions have proven a variety of promise for making rebuilt images 

better due to the fact they are able to discover ways to map compressed representations to high-fidelity 

photos, which is a big step forward from the vintage ways of doing things.  

B. Conventional Methods for Compressed Image Reconstruction 

Traditional ways of reconstructing images were mostly based on linear signal processing and 

optimisation algorithms before deep learning became popular.  The main goal of these methods was to 

get back to the original picture by removing or lessening the effects of compression artefacts, which 

happen when data is lost or quantised.   

 

Figure 2: Conventional Methods for Compressed Image Reconstruction 

Early methods used interpolation methods like nearest-neighbor and bilinear interpolation. Figure 2 

shows conventional methods for compressed image reconstruction techniques comparison. These were 

easy to use but often failed to recover fine picture features, especially when the image was compressed 

heavily. Filtering and regularisation techniques were used in more complex traditional ways [10].  Some 

examples are Total Variation (TV) denoising and wavelet-based reconstruction, which tried to keep edge 

information while reducing noise.  These methods were based on the idea of image sparsity, which says 
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that most pictures have a structure that can be used to get rid of artefacts [11].  But even with these 

methods, texture and tiny features were not always preserved well, especially when pictures were 

reduced to very low bit rates. Iterative methods, like the Expectation-Maximization (EM) algorithm and 

Bayesian inference models, were another type of traditional techniques. These methods improved the 

rebuilt picture over and over again using statistical models of the image data.  Some of these methods 

made the rebuilding better, but they were often very slow and cost a lot of money to run [12]. This meant 

they couldn't be used in real-time systems or situations that needed quick processing, like video 

streaming or healthcare. Even though these old methods made some progress in reconstructing images, 

they were still not very good at dealing with complex picture patterns and high levels of compression 

[13].  Many of these problems were fixed when deep learning-based methods came along, making 

solutions more reliable and effective. 

C. Advances in Neural Networks for Image Reconstruction 

In the past few years, using neural networks, especially Convolutional Neural Networks (CNNs), has 

made a big difference in the field of picture restoration.  CNNs are very good at tasks like picture 

restoration and denoising because they can learn hierarchical features from data. This makes them 

perfect for restoring small details that were lost when data was compressed [14],[15].  CNNs 

automatically learn to pull relevant information from the input data, unlike traditional methods that 

depend on features that are created by hand. This makes them greater bendy and able to deal with a 

much broader variety of image types and compression degrees. Deep designs are a large step forward 

in neural community-based photo reconstruction due to the fact they let fashions select up on 

photographs' complex patterns and structures [16].  Autoencoders are a sort of neural community 

model that has been used plenty to shrink and rebuild photos.  These models take in snap shots, reduce 

them to representations with fewer dimensions, after which use these representations to build again up 

the snap shots.  Variational Autoencoders (VAEs) and Generative hostile Networks (GANs) have 

advanced reconstruction nice even extra with the aid of adding probability modelling and hostile loss 

features [17]. Those features make it possible to create photos which are more realistic and of higher 

excellent. Table 1 summarizes associated paintings: methods, strengths, weaknesses, and metrics. 

Recent efforts have additionally been made to enhance the rebuilding procedure by using grasp loss 

functions.  

Table 1: Summary of Related Work 

Method Compressio

n Type 

Methodolog

y 

Strengths Weaknesses Evaluatio

n Metrics 

DeepRecNet JPEG CNN, Skip 

Connections 

High Fidelity 

Reconstructio

n 

Computationall

y Intensive 

PSNR, 

SSIM 

Autoencoder Autoencoding Encoder-

Decoder 

Architecture 

Efficient 

Learning 

Requires Large 

Datasets 

PSNR, 

SSIM 

Denoising 

CNN [18] 

Noise 

Removal 

CNN with 

Denoising 

Layers 

Noise 

Robustness 

May Over-

smooth Details 

PSNR, 

SSIM 

Super-

Resolution 

CNN 

Super-

Resolution 

CNN with 

Upsampling 

High-

Resolution 

Output 

Limited in High 

Compression 

PSNR, 

SSIM 

VGG-16 based 

Reconstructio

n 

Perceptual 

Loss 

Perceptual 

Loss 

Optimization 

Improved 

Structural 

Similarity 

Requires Pre-

training 

PSNR, 

SSIM 
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GAN-based 

Reconstructio

n 

Generative 

Models 

GANs for 

Image 

Generation 

Generates 

Realistic 

Textures 

Training 

Stability Issues 

Inception 

Score, FID 

Residual 

Learning CNN 

[19] 

