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Medical image enhancement is urgently needed to make healthcare systems more 

interpretable and diagnose more accurately. In standard deep learning architectures, 

it can be difficult to achieve the best of both worlds in terms of computational 

capability and efficiency of the feature extractor as well as the parameters. To that 

end, this study raises questions as follows: This study solves these problems by 

developing a hybrid UNet-Transformer model, which integrates Convolutional Neural 

Networks’ (CNNs) ability to capture localized spatial features and Transformers that 

can learn global context relations. This integration helps to segment and enhance 

images as well as possessing low computational complexity. To fine-tune the 

proposed model, hyperparameter sensitivity analysis in terms of learning rate, batch 

size and filter size is performed using ordinal parameter analysis. It should be noted 

that this analysis tries to serve as a guideline for refining the parameters with the aim 

of achieving better results.  

Hence, the effectiveness of this hybrid model is precisely tested using objective 
measures namely Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise 
Ratio (PSNR), and Mean Squared Error (MSE). This indicated that the proposed 
hybrid model yields outstanding performance as compared to other image 
enhancement techniques with PSNR=38.76, SSIM=98.6, MSE=0001.Interesting, the 
proposed hybrid image enhancement model can outperform other techniques. This 
further emphasizes the benefit of the model to retain key elements of the image while 
eliminating the noise in the image and enhancing the general quality of the image. 
This research presents a novel concept of feature extraction and parameter tuning 
that can be a base for establishing hybrid networks in medical image improvement. In 
this manner, the proposed methodology is beneficial in closing the gap between 
intricate recognition methods and real medical imaging implementations that serve 
to enhance diagnostic accuracy and speed in the medical field. 

Keywords: UNet-transformer, Image Enhancement, Machine Learning, Structural 

Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), Mean Square 

Error (MSE) etc. 

 

1. INTRODUCTION 

Medical image enhancement can therefore be regarded as a necessary process in the enhancement of 
images used for diagnostic and therapeutic purposes. Defected quality images are not so efficient for the 
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detection of abnormalities and taking efficient clinical decisions [1]. But there are several problems with 
utilizing ‘traditional’ approaches to cut out cycles and work more efficiently while at the same time 
increasing the accuracy of features in various and often complex and diverse data sets. In response to such 
issues, deep learning-based techniques have become significant as the solution. Out of these, the so-called 
hybrid models that incorporate advantages of CNN and Transformers are studied more and more to take 
advantage of both methodologies to extract local and global features adequately [2]. 

The CNN component excels in capturing local spatial features by applying convolution operations over the 

image, represented mathematically as: yij=∑ ∑ 𝑥(𝑖 + 𝑚, 𝑗 + 𝑛). 𝑤𝑁−1
𝑛=0

𝑀−1

𝑚=0
(𝑚, 𝑛)………..(1) 

where in equation 1,  𝑥(𝑖 + 𝑚, 𝑗 + 𝑛) represents the input image pixel values, w(𝑚, 𝑛) is the convolutional 

kernel, and yij is the output of the convolution operation at position (i,j). This enables the model to extract 

fine-grained spatial details from medical images. On the other hand, the Transformer component 

demonstrates capability in modeling global dependencies using self-attention, which captures the 

interaction between otherwise far apart regions in an image. These factors make it possible to enrich 

feature representation that is why the hybrid CNN-transformer network is useful for a variety of tasks 

including image enhancement, segmentation and classification [3].  

 

Besides the hybrid architecture, this study also analyzes the behavior of various hyperparameters as 

learning rate, batch size and filter size through the ordinal parameter analysis. These parameters had 

impacted much on the efficiency and specification aptitude of the DL model from the medical image 

processing tasks point of view. For verifying the proposed approach, an objective quality evaluation based 

on Structural Similarity Index Measure (SSIM) and Peak Signal to Noise Ratio” (PSNR) is employed [4]. 

When compared with the existing methods, the authors attempt to prove the efficacy of the proposed 

technique in improving image quality with reduced computation load. This new combination of CNNs and 

Transformers establishes a standard for attaining reliable, fast, and at scale medical image enhancement 

solutions. Diagnosis of diseases through medical imaging retains basic structural features essential for 

diagnosis and therefore enhancing entails higher quality measures. The choice of the CNN and 

transformer modules enhances the feature representation and at the same time retains high-frequency 

structural details due to local and global contextual knowledge of the networks. In this work, to respond to 

these challenges, a new approach has proposed to address the problem of using deep learning models in 

medical imaging with better scalability and interpretability as well as improved performances where 

required and as like the very nature of the application demands these features. This study also seeks to 

shed light on the best practice in hyperparameters’ tuning for the best fit for the medical imaging 

modality; CT, MRI, and X-rays [4,5]. 

