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Fatty liver disease (FLD) is a growing global health concern, with its prevalence on 

the rise due to factors such as sedentary lifestyles and poor dietary choices. The non- 

invasive classification of FLD stages using ultrasound images is a vital diagnostic 

endeavor that aids in early detection and intervention, thus mitigating the potential 

for severe liver-related complications. In this research, a ResNet-based deep learning 

framework is proposed for ultrasound images based automatic staging of FLD. The 

model uses features obtained through ultrasound scans to classify the stage of FLD, 

i.e Grade 1, Grade 2 and Grade 3. They are trained, validated and tested on a dataset 

of standardized ultrasound images. This indicates the model's ability to classify FLD 

at a stage correctly and proposes a potential avenue for improved efficacy in 

diagnostics in hepatology. 

Keywords: Fatty Liver Disease, Ultrasound Images, Deep Learning, ResNet, 

Classification. 
 

 

 
INTRODUCTION 

The condition known as fatty liver disease, which is characterized by the buildup of extra fat within the 

liver cells, has become a global health concern in recent decades. This syndrome encompasses a variety 

of liver diseases, from the relatively benign non-alcoholic fatty liver (NAFL) [1] to more severe forms 

like non-alcoholic steatohepatitis (NASH) [2], which, if ignored, can lead to cirrhosis and liver failure. 

Alongside the rise in obesity along with metabolic syndrome, the threat of fatty liver illness has been 

steadily rising. Therefore, successful intervention in the healing process of fatty liver disease requires 

early and accurate detection. 

The severity of fatty liver disease cannot be overstated since it not only causes morbidity related to the 

liver but is also related to an increased threat of cardiovascular disease, diabetes, and hepatocellular 

cancer. Therefore, in order to make educated treatment choices and enhance patient outcomes, it is 

essential to detect and precisely identify the stage of fatty liver disease in a timely way [3]. 

Ultrasound imaging has established itself as a useful instrument for evaluating liver health [4], making 

it one of the many diagnostic modalities that are now accessible. Because it is not intrusive, is widely 

available, and has a low cost, it is a good option for initial screening as well as monitoring. The ability 

to view and measure hepatic fat accumulation is made possible by ultrasonography for medical 

professionals [5]. However, correct interpretation of ultrasound pictures may be difficult at times, and 

it depends significantly on the experience of the physician doing the interpreting. 

In this regard, the application of deep learning techniques to the ultrasound image-based diagnosis 

along with staging of fatty liver illness [6] has gained significant traction. Image analysis and pattern 

identification are two areas in which deep learning models [7], and in particular convolutional neural 

networks (CNNs) [8], have shown very impressive capabilities. These models have the potential to 

completely transform the sector by automating the categorization of the phases of fatty liver disease. As 

a result, the subjectivity that is associated with human interpretation will be significantly reduced, and 

prompt intervention will be made possible. 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

http://www.jisem-journal.com/
mailto:maragoniswapna761@gmail.com
mailto:sujatabanothu@gmail.com


M. Swapna et al. / J INFORM SYSTEMS ENG, 10(4s) 423 
 

 
This study investigates the critical function that deep learning plays in the categorization of the phases 

of fatty liver disease using ultrasound pictures. This article dives into the severity of the condition, 

discusses the usefulness of ultrasound imaging, and highlights the essential need for automated, 

precise, and objective diagnostic methods in order to tackle this growing public health crisis. Deep 

learning advancements could lead to more accurate and timely diagnoses of fatty liver illness, which 

would be a significant step toward earlier treatment and better patient care. 

LITERATURE 

Hui Che et al [9] proposed a new deep learning model for nonalcoholic fatty liver disease classification 

using US data. The authors design directed multi-scale residual CNN with multiple features to gather 

the feature that is supports for each receptive field. The B-mode ultrasound images combine with the 

corresponding radial symmetry modified images and local phase filtered images as the multi-feature 

inputs of the network. Fusion processes are studied to improve forecast accuracy. 

