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ARTICLE INFO ABSTRACT

Classification of weather images is very significant in climate monitoring, disaster
management, and weather forecasting. This work is an innovation on the architecture
that combines U-Net with a BiLSTM network for classification accuracy improvement.
Accepted: 24 Dec 2024 U-Net is one of the most advanced convolutional neural networks, and it is characterized
by fine-grained feature extraction and spatial information preservation in images. The
model combines it with BiLSTM, which focuses on detecting temporal and contextual
patterns, thereby enabling a combined understanding of the spatial and temporal
dimensions of weather phenomena.
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It strengthens all aspects: in addition to how the spatial U-Net's capabilities build strong
arguments and why the recognition of correlations with a model such as BiLSTM
significantly improves this method against more common, traditionally used, models of
the convolutional neural networks family. Tests, also carried out, showed excellent and
improved parameters during evaluation like precision, recall, and balance measures,
when evaluating results of similar common datasets commonly used within weather
forecast systems analysis.

It provides a strong structure for enhancing the classification of weather images and
supporting the study of meteorology by bringing in the strengths of convolutional
networks and recurrent networks.
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INTRODUCTION

Studies in weather patterns are critical to numerous sectors, which range from monitoring climate change
and disasters to the weather forecast in the future. Precision in classifying and analyzing weather patterns
is pivotal for understanding the behavior of climates, improving the quality of forecasts, and lessening the
impact of extreme events due to severe weather conditions [1]. Due to the increased severity and frequency
of extreme weather events caused by climate change, the need for new and efficient computational
techniques in the analysis of weather data is of the utmost importance. In the past years, machine learning
(ML) and deep learning (DL) innovations have transformed traditional weather analysis techniques to allow
for new advanced techniques for pattern recognition and data-driven forecasting [2].

The generated satellite and ground sensors data are vast in quantity with spatial and temporal complexities.
However, extracting useful information from this large amount of data is a tough task because the data is
highly complex. In fact, many traditional image processing methods fail to address these issues because
they have hand-crafted features and do not handle nonlinear and dynamic properties of atmospheric
phenomena [3]. Using deep learning techniques, such as Ensemble Convolutional Neural Networks
(CNNs), feature extraction was proven to be automated and advanced spatial representations could be
generated from raw image data [4]. However, the models were designed to handle static inputs, thus
limiting their efficiency in capturing the temporal dependencies necessary in understanding the dynamics
of weather systems. This is particularly evident when processing weather data, where spatial and temporal
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patterns are closely linked, making them essential factors for achieving accurate classification and effective
forecasting [5].

Recently, hybrid deep learning architectures have emerged as effective solutions to complex data analysis
challenges. These models combine different types of neural networks, such as convolutional and recurrent
networks, allowing them to leverage the unique strengths of each while minimizing the shortcomings of
their individual designs. U-Net: This is one of the most prominent architectures developed, mainly for
image segmentation tasks. It has reliably shown its efficiency in extracting spatial features while retaining
the positional information in multiple tasks [6]. There exist BILSTM networks, which are advanced RNN
models, and which are very good at learning temporal dependencies and sequential interactions, which are
perfect for tackling problems involving temporal or sequential data [7]. Hybride deep learning techniques
are newly found interest among researchers for processing data related to the weather, mainly by combining
neural network architectures: CNN and BiLSTM. These approaches made a great deal in addressing these
complex spatial and temporal challenges and have contributed substantially to these areas. The fact that
they both rely on a CNN for extraction of spatial features and BiLSTM for temporal dynamics makes a good
solution toward climate and environmental applications. For instance, Fathi et al. [8] introduced a new
model called 3D-ResNet-BiLSTM to predict weather patterns based on agricultural data. It employed 3D
ResNet for spatial features extraction and used BiLSTM for temporal dependency, thus providing 15%
better accuracy compared to the same old models running separately.

Zhu et al. [9] extended this system with a hybrid U-Net-BiLSTM architecture designed to compute crop
evapotranspiration. Their approach effectively addressed seasonal water-use patterns by combining
geographically distributed U-Net outputs with temporally aware BiLSTM predictions, achieving a reported
12% improvement in reliability of predictions.

Yin et al. [10] adapted the U-Net-BiLSTM architecture to classify weekly weather patterns using satellite
cloud maps. The study focused on integrating domain-specific pretraining to improve generalizability,
achieving 89% classification accuracy. Cheng et al. [11] implemented a multitemporal U-Net-BiLSTM
framework for remote sensing classification, with their model excelling in detecting seasonal variations,
particularly in vegetation indices, achieving an 8% improvement in F1 scores compared to prior methods.
Latif et al. [12] advanced rainfall prediction with a similar hybrid model, incorporating rainfall radar data
and cloud imagery to predict precipitation with 91% reliability.