The radar chart shown in figure 1 is proposed hybrid CNN-Transformer model has achieved better 

performance than CNN Baseline, U-Net, GAN model, and histogram equalization for the medical image 

enhancement. These parameters include SSIM with an exemplary value of 98%, and PSNR of 37.766 

presenting high potential of the model to maintain structural information and enhance image resolution. 

Doing so makes it easier to preserve features and enables faster computation, as well as converging faster 

than models that use only localized feature extraction by CNNs or models that use only global context 

learning by Transformers. This illustrates its ability to close the gap between more advanced 

computations and operational medical imaging applications to generate better diagnostic outcomes [6]. 
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Figure. 1 Radar Chart: Performance Comparison of Medical Image Enhancement Models [29] 

2. LITERATURE REVIEW 

The literature review shows that the development of techniques in ultrasound image filtration and 

enhancement of images between 2022 and 2025 has been significantly progressive due to the use of U-

Net and CNN-transformer networks. In ultrasound imaging, which is real time and noninvasive, 

difficulties such as speckle noise and poor contrast hamper diagnostic results. These problems have 

encouraged researchers to search for new architectures for better noise suppression and a feature boost 

[7]. From the family of convolutional neural networks, the U-Net, which is mainly used for biomedical 

image segmentation because of its encoder-decoder architecture is most commonly used for the denoising 

ultrasound images. Subsequent development work has been primarily directed toward refining its 

architecture to improve its denoising [26] performance. For example, Sharma et al. (2022) introduced a 

threshold value at the encoder and decoder choices of the original U-Net to get a focus on the anatomic 

areas crucial in clinical diagnosis and diminishing the speckle noise [25] efficiently. In turn, Zhou et al. 

(2023) proposed a residual U-Net with dilated convolutions as a solution for the noise level variance in 

ultrasound images [8]. 

Recent very successful approaches, based on the U-net architecture have incorporated more complex 

forms of regularization, such as total variation loss and perceptual loss in order to maintain and enhance 

structural detail and image sharpness [22]. In experiments, Lee et al. (2024) pointed out that these 

approaches enhance contrast and features of noisy ultrasound image [23] datasets much better than the 

compared algorithms, such as wavelet transforms and NSM [9]. The combination of CNNs with 

transformers has turned into a revolutionary method adopted to solve some of the drawbacks of 

conventional convolutional structures, primarily the inability to consider the long-distance relations. This 

multiplexed design has exhibited quite fascinating in ultrasound image enhancement results because of 

CNNs’ spatial feature extraction along with transformers’ global contextual understanding. In an 

experiment by Gupta et al. (2023), they applied CNN and transformer-models for improving the quality of 

ultrasound images, where the transformer-part aimed at identifying the general body structure and CNN 

focused on local clear-up of the noise. In their work, they identified enhancements in noise attenuation as 

well as texture retention where they recorded elevated SSIM and PSNR than individual CNN or 

transformer models [10]. 

Similarly, Swin-UNet [24] architecture for ultrasound enhancement was introduced by Patel et al. (2024) 

given the capability of Swin Transformer in modeling local-global interactions efficiently. This 

architecture provided very good level of speckle noise reduction and threshold to enhance contrast in low-

quality US images. They also confirmed the value of the combination of local and global approaches to the 

development of clinical algorithms, where increasing the precision of a faint signal is paramount. From 
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2022 to 2025, significant efforts have been made to optimize hybrid architectures for ultrasound imaging. 

Studies like Chen et al [11]. (2023) emphasized the importance of hyperparameter tuning, including 

learning rate scheduling, batch size selection, and filter configurations, for improving model performance. 

Adaptive optimization techniques, such as Cosine Annealing and Bayesian optimization, have been widely 

used to fine-tune these models for diverse ultrasound datasets [12]. Li et al. (2025) introduced an ordinal 

parameter sensitivity analysis to optimize CNN-transformer hybrids specifically for ultrasound imaging. 

