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The identification of Enhancers-promoter interactions (EPI’s) will assist in understanding 

the genetic regulation mechanisms. EPIs are determined through time-consuming and 

laborious testing techniques.  Several methods are being contributed to deal with this 

issue. Due to their promising ability to predict, DL-based techniques have been 

extensively employed in the genome-scale detection of EPIs recently. This study is to 

employ the  CNN and BiLSTM model named as “EPI-PRED”  in predicting the EPI’s with 

a set of features trained using the DL models in a python platform and it is successful 

predicted and  evaluated with the SEPT, EPI-Trans and TF-EPI models using sensitivity, 

Specificity , precision and accuracy . It outperforms the other state of art DL methods and 

offers a new avenues in medical research. 

Keywords: Enhancers-promoter interactions, EPI-PRED . 

 

INTRODUCTION 

The regulation of gene expression by enhancer-promoter interactions (EPIs) is crucial for numerous 

cellular processes. Technological advances in chromatin structure capture have allowed for the profiling 

of various three-dimensional (3D) structures throughout the genome, even in individual cells. However, 

the current catalogs of 3D structures are still unreliable and incomplete due to differences in technology 

and tools and data resolution. These methods usually use DNA sequencing data (k-mers, Transcription 

Factor Binding Site (TFBS) motifs, etc.), genome annotation data (ChIP-seq, DNAse-seq, etc.), and other 

genomic properties to find the relationships between genomic features and chromatin interactions[1]. . 

Enhancers and promoter interactions have consequently emerged as a crucial field of study. In addition to 

being essential for the initiation and regulation of genes, these interactions provide information about the 

effects of the three-dimensional arrangement of DNA in the nucleus on the genetic information that cells 

receive and process [2]. 

The vast amount of data generated by current technological advances has rendered it feasible to develop 

sequence-based deep learning algorithms that link DNA structures to the biochemical processes and 

regulatory aspects that affect the regulation of transcription. These frameworks can be utilized for 

modeling gene expression, epigenetic marks, and 3D genome organization in specific tissues and cell 

types It is possible to predict the functional effects of any non-coding alternative in the individual's 

genome—including rare or previously unknown variants—and systematically describe those effects in a 

way that goes beyond what can be determined by experiments or quantitative genetics studies alone. Key 

sequence patterns that are relevant to the estimated tasks have recently been discovered by the 

development and implementation of interpretation approaches. For example, even though the DNA 

sequences have not changed, the same pair of enhancer and promoter interactions exist in some cell lines 

but not in others .  In order to tackle this problem, a number of models have been created that use 

epigenomic signals, such as chromatin accessibility, the binding of particular transcription factors, and 
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histone modification levels, to identify cell-line-specific EPIs. Machine learning techniques provide an 

alternative for obtaining missing 3D interactions and/or improving resolution.  The specificity of the cell 

line dictates how the enhancer and promoter interact. This interaction is governed by different rules in 

different cell lines. As a result, a model created using one cell line might not work with another. Every cell 

line has a different model to train and test. These findings offer new perspectives on the basic biological 

processes that have been learned and offer opportunities for future enhancement of the models [4]. 

Still, with regard to of efforts, time, and resources, experimental methods to EPI classification are too 

costly. In order to solve such problems, an increasing amount of research is being done on the creation of 

computational methods, especially utilizing deep learning and other machine learning techniques. 

However, the vast majority of computing methods used today rely on convolutional neural networks, 

recurrent neural networks, or a combination of these, which ignore long-range interactions among 

enhancer as well as promoter sequences and contextual data. In this work, a novel transformer-based 

model named EPI-Trans is provided to overcome the issues in other DL models. The attention mechanism 

in transformer based model autonomously picks up characteristics that reflect the intricate connections. 

The main contributions of the study are as follows  

• To predict the EPIs from vast collection of genomic data.  