Amit Das et al [10] Create a classification model that is based on machine learning (ML) that is capable 

of distinguishing NAFLD from healthy liver tissue. Evaluate the effectiveness of this model in 

comparison to indices that are based on pixel intensity. In order to construct an image database, de- 

identified ultrasound pictures of the liver that were taken as part of a cross-sectional research assessing 

the prevalence of pediatric NAFLD were employed. Image texture features were extracted from one 

representative region of interest (ROI) of the ultrasound images of subjects with verified NAFLD and 

subjects with normal livers using ImageJ and MAZDA image processing and analysis tools. The ROI 

was selected from ultrasound pictures of participants with NAFLD and those with normal livers. A 

number of machine learning classification techniques were investigated. 

Wen Cao MD et al [11] used the established criteria and ultrasound scoring system for NAFLD, 240 

subjects were enrolled and classified into four groups (Normal, mild, moderate, and severe NAFLD 

groups). The two-dimensional hepatic chemistry was studied using three image-processing 

techniques—the envelope signal, grayscale signal, and deep-learning index. The return values for each 

of them was different ranging from 0–4, 0–255 and 0–65,535. Comparison between the four groups 

were made to determine the best image-processing strategy, plotting receiver operating characteristic 

curves and comparing area under the curve (AUC) values. 

Pezhman Pasyar et al [12] presented a novel deep classifier made up of deep CNNs that have already 

been trained. Fully connected networks (FCNs) are utilized in conjunction with other networks, such as 

ResNeXt, ResNet18, ResNet34, ResNet50, along with AlexNet. Significant classification information 

could be obtained by extracting deep features using transfer learning. A fully convolutional network 

(FCN) can categorize images into three disease states: cirrhosis, liver hepatitis, along with normal liver. 

Classifiers that could distinguish across two classes (normal/cirrhosis, normal/hepatitis, as well as 

cirrhosis/hepatitis) along with three classes (normal/cirrhosis/hepatitis) were trained using the liver 

images. Given that two-class classifiers have shown superior performance than three-class classifiers, 

it is advised to develop a hybrid classifier that incorporates the weighted probability of the classes 

generated by each separate classifier. A majority vote is then used to choose the class with the highest 

score. 

Trong N. Nguyen et al [13] examined how to assess hepatic steatosis in a live rabbit framework for fatty 

liver using attenuation and the B-mode ultrasonic scanning technique (BSC). A high-fat diet was given 

to a group of rabbits for 0, 1, 2, 3, or 6 weeks at different times. There were three rabbits in each diet 

group, for a total sample size of fifteen rabbits. In this work, radio frequency (RF) backscattered data 

from live rabbits was collected using a SonixOne scanner and an array transducer (L9-4) running at a 

center frequency of 4.5 MHz. The estimate of the average attenuation as well as BSC for each individual 

rabbit was made easier by the use of RF signals. The Backscattering Strength Coefficient (BSC) was 

parameterized using two different approaches. In particular, a spherical Gaussian model was used to 

calculate the effective scatterer diameter along with the efficient acoustic concentration. Additionally, 

principal component analysis (PCA) was used to build a model-free technique. The two main 

components that explained 96% of the variance in the converted data were found using principal 
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component analysis (PCA) on the balanced scorecards (BSCs). After that, a support vector machine 

(SVM) architecture was trained using these elements as input characteristics for classification. 

Haley Schoenberger et al [14] conducted a retrospective cohort analysis on a cohort of individuals 

diagnosed with cirrhosis who had undergone ultrasonography examinations at two major healthcare 

systems from July 2016 to July 2019. Radiologists assigned LI-RADS Visualization Score (A, B, C) for 

the adequacy of each exam. This study aimed to assess changes in visualization across the various 

ultrasound exams in a cohort of patients. We performed a multivariable logistic regression analysis to 

identify the features associated with inadequate ultrasound image quality, which were scores B or C. 

Monica Lupsor-Platon et al [15] evaluated the diagnostic performance of ultrasonic elastography for 

non-invasive evaluation of nonalcoholic fatty liver disease and nonalcoholic fatty liver disease-related 

HCC. Liver elastography adds a new axis to the original ultrasound examination (both classic 

ultrasound and elastography) through liver stiffness measurements. Although the two most effective 

elastographic methods of assessing liver fibrosis in NAFLD are, vibration controlled transient 

elastography (VCTE) combined with 2D-Shear wave elastography (2D-SWE), VCTE can also measure 

steatosis with the controlled attenuation parameter. Two of the most popular elastographic methods for 

quantitatively describing focal liver lesions (FLLs), with an emphasis on hepatocellular carcinoma, are 

point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE). For 

the reasons listed in the research, elastography shouldn't be utilized in place of FLL biopsy due to the 

overlap in stiffness readings. 