Their study demonstrated that optimal parameter selection not only improves SSIM and PSNR but also 

reduces computational overhead, making the models feasible for real-time applications [13]. 

 
Figure. 2 Progress in Key Areas of Medical Image Enhancement [14] 

The comparative analysis presented in Table 1 highlights the strengths and weaknesses of various deep 
learning techniques for medical image enhancement. Attention mechanisms demonstrate the highest 
performance in terms of PSNR (33–36 dB) and SSIM (0.88–0.92), indicating superior image quality and 
structural retention. These models also exhibit efficient feature retention (90–92%) and reduced 
convergence rates (60–90 epochs), making them ideal for applications requiring fast and accurate 
processing. While GAN-based models and multi-scale feature extraction methods show competitive 
results, their higher computational times and model complexities indicate trade-offs between 
performance and efficiency. This analysis underscores the importance of balancing quality, speed, and 
computational demands in medical image enhancement [15]. 

Table. 1 Comparative Analysis of Deep Learning Techniques for Medical Image Enhancement [16] 

Technique PSNR 
(dB) 

SSIM (0–
1 scale) 

Computational 
Time 

(s/image) 

Feature 
Retention 

(%) 

Convergence 
Rate 

(Epochs) 

Model 
Complexity 

(M 
Params) 

CNN-Based 
Methods 

28–32 0.75–0.85 3–4 80–85 100–150 12–15 

U-Net 
Architecture 

30–35 0.85–0.9 2–3 85–90 75–100 10–12 
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GAN-Based 
Models 

27–33 0.8–0.88 4–5 75–80 150–200 15–20 

Attention 
Mechanisms 

33–36 0.88–0.92 2.5–3 90–92 60–90 14–16 

Multi-Scale 
Feature 
Extraction 

32–35 0.87–0.91 3 85–90 70–100 13–15 

3. A) Existing methodology  

Previously, researchers have worked on endeavors to enhance medical images. Regarding the area of 
medial image enhancement several approaches were investigated in the last few years considering issues 
such as noise elimination, artifacts removing and features preservation. The above techniques are mainly 
limited to the utilization of deeper learning with conventional algorithms and a generally employed hybrid 
technique. Below is an overview of past work categorized by their methodological focus: 

Generative Adversarial Networks (GANs): GAN based methodologies and approaches consist of two parts: 
a generator and a discriminator. The generator, therefore, generates higher quality and improved images 
from noisy or low-quality inputs as opposed to the discriminator, which determines the reality of such 
images in relation to the ground truth. The two components are trained in an adversarial manner, where 
the adversarial loss is optimized in such a way that the generator’s output is highly realistic. To resolve 
such problems specific to domains, such as noise or artifacts, perceptual loss is added, which is calculated 
using a feature from the CNN (for example, VGG). In training process, GANs discover the most 
reasonable map for the relationship between the input and output domain, for example, noise and clarity, 
etc. However, to use GANs effectively, one must spend considerable time trying to avoid problems such as 
mode collapse and instability of training processes [17]. 

Convolutional Neural Networks (CNNs): A CNN based approach employs convolutional layers for 
formation of hierarchical features of the medical images. The methodology often starts with input image 
preprocessing including for example resizing or normalization. Features are obtained by using multiple 
convolutional layers, which can be accompanied by the pooling layers for dimensionality reduction. 
Current complex models like VGG, Res-Net, Dense-Net improve the extraction and feature retention of 
the image, even if the image they receive has noise, low resolution, or some artifacts. CNNs use functions 
such as mean squared error or structural similarity index measure in order to bring the reconstructed 
output as close as possible to the ground truth. Thus, despite CNNs widely outperformed with regional 
descriptions, they can have problems with the lower abstraction level, which is the description of global 
context; it also affects the result of describing the complex medical imaging situations [18]. 

