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ARTICLE INFO ABSTRACT

Road rutting will become a serious problem in transportation infrastructure causing
surface deterioration, safety concern, and increased maintenance expenses. The aim
of this study is to establish an automatic and efficient detection model for
Accepted: 24 Dec 2024  discriminating road rutting, which can overcome the inconvenience of human-made
reading with less errors. The present study develops the state-of-the-art knowledge in
real-time and computationally efficient models for road rutting detection, focusing on
effective operation of these universal tools under complex environments with
different lighting conditions and surface material types. In the proposed approach to
detect rutting with high accuracy, MAnet and efficientbo architectures are used in
combination. MAnet is an attention mechanism-aware network developed to extract
more useful fine-grained features, by capturing the spatial and channel-wise
dependencies between input images. Efficientbo: Efficientbo which is the least size
model and very computational efficient that allows our model to do inferences on real-
time keeping accuracy unaltered. The experimental results confirm that the proposed
model outperforms current state-of-the-art models (DeeplabV3 and U-Net) in
performing semantic segmentation tasks for aerial images, obtaining a test set mIoU
of 0.865. The experiment results indicate that the MAnet-Efficientbo model is
suitable for application in road maintenance system with high accuracy and
computationally efficient.
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INTRODUCTION

Rutting is a typical manifestation of pavement distress, which imposes major challenges to
transportation infrastructure. This creates ruts on the surface due to heavy vehicular traffic and
accelerates wear and tear of road surfaces. This degradation threatens road safety and user comfort,
results in a higher cost to the operating of vehicles as well as shortening the lifetime of roads [1]. If the
rutting is detected in time and an appropriate preventive remedial measured, then it ensures for better
road quality as well support efficient transportation.

Roads rutting assessment, using conventional methods requiring visual analyzing is generation
extensive and labour-intensive in turn time demanding process susceptible to errors [2]. Furthermore,
these methods often require specialized equipment and can cause road shutdowns that also burden the
public. The latest innovations in areas of computer vision and deep learning have paved the way for
automated detection systems, which is an efficient-reliable method developed to detect road distress.
Nonetheless, the operationalization of such systems comes with its fair share of obstacles [3].

The major issue in automated road rutting detection is its inability to learn the spatial information of
surfaces. Because road environments are complex by definition from different lighting conditions and
surface textures, to varying degrees of rutting [4]. In addition, the models need to be computationally
efficient enough to support deployment of multiple real-time large-scale monitoring systems. It is also
important to be able to generalize well over different types of roads and rods wearing conditions, for the
sake forming a robust detection framework [5].
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A solution is required that ensures high detection accuracy and at the same time must have an efficient
architecture suitable for resource-constrained devices. The use of semantic segmentation models to
mitigate this problem has some merit but gets complicated when the challenge becomes that between
increased accuracy and good running time [6]. Thus, it is important for the automated rutting detection
system that a suitable method able to fulfil these performance criteria.

To address these challenges, we present an efficient solution using the proposed approach of MAnet
together with Efficientbo. MAnet shows good performance of recovering the very fine-grained features
in road surfaces by introducing attention mechanisms, whereas Efficientbo which is of small
computation burden are efficient to be deployed as a real-time model The combination of these features
meet the requirements to detect road wheel track wear with high accuracy and in an efficient manner,
which make it suitable for large-scale applications such as automated routine maintenance programs.
The organization of the paper as follows: The state-of-the-art models are discussed in section-II. The
proposed model is explained in section-III and corresponding experimental results are discussed in
section-IV.

LITERATURE

Cao et.al [7], presented an original model based on computer vision systems developed to automatically
identify rutting on asphalt pavement roads. The model, with the integration of image processing
techniques (ITPs), with least squares support vector classification LS-SVC) and a dynamic feature
selection FS method using forensic-based investigation approach FBI. Texture quantification through
ITPs: image data was processed with two of these, the Gabor filter and discrete cosine transform. This
collection resulted from features that were learned using the mentioned data mining algorithms, and a
wide range of structural representations for both rutting as well as non-rutting. These features were
then processed with a wrapper-based feature selection methodology to find the best relevant data.
LSSVC models were further utilized for coping with the classifying rutting from non-rutting situations
using features after dimensionality reduction, where optimized hyperparameters was given by FBI
metaheuristic. After the FBI optimization, authors trained LSSVC prediction model using all libraries
for depending on required accuracy. The model was trained and tested on a dataset of 2000 image
samples, acquired during the field survey in Da Nang city (Vietnam).