In renewable energy forecasting, Yao et al. [13] utilized a CNN-BiLSTM hybrid model for intra-hour
photovoltaic generation forecasting. Their method captured high-frequency variability in solar irradiance,
improving short-term energy forecasts by 14%. Similarly, Tian et al. [14] reviewed hybrid approaches for
solar energy variability analysis, emphasizing attention mechanisms for spatial-temporal anomaly
detection. Wang et al. [15] combined Transformers and U-Net to enhance climate modeling, where
attention layers prioritized key temporal dependencies, achieving 92% precision in long-term forecasting.

In satellite-based environmental applications, Ma et al. [16] leveraged Attention U-Net models for Sentinel-
1 SAR image analysis, improving performance in flood-prone regions by 10%. Sun et al. [17] extended these
techniques for cloud pattern recognition, emphasizing a combination of spatial attention modules with U-
Net layers. Ge et al. [18] scaled BILSTM models for agricultural mapping, particularly rice classification,
using satellite time-series data, demonstrating a 9% improvement in spatial resolution. Yang et al. [19]
applied hybrid models to flood prediction, with their U-Net-BiLSTM model incorporating hydrological and
topographical data for an 87% reduction in false positives.

Additional environmental applications include Liu et al. [20], who integrated soil moisture data with
satellite observations in a BiLSTM framework to enhance drought prediction, achieving 15% better recall
than baseline models. Fang et al. [21] adapted CNN-BiLSTM for air quality forecasting, focusing on PM2.5
levels, and demonstrated 10% greater accuracy in urban datasets. Zhao et al. [22] explored wildfire
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prediction by integrating U-Net and BiLSTM, with temporal layers emphasizing wind patterns to reduce
forecast errors by 18%. Han et al. [23] employed CNN-BiLSTM for hurricane trajectory prediction,
achieving 12% more accurate path forecasts compared to conventional models. Similarly, Kim et al. [24]
applied hybrid architectures to typhoon classification, combining spectral features and temporal
dependencies for 88% classification accuracy.

In ocean and ice research, Yang et al. [25] presented a model that combined U-Net and transformers to
study glacier dynamics, reducing error margins by 15% by addressing long-term spatial and temporal
patterns. Huang et al. [26] developed a hybrid model for sea surface temperature prediction, based on
integrating remote sensing data with historical information, which improved accuracy by 11%. Recently,
Zhou et al. [27] developed a U-Net-BiLSTM system that integrates airflow dynamics with the predictions of
machine learning to achieve an accuracy of 90% for predicting wind speeds. Thus, the present contribution
extends the list of previous contributions by using a hybrid architecture combining U-Net and BiLSTM for
the aerial image classification. This proposed model combines the spatial feature extraction capability of
the U-Net architecture with the efficiency of the BiLSTM in temporal inference to improve the challenges
involved in dynamically and complexly detecting weather patterns. The methodology is set towards
improving the accuracy in classification, enhancing model flexibility, and providing a practical yet scalable
solution for meteorological applications.

METHODS AND MATERIALS
1 dataset

The proposed approach is based on the utilization of a well- prepared dataset in which images describe
different types of weather phenomena. These phenomena, such as dew, fog, smoke, frost, glaze, hail,
lightning, rain, rainbow, sleet, sandstorms, and snow are depicted in Figure 1, which can aid in enhancing
model recognition and categorization accuracy to a higher degree.
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Figure 1. The classes

The dataset used to carry out the study was freely available from different public repositories; it was thus
augmented to give diversity and also balance the representation of categories involved. Images in the
dataset were uniformally resized so that they achieved a uniformity in size, in this case (256 x 256 pixels).
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In addition to this, to enhance the generative ability and the model robustness against overfitting, a set of
the data augmentation strategies, such as rotation, flip, and variation in brightness adjustment, were
undertaken. Data augmentation, as an effective strategy, is performed by augmenting artificially expanded
training datasets with increasing diversity in machine learning to eliminate the problem of overfitting. The
overfitting problem occurs when the model gives good performance on the training data but fails to
generalize to new data; this might be because the training data is either insufficient or unrepresentative.
Data augmentation addresses this problem by applying various transformations to the original data, such
as flipping, rotating, cropping, scaling, noise injection, or any other modifications relevant to the field of
study. These transformations produce new samples with the same labels as the original, which helps
improve the model's ability to generalize and increases its efficiency when dealing with new data. These
changes improve generalization by mimicking real-world variability, diminishing the model's inclination to
memorize training data, and promoting an emphasis on robust characteristics.