Jeongin Yoo et al [16] employed a commercial ultrasound equipment, the purpose of this study was to 

test both the intra-observer and inter-observer repeatability of shear wave dispersion imaging (SWDI) 

for the assessment of non-alcoholic fatty liver disease in asymptomatic volunteers. The institutional 

review board gave its permission to this prospective trial, and the authors made sure to get the patients' 

informed consent before moving forward. One radiologist carried out two sessions of SWDI on the 

patients that made up group I (n = 71), all of whom were suspected or reported to have non-alcoholic 

fatty liver disease. This was done in order to evaluate the repeatability of the test within the same 

observer. Within the second group, which consisted of symptom-free volunteers (n = 19), three separate 

sessions led by three different radiologists were carried out. 

PROPOSED METHOD 

Residual Network (ResNet) is type of deep learning architecture used for image classification. Because 

of its remarkable performance and the capacity to train extremely deep networks without the problem 

of vanishing gradient, this architecture is widely used in computer vision applications, notably in image 

classification, object recognition, and image segmentation. The most significant advancement made to 

the ResNet design was the incorporation of residual blocks. The vanishing gradient issue may cause a 

typical CNN's performance to suffer when more layers are added to an existing network. This can lead 

to a decline in the network's overall accuracy. When additional layers are added, it becomes a lot more 

difficult to train the network such that it works well. 

 

 
Figure 1: residual block 

This problem is solved by incorporating skip connections or shortcuts into the network, which gives it 

the ability to learn residual functions. Residual blocks. By using these skip connections, the network is 

able to concentrate on learning the difference, or residual, between the input and the output rather than 

attempting to learn the complete transformation. This frees up the network to better perform its 
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intended function of learning. Because of this, training extremely deep networks is simplified, which 

ultimately results in enhanced performance. 

In contrast to the conventional network models, the equation (1) can be used to characterize the residual 

connection that exists inside residual blocks. 

𝑥𝑙+1 = 𝑥𝑙 + 𝑓(𝑥𝑙, 𝑤𝑙) (1) 

Where 𝑥𝑙+1 represents the leftover block of the (𝑙 + 1)𝑡ℎ layer. The leftover block of the 𝑙𝑡ℎ layer is 

denoted by 𝑥𝑙. The residual section of the block is indicated by 𝑓(𝑥𝑙, 𝑤𝑙). When the feature map contours 

in 𝑥𝑙+1 and 𝑥𝑙 are present. Due to the difference between 𝑥𝑙+1 and 𝑥𝑙, the network needs the dimension 

procedure. The residual connection block has the following definition: 

𝑥𝑙+1 = ℎ(𝑥𝑙) + 𝑓(𝑥𝑙, 𝑤𝑙) (2) 

In this case, the 1X1 convolution operation represents ℎ(𝑥𝑙). Two block groups are created from the 
remaining links in this study. 
 
The ResNet-50 neural network requires an input image that is 224 by 224 pixels and has three color 

channels. The structure of ResNet-50 consists of four stages, each of which has a number of residual 

blocks. The quantity of residual blocks that are present in each stage is variable, with a greater number 

of blocks present in later stages. 

Typically, there are three convolutional layers included inside each residual block that is part of a stage. 

The convolutional layers that are included inside a block make use of 1x1, 3x3, and 1x1 filters. The 1x1 

filters are used to decrease or expand the number of channels, respectively. A batch normalization step 

is performed after every convolutional layer, and a ReLU activation function is then used. Each residual 

block's output consists of the sum of the block's inputs and the residual, or third convolutional layer's 

output. Stated differently, the residual is the result of every residual block. 

Because of these remaining chunks of information, the network can learn ever-more complex features 

in deeper layers. To reduce the spatial dimensions to 1 x 1, a global average pooling layer is used after 

the final residual block is applied. A completely connected layer with a thousand units then receives the 

output. The quantity of classes in the ImageNet dataset, which served as the main dataset for ResNet- 

50 training, is equivalent to this amount of units. 
 