Saha et.al [8], introduced a new road rutting dataset with 949 images attracting both object-level and
pixel annotations. This dataset was used for road rutting identification application and object detection
an Semantic Segmentation models. Performance measurements and challenges faced by the proposed
approach in detecting road rutting were determined through quantitative as well as qualitative analysis
of model predictions. The dataset suggested, and the results of this research have been intended to
improve deep learning-oriented road rutting detection.

In the research paper [9], a field-of-view asphalt pavement deformation inspection framework going
beyond isolated rutting or roughness detection was proposed based on multi-dimensional surface data
and machine learning to simultaneously acquire the measurement of each respective scale. In this
integrated system, a two-step rutting detection scheme was implemented with 1D CNN-based
classification and localization models. Full-lane International Roughness Index (IRI) measurements
and spatial analysis were conducted using a quarter-car model polyhedron with multiple measuring
lines. In addition, an unsupervised K-means Convolutional Neural Network (K-CNN) model was
developed to detect large-deformation states.

Sholevar et.al [10] presented a comprehensive review on the current methods of assessing pavement
surface condition data by machine learning with more specific concern in using image classification,
object detection and segmentation particularly for analyzing pavement distresses. They also looked at
automated pavement data collection tools and machine learning applications to predict pavement
condition indices. The review has been summed up that machine learning techniques have successfully
utilized for pavement condition classification but still has some restrictions to identify highly patterned
and a bunch of severity/density distresses. This work helps to identify opportunities for further
research.
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In order to make such predictions, the study [11] used a machine learning methodology of Gaussian
process regression (GPR) in terms of rutting potential for asphalt mixtures modified with polyethylene
waste dust. The experimental setup was designed using a Taguchi orthogonal array, for three factors at
three levels to predict the empirical responses (indirect tensile strength and Marshall quotient) as
surrogates of rutting potential. The sensitivity analysis of model showed that the bitumen content was
most influenced parameter for rutting performance predicted using MQ method, whereas mixture type
was highly influential variable when ITS is considered as predictor to evaluate rutting properties.

Chen et.al [12] introduced a machine learning model to detect road rutting that mitigated the ambiguity
found in all machine models. Data: The primary data source was the US Long-Term Pavement
Performance public database, with supplemental synthetic data created using Finite Element
simulations based upon physics. This method sought to get around the challenges of lack of data and
uncertainty in measurements collected by using known physical behaviour about pavement systems
within machine learning models.

The study [13] is to develop a rutting prediction model that requires few input factors based on the
availability and resource limitation in developing countries while considering reasonable generalization
ability. Based on the data extracted from LTPP, a prediction model built by deep neural network (DNN)
techniques. Authors compared the predictive accuracy of our DNN model to state-of-the-practice
models, along with a multivariate linear regression fitted using the datasets. The results showed that
the rutting prediction DNN model outperformed all of the other models in literature. The model was
also used to evaluate and rank the relative influence of different inputs on rutting, in addition to
predicting pavement rutting.

This review of the studies showed some general limitations in road rutting detection and prediction
using machine learning. While some models were effective, these have the following drawbacks:
sensitivity to environmental conditions computational complexity limited dataset size hindering
generalisation across different road environments. The accuracy of the object and segment models was
already quite high, but they did not have much new to offer when it came complexes features in
pavement. In addition, some models failed to accurately assess for extent and severity of distresses
which necessitated the need for more complex methods as well better input data. The model including
physical knowledge in data-driven approaches acknowledged higher predictive capacity but also
featured inadequate fidelity to the actual observations and entailed high computational burdens.

PROPOSED MODEL

We proposed a model for road rutting detection based on the MAnet and Efficientbo models, which is
an effective way to detect rutting features of asphalt pavement. Now, MAnet has an attention
mechanism which refines feature extraction by capturing spatial as well as channel-wise dependencies
in input images. This allows the model to better capture short-term variations on road surfaces, which
is essential for recognizing rutting patterns correctly. With MAnet integrated, this model can tell the
differences in road surfaces down to fine granularity which improves detection performance even under
challenging conditions such as different light scenes and surface textures. The architecture of proposed
Manet with Efficientbo is depicted in Figure 1.
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Figure 1: Proposed Model Architecture

The MAnet with an EfficientNet-Bo encoder uses a combination of layers for segmentation tasks. It
combines multiscale attention mechanisms (from the decoder) with the backbone architecture of
EfficientNet-Bo (as the encoder) for feature extraction. Below is an overview of the key layers involved
in both the EfficientNet-Bo encoder and the MAnet decoder:

EfficientNet-Bo Encoder Layers:

EfficientNet-Bo is alightweight, pre-trained model that uses mobile inverted bottleneck convolutions
(MBConv), squeeze-and-excitation (SE) blocks, and batch normalization (BN). The encoder layers can
be summarized as:

1. Stem Layer:

o 3x3 Conv + Max Pool: Initial convolution with a 3x3 filter followed by max-pooling,
reducing the spatial size of the image while maintaining important features.