• To test and validate the model performance using the performance metrics  

Literature Study   

The genome's enhancer–promoter interactions, or EPIs, are essential for controlling transcription. The 

work in [5] discusses a novel transformer-based model named EPI-Trans is introduced. The transformer 

model's multi-head attention mechanism autonomously picks up features that show the complex 

connections between enhancer and promoter patterns. Moreover, a transferable general designs is 

developed that can be used as a pre-trained model for numerous cell types. Additionally, to enhance 

efficiency, the generic algorithm's variables are adjusted using a specific cell line dataset. The main 

drawback in the transformer’s model is that it cannot handle the biased training data and long tail 

phenomenon, Moreover; the attention mechanism suffers from memory complexities.CNN and 

transformer models is used to predict the enhancer –promoter’s interactions in the gene regulation [6]. 

CNN and Bi-LSTM are used extract the features in the DNA Sequences which identifies the enhancers and 

its strength [7]. Bacterial  Promoter regions were predicted using the ML algorithms like Support Vector 

machines(SVM), Random Forests(RF) and XGBoost[8] and the interpretability of the model is further 

improved Explainable Artificial Intelligence(XAI) with SHaply values. 

Proformer, a transformer encoder architecture proposed in [9] is to forecast expression values based on 

DNA sequences. It is a Macaron-like Transformer encoder design, with a separate 1D convolution layer 

inserted following the first Feed -forward Layer(FFL) and in front of the multi-head attention layer. Each 

one encoder block had two half-step Feed-forward network (FFN) layers at its start and finish. A study in 

[10] introduces an EPInformer, an extensible DL technique framework that combines the chromatin 

interactions, epigenomic messages, and promoter-enhancer interactions to predict gene expression. 

A CNN model which learns from both text and graph is suggested in [11] to leverage interactions with 

sequence features. Several Deep Neural Networks (DNN) models are developed to detect the regulatory 

elements [12], DNA enhancers [13] , regulatory variants in brain cells[14] and histone marks and predict 

gene expression[15].  

A sequence-based technique known as SEPT that uses transfer learning (TL) and cross-cell information 

for predicting EPI’s in new cell lines. It uses CNN to extract the features of enhancers and promoters from 

the DNA sequences.  On the basis of labeled information from different cell lines, it is capable of 
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recognizing EPIs in an entirely novel cell line if the precise positions of enhancers and promoters are 

provided [16]. 

A novel computational method called "SPEID," employing DL methods is used to predict the  enhancer-

promoter interactions solely based on sequence-based features if one knows the locations of putative 

enhancers and promoters in any specific cell type[17]  . Many functional genomic and epigenomic features 

are needed for the majority of machine learning methods currently in use, which restricts their 

applicability to particular cell lines. A random forest model, HARD (H3K27ac, ATAC-seq, RAD21, and 

Distance), is used in the study in [18] to predict EPI with just four different kinds of features. Long-range 

dependencies on the promoter and enhancer sequences are captured by the gated recurrent unit network, 

while local features are learned using a two-layer CNN. Second, features that are deemed relatively 

important are focused on using an attention mechanism. Lastly, a matching heuristic technique is 

presented to investigate the interaction between enhancers and promoters [19]. 

The study in [20] proposed an attention-based DL technique (Enhancer-LSTMAtt) and bi-directional 

long-short term memory (Bi-LSTM) for enhancer recognition. An end-to-end deep learning model called 

Enhancer-LSTMAtt primarily uses feed-forward attention, Bi-LSTM, and deep residual neural networks. 

The methods discussed in the literature are detects the EPI’s using the various aspects in the genome. 

Most of the techniques works well only for the training cells, but lacks in predicting the specific cell. The 

aim of the study is to improve accuracy of the model in predicting the enhancers and promoters. 

