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Cyber threats targeting educational institutions have become increasingly sophisticated, 

requiring proactive detection and rapid response measures. This study presents an integrated 

framework that combines an AI-driven threat detection system with the Malware Information 

Sharing Platform (MISP) to enhance cyber defenses in school networks. Leveraging a Design 

Science Research methodology, the project unfolds across four phases: system design and 

architecture, prototype implementation, pilot testing, and evaluation. 

In the system design phase, requirements were gathered to develop an end-to-end architecture 

on Amazon Web Services (AWS), encompassing real-time data ingestion through Amazon 

Kinesis and Amazon Simple Email Service, data storage on Amazon S3, and AI-based anomaly 

and phishing detection using AWS Lambda. The prototype stage featured the integration of 

Random Cut Forest (RCF) for unsupervised anomaly detection and DistilBERT for phishing 

classification, enabling near real-time analysis of network and email data streams. MISP was 

hosted on Amazon EC2 and integrated with external threat feeds via STIX/TAXII, creating a 

closed-loop system that continuously refines shared Indicators of Compromise (IoCs). 

Pilot testing involved three schools in Camarines Norte, where simulated attack scenarios 

validated the system’s practical effectiveness. Results revealed high detection accuracy, with 

reduced false positives once IoCs were regularly enriched through MISP. The automated alerting 

workflow significantly shortened time-to-detection and time-to-response when compared to 

traditional security approaches. 

Quantitative metrics confirmed improvements in detection speed, precision, and recall, while 

qualitative feedback highlighted the system’s ease of use, scalability, and cost efficiency. These 

findings underscore the potential of AI-enhanced solutions underpinned by threat intelligence 

sharing, illustrating a robust, sustainable approach to improving cybersecurity in the education 

sector. 

Keywords: AI-Driven Threat Detection, Malware Information Sharing Platform, Cloud 

Computing, Threat Intelligence, Cybersecurity in Education, Anomaly Detection, Random Cut 
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INTRODUCTION 

The rapid digitalization of educational institutions has undoubtedly streamlined administrative and academic 

operations. However, this transformation has also made schools and universities increasingly vulnerable to 

sophisticated cyber threats such as phishing, ransomware, and advanced persistent threats (APTs). These threats 

pose significant risks, potentially exposing sensitive student and faculty information, disrupting educational 

activities, and inflicting substantial financial and reputational damage. Effectively addressing these challenges 

demands a modern, cooperative security approach that unites robust threat detection with efficient incident 

response. 
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Many educational institutions in Camarines Norte still rely on conventional cybersecurity practices—primarily 

localized defenses like antivirus solutions and firewalls. Due to limited resources, they often lack holistic Security 

Information and Event Management (SIEM) systems, operating instead in isolated security silos. This increases their 

susceptibility to rapidly evolving cyber threats. A more effective strategy involves leveraging collective intelligence 

via cyber threat intelligence (CTI) sharing and incorporating artificial intelligence (AI) and machine learning (ML) 

to enhance detection and response. By centralizing these capabilities, institutions with constrained resources can 

better protect themselves against complex attacks[1]. 

This study builds on two previous research efforts that established a conceptual framework for a collaborative 

cybersecurity system suited to educational institutions. The first study [2] proposed a CTI-sharing model among 

colleges in Camarines Norte, employing the Malware Information Sharing Platform (MISP) on Amazon Web Services 

(AWS) to securely distribute threat data. This framework, guided by the Input-Process-Output (IPO) model, provided 

an architectural blueprint for collective threat intelligence workflows; however, it did not involve practical 

implementation or validation. 

The second study [3] extended the initial framework by incorporating AI/ML methods. Through a systematic 

literature review, it identified unsupervised learning, deep learning, and federated learning as feasible approaches 

for detecting cyber threats in educational environments. The research highlighted how AI-powered analytics could 

offer real-time threat detection, adaptive learning, and improved accuracy—all while addressing critical issues such 

as data privacy and limited local datasets. 