Hybrid Models: Here the integration of conventional image processing methods with deep learning 
models is done to integrate the advantages of the two. For example, wavelet transforms can initially break 
the input image into frequencies, which forms the basis of decision making when removing noise in the 
frequency domain. Said processed components are then passed through a CNN to learn spatial features 
and reconstruct the improved image. These kinds of hybrid models are more advantageous at maintaining 
more detail as the wavelet transform tackles the high frequency noise while the CNN learns the semantic 
feature. In most cases, in a single training cycle, the training algorithm tries to minimize multiple losses 
that include PSNR, SSIM, MSE, and other similar metrics [19]. Despite its high complexity, the hybrid 
model is fairly good since it aims for improvements at both the spatial and frequency domains. 
Autoencoders: An autoencoder is an unsupervised neural network that has been trained to learn the 
embedded representation of the input and then to reconstruct the original example practically without 
any distortion. While the encoder subcomponent in medical image enhancement moves noisy or low-
quality images into the latent space it retains only crucial characteristics of the image while disregarding 
the noise. The decoder takes this latent space and reconstructs the image so that it overlays on the original 
or has been improved to be better. For the best results in the reconstruction, the model seeks to minimize 
the Mean Squared Error between an input image and an output image. There are some variations like 
denoising autoencoder, though trained to reconstruct the clean data, during learning phase their inputs 
might be some noisy data, added either by the dropout or Gaussian noise layer. Autoencoders are 
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computationally efficient and have good performance for reasonable noise: They are not well suited to 
complex problems or significant variability in the data [28]. 

Table. 2 Comparisons of Methods for Medical Image Enhancement [20] 

Method Benefits Limitations 
 Generative 
Adversarial Network 
(GANs) 

 

- Generates high-quality enhanced 
images.  
- Learns mappings between noisy 
and clean domains.  
- Effective for artifact and noise 
removal. 

- Requires large datasets and 
careful training. 
- Prone to instability (e.g., modes 
collapse). 
- Computationally expensive. 

 
Convolutional 
Neural Networks 
(CNNs)  

 

- Extracts hierarchical features 
effectively. 
- Excels at local feature extraction for 
noise reduction and artifact removal. 
- Easy to train with standard metrics 
like MSE or SSIM.  

- Limited capability to capture long-
range dependencies. 
- Struggles with global context in 
complex medical images. 
- Can be overfit on small datasets. 

Hybrid Models Combines strengths of spatial and 
frequency domain techniques. 
- Retains fine details while 
suppressing noise. 
- Provides robustness in handling 
varied image types 

- Computationally intensive due to 
combined processing. 
- Requires careful tuning of 
parameters. 
- Increased model complexity. 

Autoencoders  

  

. 

- Efficient for denoising and artifact 
removal. 
- Learns compact feature 
representations in latent space. 
- Effective with moderate noise 
levels. 

- Struggles with highly complex 
structures or severe noise. 
- Output quality depends heavily on 
latent space representation. 
- May fail to generalize for unseen 
variations 

3. B) Proposed methodology  

In response to the challenges highlighted for medical image enhancement and flood prediction, this 
research presents a new hybrid architecture of CNNs and Transformers, incorporating the UNet-ELU and 
UNet-ReLU activation functions in order to improve feature extraction and model performance while 
reducing the computational cost. The methodology also ensures that important structural characteristics 
are maintained, parameters are optimized, and computational efficiency is increased. The Hybrid CNN-
Transformer Network overcomes the drawback of CNNs, and Transformers are used in extraction of 
features as well as contextual modeling in medical image enhancement and flood prediction tasks. In our 
framework, the CNN part aims at learning local details via convolutional operations while the next part 
aims at modeling global spatial patterns since local patterns are believed to be crucial in the data. 
Accompanying this aspect, the use of the Transformer component through self-attention strategies is used 
to capture global context dependencies when understanding the contextual relationships in the images. 
This integration enables the network to deal with both local and global representation features well. 

For better performance the network uses two activation functions, which are UNet ELU (Exponential 
Linear Unit) and UNet ReLU (Rectified Linear Unit). In the earlier layers of the model, UNet ReLU is used 
where it encourages sparse representation, reducing needless activations that slow down the training 
process. On the other hand, the UNet ELU is used in the deeper layers in order to solve the problem of 
vanishing gradient necessary in learning of complexities patterns and relationship inherent in medical 
images. It confirms the highly efficient and reliable architecture that is adjusted to achieve high accuracy 
and work performance in a variety of tasks. Proposed hybrid model workflow is given in figure.3.   