Figure 2: Modified Residual network: 

The portion of the network that takes the data you supply—typically an image—is known as the input 

layer. A set of learnable filters convolves, or slides, across the input image to extract features. This 

process is known as a convolution layer. Each filter computes dot products with a specific region of the 
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input image to produce a feature map. The feature map is then created using these dot products. The 

max pooling layer selects the largest value from a tiny portion of the feature map to downsample the 

feature maps following the convolution step. This comes after the phase of convolution. This helps to 

decrease the spatial dimensions and extract the elements that are most important. 

Blocks 1, 2 and 3 are residual blocks made up of convolutional layers, batch normalization, and 

activation functions like ReLU. The batch normalization layer is responsible for standardizing the 

output of the layer that came before it. By lowering the amount of internal covariate change, it makes 

training more stable and speeds up the convergence process. Rectified Linear Unit (ReLU) activation 

functions are what cause non-linearity to be introduced into the network at this layer. They do this by 

applying an element-wise activation function, in which case all negative values are generally replaced 

with zero. Similar to the previous max pooling layer, this layer also downsamples the feature maps in 

order to further minimize the spatial dimensions of the maps. 

Dense layers are those in which all of the neurons in the layer above are linked to all of the neurons in 

the layer below. These layers contribute to the process of learning high-level characteristics and 

producing conclusive predictions. Dropout is a regularization approach that involves arbitrarily 

removing a portion of the neurons in the network as it is being trained. By pushing the network to learn 

characteristics that are more robust, this helps to avoid overfitting from occurring. 
 

Pseudocode: Block 1 

Input: x (input feature map) 

Output: y (output feature map) 

 
shortcut = x 

x = BatchNormalization(x) 

x = ReLU(x) 

x = Convolution(x) 

x = BatchNormalization(x) 

x = ReLU(x) 

x = Convolution(x) 

x = BatchNormalization(x) 

x = ReLU(x) 

x = Convolution(x) 

x = Convolution(x) 

y = x + shortcut 
 

This pseudocode is an illustration of a Residual Block, also known as Block 1, which is used in proposed 

residual model. The 'x' feature map that was provided as input is first saved to a'shortcut' variable. After 

that, it does a Batch Normalization, then a ReLU activation, and finally a convolution operation three 

times in a row, with each iteration contributing to an improvement in the feature representation. After 

the last convolution, it adds the 'shortcut' to the output 'x', which makes the remaining connection easier 

to make. Because of this approach, the model is able to learn both refined features from the 

convolutional layers and identity mappings as appropriate. This makes it much simpler for the network 

to train extremely deep architectures while minimizing difficulties related to vanishing gradients. The 

output feature map of the Residual Block is denoted by the letter 'y' as the end result. 
 

Pseudocode: Block 2 

Input: x (input feature map) 

Output: y (output feature map) 

 
shortcut = x 

x = BatchNormalization(x) 

x = ReLU(x) 

x = Convolution(x) 
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x = BatchNormalization(x) 

x = ReLU(x) 

x = Convolution(x) 

x = BatchNormalization(x) 

x = ReLU(x) 

x = Convolution(x) 

y = x + shortcut 
 

 

Pseudocode: Block 3 

Input: x (input feature map) 

Output: y (output feature map) 

 
shortcut = x 

x = BatchNormalization(x) 

x = ReLU(x) 

x = Convolution(x) 

x = BatchNormalization(x) 

x = ReLU(x) 

x = Convolution(x) 

x = BatchNormalization(x) 

x = ReLU(x) 

x = Maxpooling(x) 

x = Convolution(x) 

y = x + shortcut 
 

EXPERIMENTAL RESULTS 

The dataset contains ultrasound pictures of the liver, separated into three unique grades: Grade 1, Grade 

2, and Grade 3. It is likely that these groups reflect various phases or circumstances of either healthy 

liver function or liver disease. The dataset has been broken up into three sets: training, validation, and 

testing. Each of these sets serves a distinct function in the process of constructing and assessing machine 

learning or deep learning models. The information that follows offers a complete summary of this 

dataset including liver ultrasounds: 

The total number of images: There are a total of 583 ultrasound pictures of the liver that are 

included in the collection. More specifically, it comprises the following: 

• 140 pictures are needed for training. 