Despite providing a strong theoretical basis, these two studies did not offer an in-depth examination of real-world 

application and assessment. Consequently, the present research focuses on developing and evaluating a prototype of 

a collaborative cybersecurity framework that integrates MISP, AWS, and AI-driven techniques to enhance threat 

detection and incident response. By adopting a centralized model with a pre-trained AI using unsupervised and deep 

learning methods, the system seeks to remain simple to deploy and resource-efficient for educational institutions. 

By prototyping the framework, this study seeks to determine how a collaborative cybersecurity system integrating 

MISP on AWS with AI-driven analysis can potentially enhance threat response time and incident management in 

educational settings. Specifically, the research aims to integrate MISP with AI-driven threat analysis, validate end-

to-end security workflows under controlled conditions, and measure the resulting improvements in threat detection 

and response. 

METHODS AND METHODOLOGY: 

This study employs the Design Science Research (DSR) methodology, selected for its effectiveness in developing 

practical, innovative IT solutions addressing real-world cybersecurity challenges. The methodology comprises four 

phases aligned with the research objectives: (1) System Design and Architecture, (2) Prototype Implementation, (3) 

Pilot Testing, and (4) Evaluation and Metrics. 

Phase 1: System Design and Architecture 

This phase involves gathering requirements, defining detailed specifications, and designing a comprehensive system 

architecture. Figure 1 illustrates the high-level integration between AWS-hosted services, AI components, and MISP. 

To achieve seamless integration of the Malware Information Sharing Platform (MISP) on Amazon Web Services 

(AWS) with an AI-driven threat detection system, the framework comprises four core components: 

• Data Collection & Ingestion 

• AI Layer 

• Threat Intelligence 

• Automated Response 
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Figure 1: Integration Workflow for MISP and AI Threat Detection 

Data Collection and Ingestion: Data is collected from school network logs and emails to facilitate real-time cyber 

threat analysis. Network traffic data, system events, and firewall logs from participating educational institutions are 

streamed in real-time to AWS S3 via Amazon Kinesis, ensuring scalable and up-to-date ingestion. Similarly, email 

metadata, messages, and attachments from institutional email servers are forwarded to S3 using Amazon Simple 

Email Service (SES) to detect phishing, spam, and other malicious content. 

Once collected, the data undergoes preprocessing to ensure consistency and usability. It is normalized and 

partitioned into structured formats, such as network logs, and unstructured formats, like email text. Tokenization 

techniques are applied to anonymize sensitive fields, such as student and teacher identifiers, to comply with privacy 

regulations. Centralized storage in S3 simplifies data accessibility, providing a reliable foundation for subsequent 

AI/ML processing and enhancing real-time threat detection capabilities. 

AI-Driven Threat Analysis: To detect cyber threats in educational institutions, AI models are deployed for 

anomaly detection in network traffic and phishing detection in emails. AWS Lambda functions trigger preprocessing 

whenever new data arrives in S3, ensuring real-time analysis. These functions clean, normalize, and transform 

network logs by removing duplicates and extracting key features such as IP addresses and user login activities. For 

emails, the functions extract text bodies, attachments, and metadata, including sender information, subject lines, and 

embedded URLs. 
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For anomaly detection, AWS SageMaker’s Random Cut Forest (RCF) is employed as an unsupervised learning model 

to analyze network traffic and compute anomaly scores. This model is well-suited for detecting unusual patterns, 

such as abnormal login attempts or excessive data transfers, without requiring labeled datasets [5]. 

 

For phishing detection, a deep learning approach using DistilBERT is utilized. This lightweight NLP model, fine-

tuned on phishing datasets such as EMBER, processes email text and assigns phishing probability scores based on 

semantic patterns like urgency and fraudulent links. DistilBERT, being smaller and faster than BERT while retaining 

approximately 95% of its accuracy, allows efficient classification of emails as benign or malicious [6]. With its ability 

to fine-tune quickly on minimal labeled data, it is ideal for detecting phishing attempts in school email systems. 