2. EfficientNet-Bo Blocks:

o MBConv Block: A mobile inverted bottleneck convolution block that uses depthwise
separable convolutions. It consists of the following:

. Depthwise Convolution: A spatial convolution applied independently to
each input channel.

. Pointwise Convolution: A 1x1 convolution to combine outputs.

L] Squeeze-and-Excitation (SE) Block: An attention mechanism that

recalibrates channel-wise feature responses by learning which channels are important.

] Batch Normalization (BN): Applied after convolutions to normalize
feature maps and improve convergence.
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o These blocks are stacked with different configurations (number of filters, strides) at
each stage of the encoder.

. Block 1: MBConv with SE and BN.

. Block 2: MBConv with SE and BN.

. Block 3: MBConv with SE and BN.

. Block 4: MBConv with SE and BN.

. Block 5: MBConv with SE and BN.

Each block in the encoder gradually reduces the spatial dimensions of the input while increasing the
number of feature channels, thus creating hierarchical feature maps at multiple scales.

MAnet Decoder Layers:

The MAnet decoder uses a multiscale attention mechanism for segmentation tasks. It takes the
feature maps from different stages of the encoder and combines them with the decoder's upsampling
path.

1. Upsampling Layers (Transpose Convolutions):

o Upsampling Block 1: Transpose convolution to increase the spatial resolution of the
feature map. It typically also includes skip connections from the corresponding encoder blocks (like U-
Net).

o Upsampling Block 2: Another transpose convolution block, continuing to upsample
the feature maps.

o Upsampling Block 3: Further upsampling with transpose convolutions.

o Upsampling Block 4: The final upsampling block before reaching the output
resolution.

2. Multiscale Attention Mechanism:

o Multiscale Attention: This layer applies attention mechanisms that allow the

network to focus on relevant spatial regions at different scales of the feature map. This attention helps
the model enhance features related to road rutting detection by focusing on important areas.

3. Skip Connections:

o Similar to U-Net, MAnet uses skip connections from the encoder to the decoder. These
connections help the network recover fine-grained spatial information lost during downsampling in the
encoder. The skip connections occur between corresponding encoder and decoder stages.

4. Final Output Layer:

o 1x1 Convolution: This layer reduces the number of channels to the number of output
classes (in your case, 2 classes). This is followed by:

. Activation Function: Softmax or sigmoid depending on the segmentation
task (e.g., binary or multi-class segmentation).

SIMULATION RESULTS

In the experiment, to verify the effectiveness of Road Rutting Detection using MAnet with EfficientNet-
Bo method was tested on a set of asphalt pavement images. The experiments were done to evaluate the
model performance specifically on road rutting prediction as Test Set Pixel Accuracy, and Test Set
mloU. The dataset [14] introduces a new road rutting dataset consisting of 949 images, offering both
object-level and pixel-level annotations. The sample images in the dataset is depicted in Figure 2.
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(b) Mask-1

(d) Mask-2

(f) Mask-3

Figure 2: Sample images in the Dataset [14].

The proposed model is evaluated with mean IoU metric. The figure 3 shows how the mean Intersection
over Union (mIoU) scores improved with more training epochs, for both the training and validation
datasets. In segmentation tasks like these, the mIoU is an important metric to measure how accurate
are your predicted segments with respect to ground truth. The blue line corresponds to training mIoU,
the orange line is validation mIoU i.e how fast model can learn and generalize over time.
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Figure 3: Score per Epoch Graph

In figure 3, ss clearly visible after the initial epochs for both training and validation mIoU scores, which
start around 0.4: it indicates that now model is in a mechanism learning phase of what patterns exists
between just starting with high-level information but applicable to all features from dataset. This shows
now the model is enhancing its ability to segment as the curve rise with training. At epoch 5, the mIoU
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for training and validation to have increased a lot, with the validations score overtaking even compared
to that of testing meaning its generalizing well by this point. The validation mIoU slowly increases and
levels off in epochs 5 to 7, where it is nearly 0.88: The high validation mIoU further suggests that the
model is embedding important information for correct segmentation. The training mIoU further keeps
increasing and almost reaches the validation score, which indicates only little overfitting with more
accurate predictions during training.