• 322 pictures are waiting to be validated. 

• 121 pictures for testing purposes. 

Class Distribution: The dataset is divided into three groups, each of which represents a different level 

of liver disease severity: 

• One class is considered to be in Grade 1. 

• The second grade is equivalent to the second class. 

• The third grade is equivalent to the third class. 

Image Size: All of the ultrasound pictures that are included in this collection have been scaled to the 

same dimensions, which are 224 pixels on each side and 224 pixels high. This uniform picture size 

makes processing and analysis much simpler, and it guarantees that all of the photos may be used with 

the machine learning or deep learning models that have been specifically created for use with this 

dataset. 

Training Set: This collection of 140 photos is used for training machine learning and deep learning 

models. It is referred to as the "training set." The training method teaches the model to detect patterns 
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and characteristics in the ultrasound pictures that separate the three distinct liver diseases that are 

represented by the classes. These patterns and features are seen in the liver scans. 

Validation Set: The validation set consists of 322 different pictures and is used to evaluate the 

generalization capacity of the model as well as to fine-tune the model's hyperparameters. Researchers 

are able to improve the performance of the model and prevent it from being overfit with the help of this 

collection. 

Testing Set: The testing set is an independent assessment data set comprising of 121 photos that is 

utilized for testing only. It is used to objectively evaluate the effectiveness of the model in classifying 

ultrasound images of the liver to the right categories. This set replicates real-world events in which the 

model comes into contact with data that it has not before seen. 

When it comes to diagnosing and keeping track of liver diseases, pictures obtained from ultrasounds of 

the liver are quite helpful. This dataset, with its varied classes and consistent picture size, may be used 

to construct and test machine learning or deep learning models that aid medical practitioners in the 

categorization of liver ultrasound images. These models can be used to help diagnose liver conditions 

and diagnose liver diseases. This dataset is an important resource for research and clinical applications 

in the realm of medical imaging and healthcare since accurate categorization may help in the early 

diagnosis of illness and increase patient care. 
 

(a) (b) (c) 

 
  

(d) (e) (f) 

(g) (h) (i) 
 
 

Figure 3: Input database images 

Figure 3 shows the input images used in the database. Images (a) to (c) show images of grade 1, 

images (d) to (f) show grade 2 images, figures (g) to (i) show the grade 3 images. 
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In machine learning, a graphical representation called the training and validation loss plot, which is 

depicted in figure 4, is frequently used to assess how well a model is trained and how well it progresses. 

An understanding of how well a machine learning model is learning from its training data and 

extrapolating its results to data it hasn't seen before is provided by this chart. 

Typically, the plot will include two separate curves, which are: 

• This curve shows how well the model performed on the training data throughout the course of 

epochs or iterations during the training phase. We refer to it as the Training Loss Curve. It 

illustrates how the loss, a metric representing the discrepancy between the target values and 

the model's predictions, varies as the model learns new information. The training loss often has 

a tendency to be large early on in the process of training, which is an indication that the model 

is generating significant mistakes. On the other hand, as the training goes on, the loss usually 

goes down, which is a sign that the model is becoming better at its prediction powers and fitting 

the training data better. A steady improvement in the model's training loss over time is 

suggestive that the model is learning correctly. 

• Validation Loss CurveThe validation loss curve, on the other hand, shows how well the model 

performs on a unique validation dataset that was not used for training. The training data does 

not contain this dataset. This dataset could serve as an independent gauge of the model's ability 

to generalize to novel circumstances. The validation loss curve is a highly useful tool for figuring 

out whether the model is "overfitting" the training data. Overfitting is a problem that happens 

when a model becomes too specialized in capturing noise and nuances in the training data. This 

leads to poor performance on fresh data that has not been seen before. The validation loss first 

starts to drop in the plot as the model learns and starts to generalize from the training data. 

However, if the model begins to overfit, the validation loss curve can begin to increase, 

indicating that the model's performance is declining when used with previously unseen data.. 
 