Automated Response: To ensure a swift and effective response to detected threats, AWS Lambda functions 

aggregate anomaly scores from the unsupervised learning model and phishing probabilities from the DistilBERT 

model. When these scores exceed predefined thresholds, automated alerts are triggered to notify IT staff and security 

teams in real time. 

The alerting mechanism is facilitated by a secondary Lambda function, which processes anomaly detection and 

phishing classification results. If suspicious activity is identified, notifications are dispatched via Amazon Simple 

Notification Service (SNS), delivering critical alerts to dedicated incident response channels on collaboration 

platforms (Slack), ensuring rapid communication and coordinated action. 

Threat Intelligence Integration: To enhance cyber threat detection and response, Indicators of Compromise 

(IoCs) such as malicious IP addresses, domain names, and file hashes are stored and shared among participating 

institutions. These IoCs are integrated with external threat intelligence sources using STIX/TAXII standards, 

ensuring real-time updates and improved detection capabilities. [7] 

The Malware Information Sharing Platform (MISP) continuously ingests threat intelligence from commercial, open-

source, and community-driven feeds. These enriched IoCs are then pushed to AWS S3, where they are leveraged by 

AI models to enhance anomaly detection and phishing classification. Confirmed threats identified by the AI-driven 

system are logged in MISP as new IoCs, which are further enriched with external intelligence sources such as MITRE 

ATT&CK to refine detection rules [8]. 

This integration creates a closed-loop system where updated IoCs are fed back into the AI models, allowing 

continuous learning and refinement. The end-to-end workflow ensures seamless bidirectional communication 

between MISP and the AI agent, enabling ongoing improvements in threat intelligence, automated mitigation, and 

proactive cybersecurity measures for educational institutions. 

To ensure the confidentiality of student and faculty information, all personal data is anonymized or pseudonymized 

before being ingested into the system. Strict access controls are enforced to prevent unauthorized access and maintain 

compliance with data protection regulations. The prototype is designed with a restricted scope, primarily focusing on 

network and email data as key threat vectors. Other potential cybersecurity risks, such as IoT-related threats or 

physical security vulnerabilities, are not extensively tested in this phase. 

A key challenge in AI deployment is the risk of model bias and overfitting, particularly when models are trained on 

limited local data. To mitigate this, periodic retraining using diverse datasets is essential to ensure that the system 

remains effective across different environments and evolving threat landscapes. Ethical considerations also guide the 

disclosure of IoCs. Participating institutions agree to share anonymized IoCs, ensuring that sensitive details are either 

redacted or aggregated to prevent privacy breaches. This approach balances the need for effective cyber threat 

intelligence sharing while maintaining strict privacy and ethical standards. 

Phase 2: Prototype Implementation 

This phase aims to develop a functional prototype based on the designed architecture. The prototype leverages 

Amazon Web Services (AWS) to ensure scalability, reliability, and security in cyber threat detection and response. 

The AWS environment is configured with Identity and Access Management (IAM) for secure access control [9], an 

Amazon S3 data lake for centralized storage [10], and Amazon Kinesis data streams to facilitate real-time ingestion 
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of network log data from on-premises networks [11]. AWS Lambda functions enable serverless computing for 

preprocessing and AI-driven threat analysis, while Amazon Simple Email Service (SES) processes incoming emails, 

extracts relevant metadata, and stores them in S3 for further analysis. 

For AI deployment, RCF model is used for unsupervised anomaly detection in network traffic [12], while a fine-tuned 

DistilBERT model analyzes email content for phishing detection. These models are containerized and deployed using 

AWS Lambda endpoint to enable efficient inference at scale. The RCF model is initially trained on baseline network 

traffic patterns and periodically retrained to adapt to evolving threats. DistilBERT, pre-trained on extensive text 

corpora, is fine-tuned using existing phishing datasets and supplemented with locally sourced examples when 

available. 

The Malware Information Sharing Platform (MISP) is hosted on an Amazon EC2 instance with an SSL-secured web 

interface, facilitating secure sharing of IoCs such as malicious IPs, domain names, and file hashes. MISP is configured 

to integrate with external STIX/TAXII threat intelligence feeds, ensuring continuous enrichment of IoCs. These 

enriched threat indicators are pushed back to S3 and leveraged by AI models for improved detection accuracy. 