Table 1:  Recent Studies in EPI’s Predictions 

S.No Author’s  Methods used  Evaluation metrics Score 

1 Ahmed et al 

2024[5] 

Transformer based 

models 

AUROC 

AUPR 

AUROC 

Specific Model 94.2% 

Generic Models 95% 

Best Models 95.7% 

AURC 

Specific Model 80.5% 

Generic Models 66.1% 

Best Models 79.6% 

2 Ni et al, 

2022[6] 

CNN and 

transformer model 

AUROC  

AUPR 

AUROC>90% 

AUPR>70% 

3 Liao et al, 

2022[7] 

CNN, Bi-LSTM and 

transformer 

learning 

Accuracy, Specificity, 

Sensitivity, Mathews 

Correlation 

Coefficient(MCC) 

AUROC 

AUPR 

Proposed model outperforms 

the other advanced models  

4 Paul .S et al, 

2024[8] 

SVM, RF, XGBoost Accuracy, Precision, 

Recall, Specificity, F1-

Score and MCC Metrics 

F1-Score >95% 

5 Tenekeci et 

al, 2024[11] 

CNN F1-Score 3 % higher than the state of 

art methods  

6 Hu et al, 

2024[13] 

PDCNN model Accuracy 95% 

7 Lu et al, 

2024[15] 

CNN with 

Specialized 

Residual networks 

Accuracy  Outperforms the compared 

models 
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–CatLearning 

 

8 Jing et al, 

2020[16] 

CNN –SEPT AUC Effective and best prediction 

performance 

9 Singh et al, 

2019 [17]  

SPEID, Deep 

learning models 

AUROC, AUPR and 

F1.Score  

Outperforms the compared 

methods  

10  Zheng et al, 

2023 

Random Forest Specificity, sensitivity, 

Precision, Accuracy AUC 

Shows better performance in 

the chosen dataset.  

The table 1 shows some of the recent studies carried out to predict the  enhancer and promoter 

interactions, strength of enhancers, type of enhancers etc.  The research is still going in improving the 

accuracy of the prediction models by modifying the existing models or combining the deep learning 

models.  The dataset is also very limited and in depth knowledge about the DNA sequences is vital to 

study further exploration in this field. Thus, researching the interactions between enhancers and 

promoters can help us gain insight into both wellness and disease. 

3. Materials and Methods  

The method consists of the following steps (i) Data collection from a dataset.(ii)Choosing the epigenomic 

characteristics relevant to EPI. (iii) Sequence embedding (iv) feature extraction (v) Classifying and 

predicting the EPI[18]. The inputs are the enhancers and promoters as matrix and fed into the neural 

network layer for learning. It uses the already learned features to predict the EPI’s  .The Figure.1  depicts 

the overall flow of the EPI prediction model.  

 
Figure 1. Architecture of EPI Prediction Model 

3.1 Data Preparation 

The data’s are collected using the benchmark experimental datasets such as CRISPR , GM12878 and 

ChIA-PET . The duplicate values are then removed and selected RNA data from ChIA-PET and cell lines 

with a positive and negative samples in a ratio of 1:10.  Then 39070 pairs of EPIs are obtained from the 

GM12878 dataset and 1735 pairs in the HeLa dataset and it is divide into training and testing set for GM 

12878 sample. This study uses 70% of the data for training and 30% for testing. The experiments were 

implemented in python using the appropriate libraries.  The Figure 2 depicts the detailed flow diagram of 

the EPI prediction model. 

 

Figure 2: CNN-BiLSTM –Attention Mechanism for the prediction of EPI’s 
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3.2 Sequence Embedding  

An efficient technique for analyzing lengthy DNA fragments is to use the k-mer representations. This 

work utilizes a k-bp window with s as the sliding step size to distinguish the promoters and enhancers 

based on the k-mer representation. For instance, using k-mer representation, "AGCTGTTC" is 

subsequently divided into "AGCTGT," "GCTGTT," and "CTGTTC." It is evident that the k-mer 

representation is easy to calculate and recognize. The one -hot vector encoding suffers from the problem 

of dimensionality.  Consequently, this method employs dna2vec embedding for expressing the DNA 

sequences using k-mer words. Dna2vec may generate high-quality, low-dimensional vectors that can 

represent k-mer words. 