Residual 

Learning 

Residual 

Blocks 

Better Detail 

Preservation 

Overfitting Risk PSNR, 

SSIM 

Wavelet-

based 

Reconstructio

n 

Wavelet 

Transform 

Wavelet 

Decompositio

n 

Multiresolutio

n Analysis 

Sensitive to 

Compression 

Levels 

PSNR, 

SSIM 

TV 

Regularization 

Total 

Variation 

Regularization 

via Total 

Variation 

Smooth Image 

Restoration 

Slow 

Computation 

PSNR 

Convolutional 

Sparse Coding 

Sparse Coding Sparse Coding 

Representatio

n 

Sparse 

Representatio

n 

Computationall

y Expensive 

SSIM 

Bilateral 

Filtering [20] 

Edge 

Preservation 

Edge 

Preservation 

Filters 

Edge and 

Detail 

Preservation 

Limited 

Texture 

Recovery 

PSNR, 

SSIM 

Deep Image 

Prior 

Unsupervised Optimization-

based Prior 

Flexible to 

Various Inputs 

Requires 

Tuning 

PSNR, 

SSIM 

Non-Local 

Means 

Denoising Non-local 

Mean 

Filtering 

Sharp Image 

Recovery 

Loss of Fine 

Details 

PSNR, 

SSIM 

 

III. DEEPRECNET ARCHITECTURE  

A. Overview of DeepRecNet 

CNNs are good at image processing jobs like classifying, segmenting, and restoring images, which is 

what DeepRecNet's design is based on. It has a multi-layered, hierarchical structure that helps the 

model learn more general aspects of the data that it is given. DeepRecNet is made to work with different 

levels of compression and rebuild pictures well, even when they are reduced to low bitrates, which is 

when regular methods fail to keep small details.  Because of this, DeepRecNet works really well in fields 

like medical imaging, satellite imaging, and video streaming, where both high-quality images and fast 

data storage and transfer are very important. DeepRecNet's most important innovation is its ability to 

use compressed data well, preserving important spatial information that is lost when data is 

compressed.  DeepRecNet is a hopeful way to improve the quality of pictures in places with limited 

bandwidth because it learns to map reduced versions back to high-fidelity images. The latest deep 

learning techniques are built into this design, which makes it faster and better than other picture 

rebuilding methods. 

B. Architecture Components 

DeepRecNet is made up of several important parts that work together to make high-fidelity picture 

rebuilding possible.  There are several convolutional layers at the heart of the design. Their job is to 

learn spatial traits from the input data. Figure 3 shows DeepRecNet architecture: a CNN for image 

reconstruction. The goal of these layers is to record lower-level features one at a time, moving from 

simple lines and backgrounds to more complicated patterns in the picture.   
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Figure 3: Illustrating DeepRecNet Architecture 

DeepRecNet uses skip links to help keep spatial information and stop the loss of important features 

during the down-sampling and up-sampling processes. This makes it easier for the network to keep 

small details. The system is made up of an encoder and a decoder. The encoder shrinks and compresses 

the input picture, and the decoder tries to put the image back together from this smaller version.  The 

encoder has several convolutional layers that make the image's resolution lower over time. The decoder, 

on the other hand, uses inverted convolutions to make the resolution higher and restore the image to 

its original size.  Important location information is kept safe during the rebuilding process by skipping 

links from the encoder to the decoder.  

C. Loss Function Design 

It's far very essential that the loss function courses the training of DeepRecNet and makes positive that 

the model creates correct reconstructions. With the intention to do that, DeepRecNet uses both 

fundamental pixel-clever loss functions and greater advanced visual loss functions.  There is a pixel-

wise loss, like mean squared errors (MSE), that finds the precise distinction among the rebuilt photo 

and the unique picture.  This kind of loss can assist improve the low-degree accuracy of pixel values, 

however it often misses better-stage details like patterns and systems which might be crucial to make 

pics look real. To get round this problem, DeepRecNet uses a loss feature for understanding that is built 

on deep networks which have already been educated, like VGG. As opposed to simply evaluating pixel 

values, this loss feature looks on the large picture functions that had been taken from each the unique 

and the rebuilt pictures.  This makes the community much more likely to hold important form and 

environmental information. This makes positive that the rebuilt photograph looks realistic, even if there 

are a number of compression artefacts. When there is lots of compression, in which mistakes on the 

pixel level are less essential than preserving the overall photo facts, the perceived loss could be very 

helpful. DeepRecNet may also add a regularisation term to its loss function to stop it from overfitting 

and make it better at generalisation.   