Additionally, augmentation can balance imbalanced datasets and introduce regularization effects, making
it harder for the model to rely on noise or irrelevant patterns. By improving the model’s ability to recognize
invariant features, data augmentation ensures better performance on unseen data, thereby mitigating the
risk of overfitting across various domains like image classification, text processing, and audio analysis.
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2 features extraction

In our model, we used U-Net for feature extraction and BiLSTM for image classification. U-Net is a
convolutional neural network architecture initially developed for biomedical picture segmentation;
nevertheless, its feature extraction capabilities render it highly versatile for diverse image processing
applications, such as weather image categorization..

The encoder is responsible for capturing low-level to high-level spatial features through a series of
convolutional operations. Each stage in the encoder consists of two 3x3 convolutional layers, followed by a
ReLU activation function. These layers extract localized features such as edges, textures, and patterns from
the weather images. Max pooling operations (2x2) reduce the spatial dimensions of the feature maps while
retaining the most prominent features. This down-sampling process enables the network to focus on
essential high-level features while discarding redundant details. As the encoder progresses, the
convolutional layers extract increasingly abstract and complex features, capturing the hierarchical structure
of the image. Initial layers may detect edges or gradients representing clouds or sky boundaries as shown
in Fig 4. Deeper layers may identify patterns corresponding to cloud formations, rain streaks, or
snowflakes.

Feature Mag 1

Figure4. Original Image: The original lightning image, Sobel X: Highlights vertical edges by detecting
gradients in the X direction, Sobel X: Highlights vertical edges by detecting gradients in the X direction,
Laplacian: Detects overall edges by calculating the second derivative of the image.

At the bottleneck (the deepest part of the network), the feature maps have minimal spatial resolution but
encapsulate the most abstract and meaningful representations of the input image. These compact, high-
dimensional features contain critical information about the overall weather conditions present in the image.

The decoder reconstructs the spatial resolution of the feature maps while preserving and enhancing the
features extracted by the encoder. It plays a critical role in retaining spatial localization. Transposed
Convolutions also known as deconvolutions, these layers up-sample the feature maps, increasing their
spatial dimensions while reconstructing fine details. Skip connections link each encoder layer to its
corresponding decoder layer Figure 5. This mechanism allows the decoder to access spatial information
that may have been lost during the down-sampling process.

U-Net's ability to extract features lies in its encoder's progressive abstraction, the bottleneck's compact
representations, and the decoder's reconstruction process with skip connections as shown in Figure 6.
These components collaborate to generate a complete and comprehensive feature representation of
meteorological images, facilitating efficient classification.
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Figure 5. The reconstructed feature maps from the decoder layers are displayed, progressively up-
sampling and utilizing skip connections to restore spatial information.

Reconstructed Image

Figure 6. The final image reconstructed from the decoder demonstrates how spatial information is
preserved and fine details are recovered

3 Sequence Processing with BiLSTM

Employing a BiLSTM network to classify features extracted from images constitutes an effective hybrid
methodology that utilizes the advantages of CNNs for spatial feature extraction and BiLSTM for elucidating
contextual relationships among those features.

The extracted features, now structured as a sequence, are fed into the BiLSTM. BiLSTM processes the
sequence bidirectionally, capturing relationships both forward and backward along the feature sequence.
This helps the model learn contextual dependencies between different parts of the image's extracted
features.

For an input sequence with T tokens, you get T hidden states, each containing information from both
directions. The "final hidden state" refers to the last hidden state of the forward LSTM combined with the
last hidden state of the backward LSTM. Alternatively, pooled representations (average pooling) are used
Average pooling computes the mean of all hidden states, summarizing the overall context of the sequence.

The chosen fixed-size representation (final hidden state or pooled representation) is passed into one or
more fully connected layers (dense layers). These layers facilitate the acquisition of task-specific transforms
of the BiLSTM output. Each layer applies Linear transformation Weighted sum of inputs plus bias and
Non-linear Activation Function, this setup maps the high-dimensional BiLSTM output to a lower-
dimensional space relevant to the classification task.