3.3 Feature Extraction 

A combination network architecture with a bidirectional Long short term memory(Bi-LSTM) with 

attention mechanism and a CNN is used to extract the features, While Bi-LSTM  was utilized to identify 

the long-term dependencies of local characteristics, CNN was utilized for learning the local characteristics 

of promoters and enhancers. Additionally, to calculate significant features that were assigned a higher 

weight to represent feature vectors, an attention layer was added[19]. The CNN model captures the 

unique features for the enhancer and promoter and then it gets combined into a merge layer.  

3.4 CNN 

CNN with two layers is employed : a max-pooling layer and a convolution layer. The max-pooling layer 

reduces feature dimensions, while the convolution layer mainly learns the local characteristics of 

enhancers and promoters. The two CNNs were set up in the experiment one for enhancers and another for 

promoters. Then the number of filters at 64, the stride at 30, the pooling length of the max-pooling layer 

at 30, and the filter length of the convolution layer at 60 for the enhancers. Then for the promoter set the 

stride at 20, the number of filters at 64, the pooling length of the max-pooling layer at 20, and the filter 

length of the convolution layer at 40  

The same hyperparameter setting has to be followed for the comparison models. 

3.5 Bi-LSTM 

LSTM is a type of RNN suitable for time series data.  It is mainly utilized to acquire the links between 

words in the former and later, but vice versa is not possible. The Bi-LSTM is used to solve this problem by 

using two LSTM’s one for forward to backward and another one for backward to forward. The combined 

output of both LSTMs will generate the predictions [20].  

3.6 Attention Mechanism  

In a BiLSTM network with an attention mechanism uses the BiLSTM's implicit state to coordinate the 

current step's cell state with the input. It additionally makes use of the BiLSTM's most recent cell state. 

Prediction efficiency and accuracy can be improved by reducing insignificant data and highlighting 

pertinent data during the learning process. The BiLSTM network's attention layer's output is constructed 

as follows: 

       M = tanh (X)                               (1) 

        Α = softmax( Wa M)                 (2) 

        A = Xα T                                                    (3) 

In equation (1),  X is the matrix that denotes the selected features X=( X1,X2,X3,….Xt), Wa is the weight 

of the co-efficient matrix of the attention layer.  T indicates the transpose operation. The algorithm for the 

EPI-PRED is as follows. 
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1. S

tart the procedure in the unbalanced data  

2. D

ivide the data into training (70%) and testing (30%) 

3. A

ugment the data to balance the dataset 

4. T

rain the model using 10% of the data 

5. S

top the CNN and Bi-LSTM with attention mechanisms of  the model 

6. C

ontinue the training  

7. E

valuate  

Then perform cross validation and repeat the steps  of the dataset splits.  

4. Results and Discussions 

The proposed model is compared using the same dataset and training process in the other existing 

models, such as SEPT, EPI-Trans, and TF-EPI.  The following metrics were used to estimate the 

performance of the model. It includes Sensitivity, Specificity, Precision, Accuracy.  These formulas for 

calculating the metrics are as follows, 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑁) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                      (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑃) =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                            (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑅) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                   (4) 

Table 2. Comparison of Proposed model for EPI prediction 

Method SN SP PR ACC 

SEPT 0.677 0.923 0.745 0.780 

EPI-TRANS 0.634 0.937 0.754 0.851 

TF-EPI 0.644 0.945 0.762 0.879 

EPI-PRED 0.704 0.961 0.798 0.912 

 

Figure 3 Evaluation of Proposed model 
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Table 2 and Figure 3  depicts the metrics values of the proposed classifier and other methods considered 

in this study .Results showed that the EPI-PRED outperforms the other three models. The EPI-PRED 

achieves a higher SN, SP , PR and ACC values of 0.704, 0.961,0.798,0.912 respectively. The proposed 

model combines the strength of CNN-BiLSTM and attention mechanisms in predicting the 

EPI’s.Moreover, it is capable for handling the unbalanced data and can be  used as one of the classifier.  

Since only the site with the highest affinity is known, information regarding the transcription factor 

binding-site specificity is frequently lacking or skewed by prediction techniques. The learning techniques 

predict EPI using a vast number of genomic and epigenomic features. The redundancy in the features 

leads to imperfect outcomes. This study uses small number of  epigenomic features  to  predict the cell line 

specific EPI’s. Moreover, the EPI.s specificity is responsible for the differential expression of the gene.  