Phase 3: Pilot Testing 

The developed prototype underwent initial evaluation in controlled environments using anonymized or synthetic 

data from three selected pilot schools in Camarines Norte. These early-stage pilots assessed system performance, 

ensured data privacy, and validated detection accuracy and response effectiveness. 

To create a realistic testing framework, a simulated environment replicating the network and email infrastructure of 

participating institutions was established using AWS EC2 and Docker. Various cyber attack scenarios—including 

phishing emails, ransomware-like network spikes, and advanced persistent threat (APT)-style lateral movements—

were injected to assess the system’s ability to detect and respond to threats. This structured evaluation process 

ensured the prototype’s readiness for deployment in live educational environments while refining its detection 

models and response mechanisms. 

Phase 4: Evaluation and Metrics 

The final phase of the prototype implementation focuses on a rigorous assessment of its effectiveness through both 

quantitative and qualitative metrics. Key performance indicators include anomaly detection accuracy, phishing 

detection effectiveness, response time, threat intelligence efficacy, and system resource utilization. 

For anomaly detection, the precision and recall of RCF model is evaluated, while phishing detection is assessed based 

on accuracy and false-positive rates for the DistilBERT model. The system’s response time is measured by tracking 

latency from threat detection, starting from S3 data ingestion to alert delivery via Amazon SNS or Slack. The 

effectiveness of threat intelligence integration is evaluated by monitoring reductions in false positives after IoC 

updates. 

Comparative testing is conducted to benchmark the prototype’s performance against traditional security defenses, 

measuring improvements in detection accuracy and response speed. Time-to-detection is analyzed to determine how 

quickly the system flags a malicious event, while time-to-response measures the duration from detection to alert 

dispatch or automated mitigation. These metrics are compared against baseline figures from conventional security 

approaches lacking AI-driven analysis and threat intelligence sharing. 

Detection accuracy is further validated using labeled datasets from known phishing emails and simulated attacks, 

ensuring reliable precision, recall, and F1-score evaluations. False positives and false negatives are tracked to balance 

minimizing disruptions to normal operations while preventing missed detections that could result in security 

breaches. Additionally, AWS resource utilization is monitored, including Lambda execution time, S3 storage costs, 

and EC2 instance usage, to assess the cost-efficiency of the solution. 

Beyond quantitative analysis, qualitative feedback is gathered from IT administrators and security analysts at three 

pilot institutions. Their insights on alert usability, system scalability, and ease of collaboration through MISP provide 

critical input for refining the prototype. To systematically assess the usability and effectiveness of the system, the 

USE Questionnaire (Usefulness, Satisfaction, and Ease of use) is integrated into the evaluation process. Security 
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professionals participating in the pilot study complete the questionnaire, providing structured feedback on the 

system’s utility, ease of learning, and overall satisfaction. The results help gauge the practical impact of the prototype, 

identifying areas for improvement in user experience and adoption. [13] 

RESULTS 

This section presents the findings from each phase of the study, highlighting how the research objectives were 

addressed. Specifically, (a) the successful integration of MISP with AI-driven threat analysis is demonstrated by the 

implementation outcomes from Phases 1 and 2; (b) validation of end-to-end security workflows is shown through 

pilot testing in Phase 3; and (c) measured improvements in threat detection and response are reported in Phase 4. 

The integration of the Malware Information Sharing Platform (MISP) with the AI-driven threat detection system was 

successfully implemented as per the architecture described in Phase 1 and the subsequent prototype developed in 

Phase 2. 

Key outcomes include: 

• AWS Configuration: Identity and Access Management (IAM) was established to manage user access and 

permissions. Amazon S3 served as the central data lake, while Amazon Kinesis facilitated real-time data ingestion. 

This architecture enabled secure, scalable handling of both network and email data. 

• AI Model Deployment: 

• Random Cut Forest (RCF) for anomaly detection in network traffic was successfully deployed via AWS 

Lambda functions, which performed rapid inference on newly arrived network logs. 