SoftMax is a specialized activation function employed in the final layer for multi-class classification,

converting the output of the last fully connected layer into a probability distribution over all classes. In
mathematical terms, given N categories:

Py

t=1¢7

In this context, z; represents the unprocessed output (logit) for class i. The class exhibiting the highest
probability is chosen as the model's forecast.



497 Z.S.Khaleel /JINFORM SYSTEMS ENG, 10(4s)

—bl[ Laten feature maps ]

‘ BilSTM _layer
. ]
Input Image ! ’ * Process (sequence)
S ‘ e Produce_hidden_states
¥ Transposed convolution layer 1 -
Convolutional Layer ‘ Pass hidden states

Stagel Pooling_final_hidden_states

9

| Skip connection to encoder layer 1 ]

* reduce (hidden_states)
¢ generate_fixed_size-vector (

a

Feature compression

Convolutional Layer
Stage 2

—

l Transposed convolution layer 2 l

: 2

fixed_size-vector ()

«

I I
| I
J |
I I
J" Input features I
|

|

|

|

|

| High-dimensional representation Fully_connected_layers

[ Max Pooling Layer ]

|
|
1
I
|
I & I
- _ I Latent feature maps ‘ |
Convolutional Layer | B | [ Transposed convolution layer 3 ]
Stage3
RO . Critical weather insights !
| | [ Skip connection to encoder layer 3 ‘
| | R
I I
I I
| [

transform (fixed_vector)

«

reduce_dimensions ( )

Transformed vector

softmax_layers

&

¢ Compute_probabilities

| Max Pooling Layer

l Feature Abstraction }—

(@) (b) (© (d)

Class probabilities

prediction

[ Reconstructed output J

Select_highest_prbability ( )
Output_final_class ()

I

I

|

|

[

|

|

I

I

|

] Skip connection to encoder layer 2 l |
|

l

I

|

|
oy
|

]

Figurey.(a) hierarchical feature extraction process in encoder . (b) workflow for extracting critical
weather insights from high-dimensional features. (c) Decoder Architecture with Skip Connections for
Feature Reconstruction. (d) BILSTM-Based Classification Workflow with Feature Transformation and
Prediction

RESULTS AND EXPERIMENTAL

The experiments were conducted on a subscription-based Google Colab Notebook service, with Python 3
as the runtime type and a T4 GPU as the hardware accelerator. The Tesla T4 is a GPU card built on the
Turing architecture, designed for accelerating deep learning model inference, featuring 52 GB of system
RAM. The model's development utilized cross-validation as part of the dataset. Employing many
measurements guarantees a model's resilience from all perspectives. Effective model training relies on a
comprehensive interpretation of these results; for instance, high accuracy (exceeding 90%) does not
inherently signify a superior model. Additional factors encompass loss and F1-score, among others. We
employed various metrics to assess the efficacy of our model.

ACCURACY

Accuracy measures the ratio of correct forecasts to the total predictions produced, calculated using the
following formulas:

Accuracy =(TP + TN) / (TP + FN + FP + TN) (2)
TP, TN, FN, and FP denote True Positive, True Negative, False Negative, and False Positive values,
respectively.

Precision
Precision quantifies the ratio of accurate positive predictions to the total number of positive forecasts, as
defined by the subsequent equation:

Precision = TP / (TP + FP) (3)
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Recall

The recall is frequently referred to as the sensitivity score or the true positive rate. This represents the ratio
of accurate positive forecasts to the total number of actual positive outcomes. The recall is calculated using
the subsequent equation:

Recall =TP / (TP + EN) 1)

F1-score

An ideal model will perform well by achieving 100% precision and recall, meaning that all true positives are
identified without making any errors. The F1 score is a comprehensive measure of model performance,
combining precision and recall into a single value, making it especially important when dealing with
imbalanced datasets. The F1 score graph makes it easy to compare performance across different classes,
showing each class as a separate line, which helps understand the distribution of model efficiency across all
classes.

F1 =2 (Precision Recall) / (Precision + Recall) (5)
Loss of function

Loss functions measure the difference between expected outputs and actual values, forming the basis for
the model's optimization process. This study employed the categorical cross-entropy loss function, tailored
for multi-class classification tasks. This method effectively penalizes erroneous predictions by calculating
the logarithmic loss, underscoring the model's necessity to enhance its confidence in assigning probabilities
to the accurate class labels.

Area Under the Curve

AUC, or Area Under the ROC Curve, is a quantitative measure used to assess the performance of
classification models. A single numerical value quantifies the model's capacity to differentiate between
positive and negative classes.