921  
 

J INFORM SYSTEMS ENG, 10(25s) 

3.1 Data preprocessing: 

For ultrasound images, data pre-processing is the process with basic steps needed before the actual 
analysis of the data is done. First, ultrasound image datasets are obtained from credible sources and are 
confined to the specific organs of interests or contain targeted abnormal regions. The images are also 
scaled to a standard dimension of 255 x 255 pixels to reduce variability in the input size for machine 
learning models which is important when feeding models with data. Subsequently the pixel values are 
scaled between 0 and 1, a practice that had been found to improve the model performance while shortening 
convergence time during model training. In case speckle noise is apparent in ultrasound images median or 
Gaussian filter is used to reduce the noise. Further, suitable contrast enhancement techniques including 
histography equalization or a technique for adaptive contrast enhancement is applied in order to enhance 
the clarity of the image and the key feature of the image. If needed the images are divided into smaller 
segments, to better visualize certain parts of the image, such as certain organs or abnormalities, by drawing 
annotations on the image or using computer software for that purpose. The above readings and 
assignments are an elaborate preprocessing to make the data fit for analysis and modeling. 

3.2 Hybrid Model Construction: 

To address these issues, the modified model is a synthesis of a U-Net architecture that has ELU activation 
functions integrated with a CNN-Transformer model. The encoder-decoder structure, the use of ELU 
activation function and the U-Net component altogether allow fine-grained extraction of spatial features 
and accurate localization. At the same time, the CNN-Transformer uses convolutional layers for spatial 
characterization of the data and Transformer layers with multi-head self-attention to model the global 
context. Hierarchical structure is used in the Transformer to keep the positional encoding and help with 
computing the spatial context. According to its application the hybrid model works best for applications 
such as medical image analysis and flood prediction. The combination of such architectures helps to 
enhance the overall accuracy and enhance generalization from the two architectures [30]. 
 
3.3 Activation Functions: 
 
During the first two layers of the Convolutional Neural Network (CNN), channels are activated and 
analyzed using the Unit ReLU functions to reduce feed-forward computational time costs and improve 
MSL performance. This approach is useful to reduce the active neurons such that the resources are well 
utilized during training phase than the test phase. When the spatial network moves toward higher layers, 
nine activation functions are replaced by Unit ELU activation functions to enable a receptive field and help 
the model capture more non-linear relationships between data. This kind of activation function makes a 
certain balance between the early activation speed and the armor learning capability in the deep layers, 
which further improves the network effect. 
 
3.4 Ordinal Hyperparameter Tuning: 
 
One of the most important steps in the process of model optimization, which involves enhancing the 
results obtained by the appropriate models, is the identification of the decisive hyperparameters, which 
would include learning rate, the size of the batches used and the filter size among the others. They turn the 
learning rate to make sure convergence does not overshoot as well as slow down the learning rate to avoid 
slowing the learning process. Similarly, there is a trade-off when choosing the right batch size for training 
the model in a way that will not destabilize the model too much from one iteration to another. The size of 
the filter in convolution layers determines the extent of feature selection in different size receptive fields. 
Moreover, to add flexibility in the training process, techniques in scheduling such as cosine of annealing 
for the learning rate are used. This helps reach a better minimum since it gradually decreases the learning 
rate over time allowing the model to fine tuning weights as the training process continues. 
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3.5 Loss function and training process: 

The training process incorporates a combination of loss functions to address various aspects of the model's 
performance. Mean Squared Error (MSE) is used to ensure reconstruction accuracy, particularly for tasks 
that involve pixel-wise predictions. The Structural Similarity Index Measure (SSIM) is integrated to 
evaluate and enhance image quality, capturing perceptual differences that MSE may overlook. For 
classification tasks, such as determining blockage status in flood prediction, Binary Cross-Entropy (BCE) is 
employed to optimize the model's decision-making capabilities. Training is conducted using 
backpropagation with the Adam optimizer, chosen for its ability to achieve fast and stable convergence. To 
prevent overfitting and improve generalization, regularization techniques such as dropout and weight 
decay are applied during training. This comprehensive approach ensures robust model performance across 
various tasks. 

3.6 Evaluation metrics: 

This is a quantitative model, and the assessment is based on indicators more specific to the tasks it 
performs. In medical image enhancement, the quality of the image is measured by Structural Similarity 
Index Measure (SSIM) and the quality in terms of image signal to noise ratio by Peak Signal-to- Noise 
Ratio (PSNR).  