• DistilBERT for phishing detection was fine-tuned on labeled email datasets and verified to run effectively as 

a containerized Lambda endpoint, demonstrating near real-time processing of new emails streamed through 

Amazon Simple Email Service (SES). 

• MISP Integration: MISP hosted on AWS EC2 showed stable connectivity with external threat intelligence feeds 

via STIX/TAXII. IoCs (malicious IPs, domains, file hashes) were regularly updated in MISP, then pushed to S3 

for ingestion by the AI models. Conversely, newly detected threats from the AI system were registered in MISP as 

new IoCs. 

Overall, the integration workflows allowed seamless handoffs of data among Kinesis, S3, the AI models, and MISP. 

Early internal testing verified that IoCs were properly referenced by both the anomaly detection and phishing 

components, confirming that AI-driven threat analysis could leverage shared intelligence to refine detection rules. 

Controlled pilot tests were conducted in three schools within Camarines Norte. A synthetic but representative 

environment was established to emulate real-world network and email infrastructure. Various cyberattack 

scenarios—phishing emails, lateral network movement, and simulated ransomware—were introduced to evaluate 

end-to-end detection and response. 

• Network Anomaly Detection: 

• Detection Rate: RCF flagged over 90% of simulated APT-style intrusions (e.g., abnormal login times, 

atypical data transfers), with false positives centered mostly around routine maintenance spikes. 

• Data Latency: On average, new logs were ingested into S3 and processed by the RCF Lambda functions in 

under 30 seconds, ensuring near real-time anomaly detection. 

• Phishing Detection: 

• DistilBERT Accuracy: The fine-tuned DistilBERT model consistently achieved an accuracy range of 94–

96% on pilot email data, effectively identifying malicious links, fraudulent sender domains, and suspicious text 

patterns. 
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• False Positives and Negatives: False-positive rates ranged between 2–4%, largely corresponding to 

urgent-but-legitimate administrative emails. False negatives were below 1%, indicating that most phishing 

attempts were successfully flagged. 

• Automated Incident Response: 

• Alert Mechanism: The Lambda aggregator function consolidated anomaly scores and phishing 

probabilities, automatically triggering Slack and SNS notifications when thresholds were exceeded. 

• Response Coordination: Security teams reported that real-time alerts allowed them to quarantine 

suspicious hosts or block sender addresses, verifying that the integrated approach facilitated faster detection 

and swift remedial action. 

Qualitative feedback from school IT administrators indicated that the end-to-end workflow—from data ingestion to 

automated alerting—was consistent and intuitive. They also highlighted the ease of referencing MISP IoCs to cross-

check external threat intelligence and confirm newly identified threats. 

A rigorous evaluation was undertaken to measure how effectively the integrated system improved threat detection 

and response. Core metrics and their outcomes are summarized below. 

1. Anomaly Detection Performance 

• Precision and Recall (RCF): 

▪ Precision: 0.90 – 0.93 

▪ Recall: 0.88 – 0.91 

• F1-Score: The F1-scores across simulated network intrusions consistently fell between 0.89 and 0.92, 

indicating a balanced performance in minimizing both false positives and false negatives. 

2. Phishing Detection Accuracy (DistilBERT) 

• Overall classification accuracy: 94–96% 

• False-positive rate: 2–4% 

• False-negative rate: below 1% 

3. Threat Intelligence Efficacy 

• Reduction in False Positives Post-IoC Updates: A small but notable decrease (approximately 10%) in 

false positives was observed once updated IoCs were ingested from MISP, illustrating the value of enriched 

threat intelligence feeds. 

• Closed-Loop IoC Sharing: Newly detected malicious indicators (e.g., email sender domains) were 

published back to MISP, enhancing the collective intelligence of the participating institutions. 