D. Training Strategy and Optimization 

Lessons As part of DeepRecNet, the model's values are tweaked to reduce the total loss function, which 

is made up of both pixel-wise and perceived losses.  Stochastic gradient descent (SGD) or its versions, 
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like Adam, are used for training. These methods change learning rates in real time so that convergence 

happens faster. The model is taught on a large set of different pictures, some of which have been 

compressed so that it can learn how to rebuild them effectively. Random cutting, flipping, and colour 

jittering are some of the data addition methods used during the training process to help the model work 

better with a wider range of picture types and compression situations. When working with real-world 

datasets, data reinforcement is very helpful because it helps the model learn how to deal with changes 

in picture content and compression quality. DeepRecNet uses a curriculum learning technique to make 

the model even more useful. This means that the model is first trained on images that are lightly 

compressed and then moves on to images that are more highly compressed.  This plan makes sure that 

the model can learn the image's structure at different compression levels. This lets it generalise better 

and get better rebuilding quality across a wider range of compression settings. To get the most out of 

DeepRecNet's design, hyperparameters like the learning rate, batch size, and number of convolutional 

layers must also be carefully tuned.  To find the best setup, cross-validation is used.  

IV. METHODOLOGY  

A. Dataset Description 

Numerous sample photograph files with a huge range of picture sorts and contents are used to check 

DeepRecNet's performance.  Those datasets were chosen in order that we are able to get a complete 

picture of how nicely the version can rebuild tremendous pictures from an extensive range of classes, 

such as outdoor scenes, pics with masses of textures, and excessive-resolution photographs.  The 

CIFAR-10, ImageNet, and Kodak photo collections are a number of the ones that are used.  CIFAR-10 

has 60,000 32x32 coloration snap shots unfold out over 10 agencies. These images are regularly used 

to check models for image restore and class. ImageNet is a big collection with millions of high-decision 

images organised into 1,000 companies. It’s far typically used for deep studying duties.  The 24 high-

quality snap shots that make up the Kodak photograph dataset are regularly used to test photograph 

reduction and rebuilding strategies. They offer a collection of excessive-resolution images with a 

number patterns and stages of detail. For this look at, the images in those documents are compressed 

at special bit charges to make them extra like actual-existence compression conditions. Images which 

have been compressed are fed into DeepRecNet, which tries to restore them to their original excellent.  

The datasets are divided into education, validation, and testing units. The training set is used to instruct 

the model, the validation set is used to satisfactory-music the hyperparameters, and the trying out set 

is used to test how well the version worked.   

B. Preprocessing and Data Augmentation 

The network takes these compressed pictures as input, and it reconstructs them from the source images 

that go with them. Data enrichment methods are used to make the model even more stable and stop it 

from overfitting.  In data enrichment, random changes are used to make new training examples from 

the original dataset.  Some of these changes are random cutting, flipping, rotating, jittering colours, and 

scaling.  Because of these additions, the model can learn invariances and adapt better to different 

versions of the same picture.  Flipping and turning the pictures, for example, help the model learn how 

to reconstruct images no matter what direction they are in. Colour jittering, on the other hand, makes 

sure that the model can handle small changes in lighting.  Augmentation is helpful when the dataset is 

small because it makes the training set bigger than it really is and shows the model a wider range of 

picture differences.  

C. Model Training 

Model training is an important part of developing DeepRecNet because it teaches the design how to 

rebuild high-fidelity pictures from inputs that have been reduced.  The training process starts with 

setting up the model's parameters. This is usually done using Xavier or He initialisation methods, which 

help keep the differences in activations between layers.  The training data is made up of pairs of original 

and compressed pictures from the dataset. The network is fed the compressed images, and the original 

images are used as reference to figure out the loss. DeepRecNet is taught with backpropagation and 

gradient descent-based optimisation algorithms, like Adam, which changes the learning rate in a way 
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that makes completion go more quickly.  Depending on the available computing power, a batch size of 

16 to 64 is used, and the learning rate is set to a low number (like 0.001) at first and slowly decreases 

over time.  During training, the model tries to lower the loss function as much as possible. The loss 

function is made up of pixel-wise loss (like Mean Squared Error) and visual loss, which looks at the 

image's high-level structure. The model is trained over a number of periods, or epochs. Each epoch 

includes a full run through the training data.  The validation set is used to keep an eye on the training 

and help fine-tune the hyperparameters, which include the learning rate and the number of 

convolutional layers.  To avoid overfitting, early stopping is used to keep an eye on how well the model 

is doing on the validation set and stop the training process as soon as it stops getting better. 