 

 

Figure 3. Proposed Methodology Workflow for Hybrid Model Development 
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4. MATHEMATICAL MODELLING 

The mathematical model for the proposed hybrid CNN-Transformer methodology can be structured as 
follows: 

4.1 CNN Component: 
The convolution operation for extracting local spatial features is defined as: 

yij=∑ 2𝑘
𝑚=−𝑘 wmn .x(i+m)(j+n)…………..(2) 

where x   is the image input, w is the convolution kenal size, and yij is the output   feature at position (i,j) . 

Activation functions are applied at each layer: 
 
Unit ReLU: f(x)   = max (0, x), used in early layers to encourage sparsity. 
 
Unit ELU: f(x)   =  {x                  if x > 0,……….(3) 

 
                                ∝ (𝑒𝑥 -1)       if x ≤ 0,         used in deeper layers to improve gradient flow.   
 

4.2 Transformer Component: 

The self-attention mechanism is defined as: 

Attention (Q, K, V) = softmax (
𝑄𝐾𝑇

√√𝑑𝑘

) 𝑉……….(4) 

where Q, K, V are the query, key, and value matrices derived from the input, and  

𝑑k is the dimension of the key. 

The positional encoding for retaining spatial information is added as: 

 

PE (pos, 2i) = sin (
𝑝𝑜𝑠

100002𝑖/𝑑), PE (pos, 2i + 1) = cos (
𝑝𝑜𝑠

100002𝑖/𝑑)…………(5) 

 

where pos is the position and i is the dimension index. 

 

4.3 Combine Loss Function: 

A multi-objective loss function is used: 

L = λ1⋅MSE + λ2 ⋅ (1−SSIM) + λ3 ⋅ BCE………….(6) 

Where,  

MSE: 
1

𝑁
 ∑ (𝑥𝑖 − 𝑥̂𝑖)

2,𝑁
𝑖=1  

SSIM evaluates structural similarity, 

BCE = −
1

𝑁
 ∑ [𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)]𝑁

𝑖=1  

4.4 Optimization: 

The Adam optimizer is used with adaptive learning rate scheduling (e.g., cosine annealing): 

 

𝜂𝑡 = 𝜂 𝑚𝑖𝑛 + 
1

2
  (𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛) (1 + cos (

𝑡

𝑇
𝜋)).............(7) 

where 𝜂𝑡 is the learning rate at iteration t, 𝜂min  and 𝜂max  are the minimum and maximum learning 
rates, and T is the total number of iterations. 

This formulation combines CNNs and Transformers in a way that best utilizes their local and global 

feature extraction mechanisms needed in task of image denoising and medical image enhancement.  

 

5. RESULT AND DISCUSSION 

Table 3 offers a detailed list of the architectural components that were optimized to enhance performance 

of the various hybrid models done in an attempt to enhance the PSNR on image processing. In the 

proposed framework, the UNet_Elu + transformer model achieves the highest PSNR score of 37.76, 
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indicating that adopting the CNN layers in UNet with the activation function of Elu provides a significant 

improvement on model performance. This model has 9 convolutional layers, 32 batch size, 200 epochs, 

and a dropout rate of 0.05, I found these values to be moderate so that overfitting is prevented. In this 

regard, a similar UNet_Elu model without the CNN layers keeps a slightly smaller PSNR=35.38, but with 

smaller batch = 16 and longer training time = 500 epochs. However, the PSNR values of the FD_unet, 

UNet-Relu, and UNet-Dropout models are higher, but their complexity is much lower than of the 

mutually enhancing models: 27.408, 29.125, respectively, with the same number of convolution layers 

and dropout rate but with a higher learning rate (0.0010). Lower performance results again can be seen 

for Autoencoder models, where the basic Autoencoder was found to have PSNR of 24.84 while the CNN 

based Autoencoder had 25.40. The variations in architecture of these models, for instance, pooling layers, 

relu activation, and the different kernel sizes point to differences in the techniques used in management of 

spatial hierarchies and features extraction. Further, the image size employed during training might lead to 

improved performances (512x512 for proposed framework against 128 x 128 for others). The table also 

shows how architectural choices are critical, but even more significant is how hyperparameters, such as 

learning rate and dropout, affect the performance and emphasizes how vital it is to get them right to 

improve performance [21]. 