4. Response Time Improvements 

Table 1. Pilot Testing Results (Time Metrics) 

Metric Baseline (Manual) AI-Enhanced Framework Improvement (%) 

Mean Time-to-Detection ~24 hours ~5 minutes 99.6% ↓ 

Mean Time-to-Response ~8 hours ~30 minutes 93.8% ↓ 

The implemented architecture successfully achieved real-time cybersecurity threat detection and rapid automated 

response, greatly surpassing traditional manual threat handling. The significant reduction in detection and response 

times confirms the practical value of integrating AI models with automated workflows. When compared to existing 

security measures without AI-driven analysis, the integrated system reduced the average detection time from ~24 

hours to under 3 minutes. The time from detection to first response action (e.g., quarantining suspicious machines 

or blocking phishing emails) fell from several hours to under 30 minutes, facilitated by automated alerts via AWS 

SNS and Slack. 
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5. Resource Utilization and Cost Efficiency 

• AWS Lambda Execution: Over the pilot period, average Lambda invocation times remained under 2 

seconds per batch of data, ensuring prompt inference. 

• S3 Storage Costs: The storage footprint was sustainable for the pilot scale, with administrators highlighting 

the easy scalability for more extensive institutional deployments. 

• EC2 Hosting for MISP: The single MISP instance with SSL-secured web interface performed reliably, 

averaging 98% uptime during pilot operations. 

In addition to numerical assessments, IT and security specialists from the pilot schools completed the USE 

questionnaire. The USE Questionnaire assesses four dimensions: Usefulness, Ease of Use, Ease of Learning, and 

Satisfaction. 

 

Table 2. Summary of USE Questionnaire Responses 

Dimension Average Score (out of 7) 

Usefulness 6.2 

Ease of Use 5.9 

Ease of Learning 6.3 

Satisfaction 6.1 

Scores are based on a 7-point Likert scale, where 1 indicates strong disagreement and 7 indicates strong agreement. 

An average score of 6.2 indicates that users perceive the system as highly effective in enhancing their performance 

and productivity in managing cybersecurity threats. With a score of 5.9, users find the system relatively easy to 

operate, though there may be minor complexities that could be addressed to improve usability. The high score of 6.3 

suggests that users were able to learn how to use the system quickly and with minimal difficulty. A satisfaction score 

of 6.1 reflects a high level of contentment among users regarding their interaction with the system. 

Participants particularly appreciated the synergy between the AI models and MISP’s external feeds, noting that the 

continuous IoC updates helped maintain detection efficacy against rapidly evolving threats. Some respondents called 

for additional integrations with endpoint security tools and a broader set of data sources (e.g., IoT logs), suggesting 

paths for future enhancements. 

CONCLUSION 

This research demonstrates the feasibility and effectiveness of an AI-driven security framework tightly integrated 

with the Malware Information Sharing Platform (MISP) in an educational context. By combining an unsupervised 

anomaly detection model (RCF) and a deep learning–based phishing classifier (DistilBERT) with a robust threat 

intelligence sharing platform, the prototype delivers a near real-time response to evolving threats, ensuring that 

critical Indicators of Compromise (IoCs) are continuously updated and disseminated. 

From a design and implementation standpoint, the use of AWS services—such as Amazon Kinesis, S3, and Lambda—

provides a scalable foundation for ingestion, analysis, and automated alerting. Pilot testing under controlled 

environments at three schools in Camarines Norte showed that the system detects and alerts on a range of simulated 

threats with reduced latency compared to traditional defenses. Furthermore, the closed-loop integration with MISP 

bolsters detection accuracy by regularly incorporating new threat intelligence while also sharing back locally 

discovered IoCs. 

Overall, the quantitative outcomes (e.g., reduced false positives, significant time-to-response improvements) and 

qualitative feedback (e.g., high satisfaction and ease of adoption ratings) underscore the system’s practical value. This 

study confirms that AI-enhanced, intelligence-driven solutions can substantially strengthen cybersecurity postures 

in educational institutions—settings that often face resource constraints and increasingly sophisticated attacks. 

Future work could include expanding the scope of monitored data (e.g., IoT logs, endpoint telemetry), exploring 

additional AI models, and further refining the system’s usability and cost optimization for widespread adoption. 
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