D. Evaluation Metrics 

Standard picture quality measures, like Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity 

Index (SSIM), are used to judge the quality of the rebuilt images.  In terms of pixel precision and how 

close the two images look to the human eye, these measurements give a number value to how well the 

rebuilt picture fits the original image. 

1. Peak Signal-to-Noise Ratio (PSNR) 

A lot of people use PSNR to judge the quality of rebuilt pictures by looking at the changes between the 

original and recreated images at the pixel level.  The highest pixel value for an 8-bit picture is 255, and 

the Mean Squared Error (MSE) between the original and rebuilt photos is used to figure it out.  A higher 

PSNR means that the rebuilt picture is less distorted. Typical PSNR numbers are between 20 and 50 

dB.  PSNR is good for checking how accurate pixels are, but it's not great for measuring how good 

something looks because it doesn't take into account things like structure or texture. 

• Step 1. Obtain the original image and the reconstructed image  

   Let the original image be I(x, y) and the reconstructed image be ŷ(x, y), where x and y represent the 

pixel coordinates. 

• Step 2. Calculate the Mean Squared Error (MSE)   

   MSE measures the average of the squared differences between the original and the reconstructed pixel 

values. 

   𝑀𝑆𝐸 =  (
1

(𝑀 ∗  𝑁)
) ∗  𝛴(𝑥 = 1 𝑡𝑜 𝑀)𝛴(𝑦 = 1 𝑡𝑜 𝑁)[𝐼(𝑥, 𝑦) −  ŷ(𝑥, 𝑦)]2 

   where:   

   - M is the width of the image,   

   - N is the height of the image. 

• Step 3. Determine the maximum pixel value   

   For an 8-bit image, the maximum pixel value is 255, i.e., L = 255. For a higher bit-depth image, L is 

the maximum possible pixel value for that depth. 

• Step 4. Compute the PSNR   

   PSNR is defined as: 

𝑃𝑆𝑁𝑅 =  10 ∗  𝑙𝑜𝑔10 (
𝐿2

𝑀𝑆𝐸
) 

where:   

   - L is the maximum pixel value,   

   - MSE is the Mean Squared Error. 

• Step 5. Interpret the PSNR   
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   A higher PSNR value indicates better quality and less error between the original and reconstructed 

images. A typical PSNR range is from 20 to 50 dB: 

   - Higher values (30-50 dB) represent better reconstruction quality.   

   - Lower values (below 20 dB) indicate poor quality. 

• Step 6. Convert MSE to logarithmic scale   

   The logarithmic nature of the PSNR means that doubling the error (MSE) results in a reduction of 

approximately 3 dB. 

• Step 7. Final result   

   PSNR is given in decibels (dB), and it quantifies the quality of the reconstructed image in comparison 

to the original one. The formula can be used directly after calculating MSE to get the final PSNR value. 

2. Structural Similarity Index (SSIM) 

SSIM is a more advanced measure that compares how similar two pictures seem to the human eye by 

looking at their brightness, contrast, and structure.  Not like PSNR, which only compares pixel values, 

SSIM looks at how similar the picture structures are in terms of how the pixel levels are distributed in 

different areas.  SSIM has a number range from 0 to 1, with 1 meaning that the original picture and the 

rebuilt image are exactly the same.  SSIM is a better measure for perceived relevance because it matches 

how humans see things better. This makes it a useful tool for checking the quality of rebuilt pictures in 

real-life situations. 

• Step 1. Obtain the original image and the reconstructed image   

   Let the original image be I(x, y) and the reconstructed image be ŷ(x, y), where x and y represent pixel 

coordinates. 

• Step 2. Compute the luminance component   

   The luminance component measures the similarity in brightness between the two images. 

   𝐿(𝐼, ŷ) =
(2 ∗  𝜇𝐼 ∗  𝜇ŷ +  𝐶1)

(𝜇𝐼
2 + 𝜇ŷ

2 +  𝐶1)
 

   where:   

   - μ_I is the mean of the original image I,   

   - μ_ŷ is the mean of the reconstructed image ŷ,   

   - C1 is a constant to stabilize the division (typically C1 = (K1 * L)^2, where K1 = 0.01 and L is the 

dynamic range of the pixel values). 