 

Table 3. Architectural Design and Performance Metrics of Hybrid Models for Medical Image 
Enhancement

 
Models 

Convolution
al layers 

Max Pooling 
& 
normalizatio
n applied 

Batc
h 
Size 

Epoc
h 

 
Dropou
t 

 
Learnin
g rate 
 

Kerne
l size 

Image 
size 

Proposed 
Hybrid 
Model 
 

9 yes 32 250 0.05 0.0001 3 512*51
2 

UNet-Elu 
Model 
 

7 yes 16 500 0.05 0.0001 3 128*12
8 

Unet-Relu 
Model      

9 
 

yes 16 500 0.05 0.0010 3 128*12
8 

Unet-Leaky 
Relu Model 
 

8 yes - - - - - - 

Autoencode
r +CNN 
Model 

3,relu 
Activation 
function 

 Padding, Max 
pooling 2d 

48 100 - 0.001 - 128*12
8 

Autoencode
r model  

3, relu Padding, Max 
pooling 2d 

64 50 - 0.001 - 128*12
8 

 

 

Figure 4. Autoencoder output 
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Figure 5. Unet Relu 

 
Figure 6. Unet leaky-Relu 

 

 
Figure 7. Unet-Elu Model 

 

Figure 8. Hybrid UNet-Transformer Model 
 

A detailed side-by-side comparison of the various enhancement techniques in medical image 

enhancement is depicted which shows the output of deep learning models and the traditional image 

filtering techniques. The comparison is made with an aim of determining the extent to which each 

approach enhances the quality and interpretability of medical images as required in analysis and 

diagnosis of patient conditions. The figure superimposes the original medical images with those that have 

been processed, thus providing a first televisual examination of how much improvement has been made 

by each method. The enhancement methods include the improvement of the filtering algorithms that are 

used and deep learning models employed in the enhancing of the finer features and structures noteworthy 

in the images. This comparison highlights how deep learning techniques can open up the possibility to 

outcompete the standard approaches in terms of visibility and increased level of detailed and 

diagnostically significant visual information. To support these arguments, the figure shows that advanced 

methods should be utilized to obtain improved results in medical image processing. 

Figure 4 demonstrates the results of a trained autoencoder model, which is applied for health-care image 

improvement. Autoencoders are unique neural structures built for unsupervised learning to encode and 

decode the data to reconstruct sharpen images. It has mostly been used in noise elimination, detail 
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amplification, and edge enhancement without distortion of structural information of an image. To 

demonstrate the usefulness of the autoencoder model in medical images, the figure presents copies of the 

images after having gone through the autoencoder enhancing specific features and at the same time 

improving the general quality of the image without distorting its original quality. This highlights the 

importance of autoencoders in medical image processing for improving the diagnostic decision of the 

images. Figure 5-7 features the output of UNet based model of ReLU, Leaky-ReLU and ELU activation 

function apply on ultrasound images. UNet that works for medical image segmentation and enhancement, 

uses skip connections and convolutional layers for the features mapping. In terms of medical images, this 

figure shows that ReLU and ELU activation is effective particularly for feature extraction and visual 

resolution improvements.Unlike standard ReLU, Leaky-ReLU allows a small gradient for negative input 

values, addressing the "dying neuron" problem. The results demonstrate the effectiveness of Leaky- ReLU 

in enhancing fine details in medical images, offering improved performance compared to standard ReLU. 

 

Table 4. Performance Comparison of Denoising Methods 

 

Denoising methods PSNR SSIM MSE 

Hybrid Unet+ transformer 
Model (100 Epoch) 

38.76 98.6 0.0001 

Hybrid Unet+ transformer 
Model (50 Epoch) 

34.92 98.3 0.001 

Proposed Unet-Elu model 
 

37.766 97.2 0.0001 

Leky relu Algorithm 32.243 94 0.002 

Unet relu Algorithm 29.125 93 0.001 

CNN Autoencoder 28.79 85 0.001 

 

Table 4 provides a comparison of various denoising methods evaluated based on three performance 

metrics: Mean squared error and peak signal-to-noise ratio, structural similarity index. The "Hybrid Unet 