Figure 4: Training and validation loss 

A graphical representation that is frequently used in machine learning to assess a model's performance 

and learning trajectory is the training and validation accuracy plot, which is displayed in figure 5. This 

figure provides important information about how well a model that uses machine learning is learning 

from the training data and how well it can generalize to new kinds of data that it hasn't encountered 

before. 

In most cases, this graph will have two separate curves, which are: 

• This curve depicts the model's accuracy on the training data throughout epochs or iterations 

while it is being trained. The term "training accuracy curve" refers to this particular curve. It 

illustrates the model's capacity to produce accurate predictions based on the dataset that it was 

trained on. It's possible that the training accuracy will be poor at first since the model's 

predictions won't be spot on. On the other hand, the accuracy tends to become better as training 

goes on, which is a sign that the model is picking up new information and becoming more 
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adaptable to the training data. The fact that the training accuracy has been steadily improving 

provides evidence that the model is successfully acquiring new knowledge from the data. 

• The effectiveness of the model on an independent validation dataset, which it did not come 

across during the training stage of its development, is shown by the validation accuracy curve. 

This dataset is used to assess how well the model generalizes to new situations. Important 

details regarding whether the model is overfitting the training set are provided by the validation 

accuracy curve. "Overfitting" is a phenomena that happens when a model becomes very 

specialized in capturing both noise and complexity in the training data. This results in subpar 

performance on previously unseen data. When the model first begins to learn to generalize from 

the training data, the validation accuracy initially shows an upward trend in the plot. On the 

other hand, if there is overfitting, the validation accuracy curve can reach a plateau or start to 

drop, which would imply that the model's capacity to produce correct predictions based on fresh 

data is deteriorating. 
 

Figure 5: Training and validation accuracy 

Table 1: Output parameters of training 

Metric Value 

Loss 9.04181 

Accuracy 92.56% 

The table that was presented comprises important performance indicators for a classification model, in 

particular when considering the evaluation of liver disorders that may be connected with fatty liver 

disease. The following is a full explanation of the metrics and the values that correlate to them: 

• Loss: The value of 9.04181 for loss represents the average error or difference between the 

model's projected values and the actual ground truth labels in the dataset. This number was 

calculated using the data. In an issue involving classification, having loss values that are smaller 

is preferable since this indicates that the model's predictions are closer to the actual labels. 

• Accuracy: Out of the overall amount of cases in the test set, the accuracy value, 0.92562, 

represents the proportion of occurrences that were correctly classified. The model has achieved 

an accuracy of approximately 92.56% for this dataset, meaning that it has nearly 93% of the 

time correctly diagnosed liver illnesses. 

Table 2: Classification report 

 Precision Recall F1-score 

grade-1 1 0.95 0.97 

grade-2 0.87 0.96 0.91 

grade-3 0.94 0.86 0.9 

The classification report in Table 2 displays the performance metrics for a classification with multiple 

classes model. The F1-score balances precision and recall, recall gauges the model's capacity to collect 

genuine positives, and precision indicates the accuracy of positive predictions. With a high recall of 
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0.95, which suggests it successfully captures the majority of genuine grade-1 cases, and an exceptional 

F1-score of 0.97, the framework achieves perfect precision (1.0) for grade-1 in this table, meaning all 

positive predictions are accurate. With an F1-score of 0.91 for grade-2, the model shows a little lower 

precision of 0.87 while maintaining a high recall of 0.96. Last but not least, the model's precision of 

0.94 for grade 3 indicates high accuracy in positive predictions, while its recall is lower at 0.86, yielding 

an F1-score of 0.90. The model functions effectively overall, with grade 1 attaining the greatest overall 

performance indicators, closely followed by grades 2 and 3. 

Table 3: Proposed output paper 

Accuracy 0.92562 

Precision 0.929724 

Recall 0.92562 

F1 score 0.926046 

Cohens kappa 0.88708 

Table 3 presents the performance metrics of the proposed output paper's classification model. The 

accuracy score, which measures the overall correctness of predictions, is impressive at 92.56%, 

indicating that the model accurately classifies the data. The precision score of 92.97% demonstrates the 

model's ability to make precise positive predictions, minimizing false positives. The recall score, 

identical to accuracy in this case, also stands at 92.56%, highlighting the model's capacity to capture 

true positives effectively. The F1 score, a balanced measure considering both precision and recall, is 

notably high at 92.60%, indicating a harmonious trade-off between precision and recall. Lastly, the 

Cohen's kappa coefficient, a statistic that assesses inter-rater agreement, is at 88.71%, suggesting 

substantial agreement between the model's predictions and the actual data, reinforcing the model's 

reliability. Overall, these metrics collectively illustrate the robust performance of the proposed output 

paper's classification model. 