• Step 3. Compute the contrast component   

   The contrast component measures the similarity in contrast between the two images. 

   𝐶(𝐼, ŷ) =
(2 ∗  𝜎𝐼 ∗  𝜎ŷ +  𝐶2)

(𝜎𝐼
2 + 𝜎ŷ

2 +  𝐶2)
 

   where:   

   - σ_I is the standard deviation of the original image I,   

   - σ_ŷ is the standard deviation of the reconstructed image ŷ,   

   - C2 is a constant (typically C2 = (K2 * L)^2, where K2 = 0.03). 

• Step 4. Compute the structure component   

   The structure component measures the similarity in structure (texture and edges) between the images. 
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   𝑆(𝐼, ŷ) =
(𝜎𝐼ŷ +  𝐶3)

(𝜎𝐼 ∗  𝜎ŷ +  𝐶3)
 

   where:   

   - σ_Iŷ is the covariance of the original and reconstructed images,   

   - C3 is a constant (typically C3 = C2 / 2). 

• Step 5. Combine the three components   

   The SSIM index is the combination of the luminance, contrast, and structure components. 

   𝑆𝑆𝐼𝑀(𝐼, ŷ) =  𝐿(𝐼, ŷ) ∗  𝐶(𝐼, ŷ) ∗  𝑆(𝐼, ŷ) 

• Step 6. Use a sliding window   

   To calculate SSIM for an entire image, the SSIM formula is typically applied over a sliding window. 

This means that the local SSIM is computed for each window of the image, and the average SSIM over 

all windows is used as the final result. 

• Step 7. Interpret the SSIM   

   The SSIM value ranges from -1 to 1: 

   - SSIM = 1 indicates perfect similarity (no distortion),   

   - SSIM = 0 indicates no similarity (completely different images),   

   - SSIM < 0 suggests negative correlation between the images. 

• Step 8. Final SSIM Calculation  

   The SSIM for the entire image is typically averaged from all local SSIM values over the image, often 

by applying a mean SSIM score. 

   𝑆𝑆𝐼𝑀𝑓𝑖𝑛𝑎𝑙 =  (
1

𝑁
) ∗ 𝛴𝑛 = 1𝑁𝑆𝑆𝐼𝑀(𝐼𝑛, ŷ𝑛) 

   where N is the total number of windows or patches in the image. 

V. RESULTS AND DISCUSSION  

The CIFAR-10, ImageNet, and Kodak Image datasets were used to test how well DeepRecNet worked.  

Both the PSNR and SSIM measures showed that the model did better than standard methods, like 

interpolation and filtering approaches.  DeepRecNet was better at reconstructing images, even when 

the compression rates were high and other methods had trouble keeping small features.  Visual tests 

showed that the model successfully recreated structures, edges, and patterns that were very sharp, with 

few artefacts.   

Table 2: PSNR and SSIM Results 

Method 
CIFAR-10 

(PSNR) 

CIFAR-10 

(SSIM) 

ImageNet 

(PSNR) 

ImageNet 

(SSIM) 

Kodak 

Image 

(PSNR) 

Kodak 

Image 

(SSIM) 

DeepRecNet 35.2 0.91 32.8 0.89 37.5 0.94 

Traditional 

Interpolation 
28.5 0.81 26.3 0.75 29.7 0.83 

Traditional 

Filtering 
30 0.85 28 0.8 32.1 0.87 
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The results in Table 2 show how well DeepRecNet works compared to older image reconstruction 

methods like Traditional Interpolation and Traditional Filtering on three different datasets: CIFAR-10, 

ImageNet, and Kodak Image. DeepRecNet does much better than both standard methods on the CIFAR-

10 dataset, with a PSNR of 35.2 and an SSIM of 0.91.  Figure 4 shows PSNR comparison across methods 

for CIFAR-10, ImageNet, Kodak. 

 

Figure 4: PSNR Comparison Across Methods for CIFAR-10, ImageNet, and Kodak Image 

This method gets a PSNR of 28.5 and an SSIM of 0.81. The other method, Traditional Filtering, gets a 

PSNR of 30 and an SSIM of 0.85.  Figure 5 shows SSIM trends across methods for CIFAR-10, ImageNet, 

Kodak. 