+ Transformer" model is tested for two different epochs: 100 epochs and 50 epochs. Concerning the 

image quality preservation metric at 100 epochs, it attains a PSNR of 38.96, an SSIM of 98.6, and an MSE 

of 0.0001. At epoch size 100, the PSNR rises to 34.92, giving a slightly lower SSIM of 98.3 and a slightly 

higher MSE of 0.001. Accordingly, the Proposed Novel Model (using Unet with ELU activation) has the 

highest maximum PSNR of 37.766, maximum SSIM of 98 and minimum MSE of 0.0001 conclude that the 

model is efficient for ‘image denoising’. Consequently, the latter two algorithms, namely, the Leaky ReLU 

Algorithm and the Unet ReLU Algorithm show PSNR of 32.243, SSIM of 96, and MSE of 0.001 and 

29.125, SSIM of 93 and MSE of 0.001 respectively. Finally, the proposed CNN Autoencoder brings the 

lowest results with PSNR of 28.79, SSIM of 85 percent, MSE of 0.001. 

The Figure 9 plots show MSE and PSNR comparing the effect of different denoising methods in Fig 2 and 

the images obtained after applying the best algorithm are in Fig 3A. On the MSE plot, the effectiveness of 

the proposed techniques is clear as the proposed “Novel model Unet Elu” and “Hybrid Unet+transformer 

100 epoch” have the lowest error bar showing the least amount of noise in the images. On the other hand, 

the MSE results of the CNN Autoencoder are slightly higher implying that the Autoencoder has 

comparatively incompetent capability in terms of denoising. The tangibility of this trend is further 

corroborated by the PSNR plot, according to the model that yielded the highest PSNR values is the 

“Proposed Novel model (Unet Elu)” reflecting improved image quality and retention of maximum 

features. The Hybrid Unet+transformer models also give good results proving that the combination of 

CNNs and transformers work nicely. However, the Unet relu and CNN Autoencoder methods achieved 

relatively lower value of PSNR, which imply a decrease in the effectiveness or capability of the methods in 

enhancement domain. Such improvements indicate the relevance of the hybrid form in enhancing medical 

image quality without noise addition. 
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Figure 9. Performance Comparison of Denoising Methods for Medical Image Enhancement (MSE and 

PSNR Analysis) 

 

 

 

 
Figure 10. Training Loss Curve for 100 Epochs 
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Figure 11. Training Loss Curve for 50 Epochs 

 

The two graphs depict in terms of epochs the training loss of two models or configurations, in their 

learning process. In the first graph where the model is trained for 100 epochs, it is seen that the extent of 

loss does reduce steadily and settles around 1.1 towards the end of the epoch. The second graph registers 

50 epochs beginning at higher distinctiveness but a similar steep decline on lower ground at 

approximately 1.2. However, the second model rises around epoch 20 which shows that there is 

momentary oscillation during training. Comparatively, though, they converge to approximately the same 

final value of loss, the first model seems to learn in a more consistently gradual and steadier manner 

throughout a longer time span indicating a more accurate and effective learning process. The second 

model, as well as being fast in convergence, may need some corrections to complete the calculations to 

eliminate fluctuations and achieve a stable number. 

4. CONCLUSION 

The new architecture of CNN-Transformer model along with the introduced UNet- ELU activation 

function has been established that yields better results for medical image enhancement than the previous 

model. Thus, the integration of CNNs for local spatial learning and Transformers for global contextual 

learning is shown to improve image quality and structural preservation simultaneously. Hybrid model 

generated the highest PSNR of 38.76 and SSIM of 98.6 which specify that highest image quality and 

structural preservation of better than other models like Unet-ELU, Unet-ReLU and CNN-Autoencoder. 

The deep hybrid architecture with the convolutional layers 9 accompanied with the batch size of 32 and 

the learning rate of 0.0001 offered the potential of low training loss over hundred epochs that has it high 

computational performance. 

The study also showed the importance of hyperparameters; one obtains from these findings are batch size, 

filter size, and the learning rate. Use of the optimal settings was useful in avoiding over fitting and quick 

convergence. All the results pointed out that the proposed approach offers more benefits than models 

using standard ReLU and Leaky ReLU activations for gradient stability and feature retention in deep 

layers of the UNet. The results of the performed experiments and the comparison with different models 

and their hyperparameters proved that the suggested hybrid CNN – Transformer architecture produces 

the highest Medical Image Enhancement. Further work can be conducted to extend this framework for 

other imaging modalities and for the real-time diagnosis systems. 
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