One of the most captivating phenomena in gene regulation is the long-range interaction between 

enhancers and promoters. It is now possible to identify putative EPIs genome-wide because of to 

advances in high-throughput experimental techniques, but it is still unclear whether our genome already 

contains sequence-level instructions that aid in the identification of EPIs. 

Continuous training of the network can be accomplished through data augmentation, which allows the 

recurrent layer to detect long-range dependencies among these characteristics and the convolutional 

layers to recognize useful subsequence features. However, classes are extremely unbalanced, identical to 

the original data, in typical applications of predicting interactions. When the network trained on 

augmented data is employed carelessly in such instances, the false positive rate is extremely high. 

4.1 Enhancer Promotor Interaction (EPI) Score Calculations: 

1. Affinity Score – It is used to measure how healthy the enhancer sequence brings into line with a 

promotor sequence (Enhancer-Promotor match is affinity). It's frequently proportionate to the alignment 

score (global or local) in a basic model. It can be calculated using the formula 

 

𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 =  
𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑟 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒
 

Where alignment score is obtained from the sequence alignment and the length is the distance of the 

enhancer sequence is used in the alignment. 

If the affinity score is high, it indicates there is a strong interaction between promotor and enhancer 

region. i.e. the enhancer region is pointedly having regulatory effect on promotor which leads to higher 

gene expression. On the contrary if the score is low there is a weaker interaction.  

 

Example: 

 
 

2. Specificity Score – It is used to measure how healthy the enhancer aligns with the promotor 

sequence relative to the length of the promotor region. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑟𝑜𝑚𝑜𝑡𝑜𝑟 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒
 

Where alignment score is obtained from the sequence alignment and the length is the distance of the 

promotor sequence is used in the alignment. 
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If the specificity score is high, then it indicates the enhancer has the more targeted and stronger 

interaction with promotor region. Targeted interaction means enhancer exclusively regulate that precise 

promoter rather than consuming a wide-ranging, non-specific effect. Low specificity score implies less 

precise with particular promotor or enhancer interaction happens with multiple promotor region. 

Example: 

 
3. Fitness Score – It is the combined measure of affinity and specificity of the Enhancer promotor 

interaction. Fitness score provide the complete view of how healthy the interaction is. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

 Where the affinity and specificity scores are already calculated using the above formula. By doing 

this we can measure the strength of the enhancer promotor interaction. 

If the fitness score is high, it represents the well targeted and stronger enhancer promotor interaction. 

This implies that enhancer not only well binds with promotor but also do so in effective and specific 

means. Low score indicates weaker and less targeted interactions. 

Example: 

 
 

Table 3. Parameters used to calculate Enhancer promotor interaction  

Dataset Scoring Parameters Score Calculations 

• promotor

_seq 

• enhancer_seq 

• match_score: 

Score for each matching base pair. 

• mismatch_pena

lty: Penalty for mismatches between 

the sequences. 

• gap_open_pena

lty: Penalty for opening a gap in the 

alignment. 

• gap_extend_pe

nalty: Penalty for extending a gap in 

the alignment. 

calculate_scores(promoter_

seq, enhancer_seq) 

• Affinit

y (EP align) 

• Specifi

city (EP length match) 

• Fitnes

s (Strength of interaction) 
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Figure 3 Result: Promoter-Enhancer Interactions Strength and Precision 

 

Figure 4 Promoter-Enhancer Interactions score calculations 
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 5. Conclusion 

The EPI predictions are a complex procedure and it is automated using the learning approaches. This 

study aims to increase the accuracy of predictions using deep learning models combining the strength of 

CNN, Bi-LSTM and attention mechanisms. The major drawback in this study is the lack of dataset with 

the proper sequence patterns. Moreover, it requires more preprocessing than the dataset used in other 

applications. Furthermore, the proposed algorithm has a considerable accuracy than present DL models, 

which suggests that it could be a helpful tool for rapid EPI predictions in genome-wide applications. 
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