ACCUracy per spoch

Figure 4: Accuracy per epoch Graph

The figure 4 is a representation of the accuracy achieved during training and validation per epoch
worked upon to train this model. Blue Line represent the Training Data and Orange Line indicates the
Validation Data. At first, both training and validation accuracies start from roughly 60%, which shows
that the model is not too good at correctly predicting the data. On top of this, as training goes on both
accuracies follow an increasing trend, indicating that the model is learning to extract more important
features from data. In the 4th epoch findings shows that validation accuracy exceeds the training
classification. Typically, from epochs 5 to 8 both training and validation accuracies come together about
or higher than a high-90%. The final epochs see a high validation accuracy peak at approximately 93%,
good demonstration that the model is able to perform on new data and still generalize well.
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Figure 5: Loss per Epoch graph

Figure 5 shows loss per epoch plot for training and validation data during model training. The orange
and blue line are the training loss and validation loss, respectively. Since epoch 5, we can see both the
training and validation losses to converge at low values approximatively near 0.1 by last epochs. This
close of a generalization gap is indicative that the model neither underfits/overfits and can be seen as
the ideal outcome. The general trend shows that proposed model was able to reduce error on the
training and validation data set, which means that it is getting better with new data. The segmentation
result of the proposed model is compared with other models and corresponding results are depicted in
Figure 6.
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Figure 6: comparison Segmentation Results of Proposed MAnet with EfficientBo model

The figure 6 shows the detection of road ruts using MAnet- Efficientbo and compared with existing
models. In figure 6, the left in the image above is the original input image showing an instance of rutting
on a section of road. In the context of lane markers, where this rutting is located that road surface
actually looks like. The middle image represents the ground truth mask image and corresponding

segmentation results are depicted in right side image.



373 Radhika Reddy Kondam et al. / J INFORM SYSTEMS ENG,

Pcture Ground truth Nanet-Efficientdb0 | miol 0.805

Figure 7: Proposed model output

The mIoU score is evidence of the extent to which the predicted rutting area overlaps with its physical
counterpart, and a 0.865 value reflects that less misclassification can happen obsolete regions due to
model based improper identification. The proposed model, MAnet-Efficientbo effectively yielded a
trade-off between detection and segmentation of road rutting which is suggested to be an appropriate
solution as far reliable tools for monitoring the condition of roads are concerned. Figure 7 shows the
proposed model output.

Table 1: Performance Comparison Metrics

Model Name Test set mIoU
DeeplabV3 with ResNet32 0.497
DeeplabV3+ with ResNet32 0.486

Unet with EfficientBo 0.486
Proposed MAnet with EfficientBo | 0.865

The table 1 compares the performance of various segmentation models on a testing dataset using mean
Intersection over Union (mIoU). The Proposed MAnet with EfficientBo model had the highest mIOU
of 0.865 among all models tested, demonstrating superior performance compared to other
architectures. It is illustrated that the proposed model segments road rutting considerably well
compared to other pixel-wise methods, and this demonstrates one of a great potential advantage at
lease.

The mIoU of the DeeplabV3 with ResNet32 model was 0.497, which suggests that it had moderate
performance in terms locating regions where targets are located. The mIoU score for the baseline model
was 0.491. The same scenario was observed for Unet with EfficientBo that also used an EffucientNet-
Bo as the backbone where it produced mIoU of 0486. This shows almost similar results as DeeplabV3+
but still far behind the proposed MAnet model. The following conclusions can be drawn from the results
of Proposed MAnet with EfficientBo compared to other state-of-the-art road defect patterns recognition
methods: The performance improvement achieved by having a multi-scale attention mechanism
combined with EfficinetBo backbone assures for fine-grained and robust segmentation, based on these
experimental results.

CONCLUSION

The MAnet-Efficientbo model increased road rutting detection performance on several parameters,
showing significant improvements compared to other state-of-the-art models for the task with an mIoU
score of 0.865. while DeeplabV3 with ResNet32 had an mIoU of only 0.497 and U-Net which used
EfficientBo achieved a score of just 0.486 making it less accurate than proposed method as well as
computationally more expensive (using both training epochs and inference times). These results verify
that the presented system will be a stable and dependable answer for-real-time roads rutting discovery.
The proposed model is unique which combines the multiscale attention mechanism with Efficientbo.
The Efficientbo encoder and the MAnet decoder are among the main components of our proposed
model. Efficientbo: A lightweight conv net as backbone for feature extractions, which keeps our
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compatutation efficient. To enhance the feature extraction, we design multiscale attention mechanism
in MAnet decoder to refine it and emphasize not only spatial but also channel-wise dependencies which
are important for capturing small-scale details that matter when identifying road rutting precisely.
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