Figure8. loss of model compared to the other methods

From the figure above the proposed model loos is 0.05, for DenseNet169, is 0093, for ResNet is 0.0525,
and for Inception 0.098. Indicating that the model is exhibiting strong performance on the training data by
effectively reducing the disparity between predicted and actual values. This frequently results in increased
accuracy or improved performance metrics on the training set
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Figure 9. The comparison results of the method with the others in terms of accuracy

The figure 8 shows the accuracy comparison of a proposed model against other transfer models, the

proposed model accuracy is 97.16%, Densenet169 accuracy is 95.8%, ResNet and Inception accuracy is
94.3% and 96.1%.

ore

Epocs
Figureio. Fi-score of a proposed model, DenseNet169, ResNet and Inception

The F1 score is a critical metric for evaluating the performance of a multi-class classification model,
providing a more nuanced assessment of the model's ability to correctly classify instances across all classes.
While accuracy is often used as a standard metric, it does not always present a complete picture. The F1
score, on the other hand, offers a balanced evaluation by considering both precision and recall. The high
value of Fi-score indicates the model's capability to strike a good balance between precision and recall,
showing good overall performance. As depicted in Figure 9, the proposed model obtained an outstanding
F1-score of 96.7%, which was significantly higher than the other architectures like DenseNet169 scoring
85.8%, ResNet scoring 94%, and Inception scoring 83%. This superiority highlights the good predictive

capability of the proposed model and its stability across classes, making it a robust and reliable choice for
analysis in aerial images.

Precision

Epocsa

Figure11. Precision of a proposed model, DenseNet169, ResNet, and Inception
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Figure 10 underscores the criticalness of accuracy, which remains to be the one indicator most directly
used in validating the predictiveness of the developed model: notably, under such imbalanced
circumstances, achieving greater accuracy allows preventing the potential dominance of some models by
well-represented classes, enhancing performance generalizability to other as yet unseen or diverse data.

The figure demonstrates that our model, like DenseNet169, ResNet, and Inception, produced precision
accuracy of 94.95%, 94.7%, 95%, and 96.95%, respectively, which goes to show effectiveness for such
models when encountering those challenges.

Racall

Epocs
Figure12. Recall of a proposed model, DenseNet169, ResNet, and Inception

Recall aids in reducing false negatives; strong recall ensures that no critical medical information is
neglected during diagnosis, particularly in scenarios with imbalanced datasets, which may result in a biased
model underperforming on the minority class. High recall guarantees that the model identifies all pertinent
occurrences from the minority class.

In Figure a proposed model recall is 95.5%, DeneNet188.8%, ResNet 96%, and Inception 947.9%

o
Figure13. AUC of a proposed model, DenseNet169, ResNet, and Inception

The Area Under the Curve (AUC) measure is extensively utilized in assessing the performance of binary
classification models. In multi-class classification, the AUC metric is typically calculated using a pairwise
comparison approach (one-vs-all), indicating that the AUC value reflects the model's efficacy in
differentiating between two distinct classes. It provides a singular metric that encapsulates the overall
discriminative capability of the model across all classes. A high AUC signifies an exceptional ability to
predict the probabilities of the correct class relative to other classes. As illustrated in figures 12, our
proposed model achieves an AUC of 97.5%, DanseNet169 attains 97.7%, ResNet records 94.3%, and
Inception reaches 95.5%.
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CONCLUSION

This paper discussed the investigation of the effectiveness of combining the U-Net and BiLSTM
architectures in image classification tasks. The experimental results have established the excellent
performance of the model proposed here, having a very low loss equal to 0.05, accuracy 97.16%, and an
excellent F1 score of 96.7%. Also, the recall at 95.5% and precision at 94.94% depicts how the model has
been able to achieve the perfect balance of identifying true positives without increasing false positives and
false negatives. Also, the AUC value, which is the area under the ROC curve, is very high at 97.5%,
confirming the reliability of the model in discriminating between classes.

Performance increases significantly when the powerful spatial features of extraction by U-Net are combined
with efficiency in BiLSTM, one of the most promising models with efficient time-series modeling. This
architecture makes the models not only interact spatial hierarchies and temporal sequential relationships
within data but also results in much more superior performances compared to conventional methods.

Future work may include further improving the computational efficiency of the model and applying it to
more complex and diverse datasets, which would help in generalizing and making the results more
comprehensive. The promising results support the strength of the U-Net+BiLSTM framework as a
competitive and innovative option for improving image classification and data analysis techniques.
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