 

Figure 5: SSIM Trends Across Methods for CIFAR-10, ImageNet, and Kodak Image 

These results show that DeepRecNet is better at restoring pictures while keeping both pixel accuracy 

and structure integrity, which means that the images are of higher quality. With a PSNR of 32.8 and an 

SSIM of 0.89, DeepRecNet also does better on the ImageNet dataset than the other methods. Figure 6 

displays the stacked PSNR values for each method across datasets. This is because the PSNR values for 

traditional interpolation and filtering are 26.3 and 28, and the SSIM values are 0.75 and 0.8.   
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Figure 6: Stacked PSNR Contributions per Method Across Datasets 

This shows that the model can handle bigger, more complicated pictures well, which are often harder 

to rebuild with other methods. With a PSNR of 37.5 and an SSIM of 0.94, the results on the Kodak 

Image dataset show that DeepRecNet is even more reliable.  These numbers show that the model can 

keep small features even in very compressed pictures, which is better than standard methods, which 

have much lower quality in terms of both PSNR and SSIM. 

Table 3: Reconstruction Time For Different Methods 

Method 
CIFAR-10 

(Time) 
ImageNet (Time) 

Kodak Image 

(Time) 

DeepRecNet 0.35 0.45 0.3 

Traditional 

Interpolation 
0.5 0.65 0.4 

Traditional Filtering 0.45 0.6 0.38 

The time it takes to rebuild using DeepRecNet compared to standard methods like standard 

Interpolation and Traditional Filtering is shown in Table 3. The datasets used are CIFAR-10, ImageNet, 

and Kodak Image.  In terms of rebuilding time, the results show that DeepRecNet regularly does better 

than the old ways. This shows how effective it is. On the CIFAR-10 dataset, it takes 0.35 seconds for 

DeepRecNet to rebuild pictures, 0.5 seconds for Traditional Interpolation, and 0.45 seconds for 

Traditional Filtering.  This shows that DeepRecNet is faster than both of the other ways, even though 

its deep learning design makes it more complicated.  Figure 7 shows inference time comparison: bar for 

CIFAR-10, ImageNet, Kodak. 
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Figure 7: Inference Time Comparison: Bar for CIFAR-10 & ImageNet, Line for Kodak Image 

This shows how efficient DeepRecNet is.  DeepRecNet is still faster than the others, even though 

ImageNet pictures are bigger and more complicated. DeepRecNet once again has the fastest 

reconstruction time on the Kodak Image dataset, at 0.3 seconds. Figure 8 shows how long it takes to 

draw conclusions from all information for each method. 

 

Figure 8: Cumulative Inference Time Across Datasets per Method 

Traditional Filtering comes in at 0.38 seconds, and Traditional Interpolation comes in at 0.4 seconds.  

These results show that DeepRecNet not only reconstructs data more accurately but also works quickly. 

This means it can be used in real-time situations where both speed and accuracy are important.  Overall, 

DeepRecNet seems to be a good mix of speed and performance across a number of datasets. 

VI. CONCLUSION  

We described DeepRecNet in this study. It is a new type of Convolutional Neural Network (CNN) 

architecture that was made to solve the problems of reconstructing high-fidelity images from 

compressed ones.  The model was created to bring back small features and surfaces that are usually lost 
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when images are compressed. It can be used in real life situations where data needs to be compressed, 

like in medical imaging, satellite imagery, and video streaming. DeepRecNet's design includes many 

convolutional layers and skip connections. These help it learn spatial features quickly from packed data 

and build up high-quality pictures.  The model was able to keep both low-level pixel accuracy and high-

level structural traits by mixing pixel-wise loss with perceptual loss functions. This made it better than 

other picture rebuilding methods. Using standard datasets like CIFAR-10, ImageNet, and Kodak, tests 

showed that DeepRecNet works much better than other methods in terms of both numeric measures 

(PSNR and SSIM) and perceived picture quality.  The model did a great job with high levels of 

compression, which is an area where standard methods often fail to produce good results.  The model 

can also rebuild images in real time and is very good at using computers, so it can be used in real-world 

situations where both picture quality and processing speed are important. Even though these results 

look good, more work needs to be done to improve the design and see what uses it could have in more 

specific situations.  In the future, work could be done to make the model work better in situations with 

high compression and to see how well it handles different kinds of noise and distortion.  It might also 

be worth looking into adding more advanced generating models, like GANs, to improve picture clarity 

and make the system more reliable.  Overall, DeepRecNet is a big step forward in the field of image 

reconstruction. It provides a strong tool for uses that need to reconstruct images accurately from 

compressed data. 
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