Table 4: Confusion matrix 

 Grade 1 Grade 2 Grade 3 

Grade 1 35 2 0 

Grade 2 0 45 2 

Grade 3 0 5 32 

The confusion matrix presented in Table 4 summarizes the classification performance of a model across 
three different grades For Grade 1, the model correctly classified 35 instances, with 2 cases incorrectly 
classified as Grade 1 instead of Grade 2. There were no instances of Grade 1 being misclassified as other 
grades. For Grade 2, the model correctly classified 45 instances, with 2 cases mistakenly categorized as 
Grade 2 instead of Grade 3. Again, no instances of Grade 2 were erroneously classified as other grades. 
In the case of Grade 3, the model correctly classified 32 instances, but 5 instances were incorrectly 
labeled as Grade 3 when they were actually Grade 2. In summary, this confusion matrix offers an 
overview of the performance of the model, showcasing its accuracy in classifying each grade while 
revealing specific instances of misclassification. 

Table 5: Comparative analysis 
 Precision Recall F1 score Cohens kappa Accuracy 

MobilenetV2 0.40086 0.32231 0.17641 0.02381 0.32231 

NASNetMobile 0.81587 0.53719 0.50709 0.31858 0.53719 

VGG19 0.8492 0.70248 0.65883 0.56674 0.70248 

Proposed model 0.92972 0.92562 0.92605 0.88708 0.92562 

The table 5 presents performance metrics for four different models, namely MobilenetV2, 

NASNetMobile, VGG19, and the Proposed model, in a classification task. The metrics include Precision, 

Recall, F1 score, Cohen's kappa, and Accuracy, which collectively assess the models' effectiveness in 

classifying data. With an astounding Precision of 0.92972, which indicates a low rate of false positives, 

a Recall of 0.92562, which indicates the capacity to correctly identify true positives, along with an 



M. Swapna et al. / J INFORM SYSTEMS ENG, 10(4s) 432 
 

 
impressive F1 score of 0.92605, which indicates a balance between precision as well as recall, the 

suggested approach notably performs the best across all metrics. Furthermore, the high Accuracy of 

0.92562 indicates that the model's classifications are generally accurate, while the Cohen's kappa of 

0.88708 indicates a significant agreement between the model's predictions along with the actual data. 

The Proposed model, on the other hand, performs the best across these important evaluation 

parameters, while other designs, such as MobilenetV2, NASNetMobile, along with VGG19, show 

differing levels of performance. 
 

Figure 6: Precision Figure 7: Recall 

  
Figure 8: F1 score Figure 9: Cohens kappa 

Figure 10: Accuracy 

CONCLUSION 

In conclusion, this study addresses a pressing healthcare challenge by developing a deep learning 

solution for the non-invasive classification of Fatty Liver Disease (FLD) stages using ultrasound images. 

FLD, a widespread condition with potentially severe consequences, demands early detection and 

monitoring. The deep learning model presented here, based on the ResNet architecture, has 

demonstrated its potential to provide a reliable and automated means of classifying FLD stages. The 

necessity for such a model arises from the escalating prevalence of FLD and the need for efficient 
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diagnostic tools. Using ultrasound pictures to manually diagnose FLD phases can be laborious and 

prone to interobserver variability. As a result, deep learning's automation of this procedure is a useful 

addition to the fields of medical imaging along with hepatology. The results obtained from the model 

underscore its effectiveness in accurately classifying FLD stages, thus facilitating timely interventions 

and personalized treatment plans. This automation enhances diagnostic efficiency and reduces the risk 

of overlooking critical conditions. It is imperative to acknowledge the collaborative effort between the 

medical community and machine learning practitioners, as this fusion of expertise yields tangible 

benefits in patient care. 
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