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In wireless communication systems, accurate path loss estimation is one of the major concerns. 

This study evaluates and estimates path loss in an urban microenvironment using various path 

loss models, with a focus on optimizing these models to better represent real-world propagation. 

In this study, we considered particle swarm optimization algorithm to identify the optimized 

path loss models in the LOS and NLOS scenarios. The analytically calculated path loss is 

compared with the optimized values, and estimated the error statistics, are used to evaluate each 

model's performance. Simulation results demonstrate that particle swarm optimization 

algorithm significantly reduces path loss compared to analytical estimated. The 3GPP-SC model 

in the LOS scenario, optimized with PSO, achieved minimized error statistics of 3.85, 1.96, and 

1.47. In the NLOS scenario, the 5GCM-OS model shows minimized error statistics of 7.84, 2.80, 

and 1.9. Therefore, in an urban environment, 3GPP-SC and 5GCM-OS models are considered as 

the optimized path models in LOS and NLOS scenarios to enhance the network performance. 

Keywords: 5G, Error Statistics, Millimeter Wave frequency, Particle Swarm Optimization, Path 

Loss. 

 

INTRODUCTION 

As digital technology becomes more prevalent in daily life, high-speed internet connectivity is becoming necessary 

rather than optional. Signal propagation models are vital for providing sufficient and dependable signal levels in 

wireless networks, which is necessary for wireless users to obtain high-quality service [1], [2], [3]. Path loss prediction 

models to optimize system parameters, and to provide accurate path loss (PL) is a crucial component of wireless 

network architecture. These optimized parameters of wireless networks enhance the throughput, spectral efficiency, 

coverage area, handover strategies, and quality of service (QoS) [4], [5], [6].  

The weakening of signals during their transmission over wireless channels between the transmitter and the receiver 

is known to as path loss. It is inevitable because of electromagnetic propagation phenomena that can be precisely 

described and characterized, including diffraction, refraction, and scattering [7], [8]. For accurate wireless 

communication system design, PL models are essential. To estimate PL across various frequency bands and settings, 

a variety of PL models have been created and used [9], [10], [11], [12]. However, PL models that works well in one 

environment might not work well in another. 
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Various strategies are used in the literature to reduce PL by optimizing network parameters and enhancing network 

efficiency. In [13], the authors proposed a genetic algorithm (GA) to improve network efficiency by optimizing the 

nodes in an IoT network. Additionally, mixed integer linear programming was employed to enhance network 

performance and throughput by replacing nodes. The communication path loss was minimized using the dynamic 

optimal formation control (DOFC) algorithm [14]. Simulation and experimental results confirmed that the proposed 

algorithm effectively reduced communication PL. In Nigeria, the propagation PL characteristics of the global system 

for mobile communication were analyzed [15]. A received signal strength indicator was used to measure signal 

strength at various distances from the cell, estimating the PL exponent and characteristics. An average PL exponent 

of 3.2 was identified from the measurements. Therefore, optimizing path loss is crucial for improving signal strength 

and enhancing network performance. 

An optimization algorithm called particle swarm optimization (PSO) is considered as one of the best optimization 

techniques for enhancing network performance, selecting the best path, and locating the base station. The PSO and 

antlion optimization algorithms have been considered to improve the localization accuracy of wireless sensor 

networks [16]. The authors observed that their proposed algorithm reduced the localization error compared to the 

existing localization methods. In wireless networks, the location of small cell base stations (BS) is a major concern. 

In [17], the authors considered the PSO and K-means algorithm to identify the best position of the BSs. The proposed 

method enhanced the network performance by reducing packet loss and latency. The vehicular ad-hoc network 

performance has been improved using the PSO with a quality-of-service routing algorithm [18]. This method 

enhanced the packet drop, delay, and delivery rate.  

Therefore, the PSO algorithm is used to improve the 5G wireless network performance by minimizing the path loss 

in the urban microenvironment (UMi). In this paper, we considered the various PL models to estimate the PL 

analytically and compared the same with PSO. The optimal PL model, which provides minimized PL and error 

statistics has to be identified in various scenarios. This is the structure of the remainder of the paper: Section II 

provides the path loss models, Section III explains the particle swarm optimization algorithm, Section IV provides 

the results and discussions, and Section V provides the conclusions and future scope. 

PATH LOSS MODELS 

Accurate design, deployment, and comparison of wireless networks rely on precise wireless channel models to 

effectively simulate signal propagation. In this study, we examined four path loss models widely adopted by leading 

organizations: (i) the 5G Channel Model (5GCM), (ii) the 3rd Generation Partnership Project (3GPP) model, (iii) the 

Mobile and Wireless Communication Enablers for the Twenty-Twenty Information Society (METIS) model, and (iv) 

the millimeter-wave-based mobile radio access networks or 5G integrated communication (mmMAGIC) model [19], 

[20]. 

The path loss in these models is influenced by factors such as the distance between the path difference, the carrier 

frequency, and the surrounding environmental conditions. We focus on small cells in an Urban Micro (UMi) 

environment under various scenarios to estimate PL and error statistics. Table 1 summarizes the UMi PL models and 

their parameters, including shadow fading, carrier frequency, distance, and antenna heights. In the UMi 

environment, the propagation path is categorized into street canyon (SC) and open square (OS). In Table 1, R3D is the 

3-dimensional distance and is calculated as 

𝑅3𝐷 = √𝑅2 + (ℎ1 − ℎ2)2  (1) 

where R represents the path difference and in meters, h1 and h2 are the transmitter and receiver antenna heights in 

meters, f is the carrier frequency in GHz, and dBP is the breakpoint distance and is given as  

In 3GPP-SC model 

 𝑑𝐵𝑃 = 4ℎ1𝑒ℎ2𝑒𝑓/𝑐  (2) 

In METIS model  

 𝑑𝐵𝑃 = 0.87 ∗ 𝑒𝑥𝑝 (
−𝑙𝑜𝑔10(𝑓)

0.65
) ∗

4ℎ1𝑒ℎ2𝑒𝑓

𝑐
  (3) 
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where h1e and h2e are the effective heights h1e=h1-1, and h2e=h2-1, and c=3*108 m/s. The offset path loss at free space 

is given as  

 𝑃𝐿0(𝑑𝐵) = −1.38 ∗ 𝑙𝑜𝑔10(𝑓) + 3.34  (4) 

PARTICLE SWARM OPTIMIZATION 

In wireless communication systems, the quality of service, efficiency, and coverage can be improved through 

optimization techniques, an iterative process that compares several options to find the optimal one. This method 

contains various steps: (i) identifying the design parameters, (ii) defining the equality and inequality constraints, and 

(iii) developing a mathematical model to optimize the design problem [21]. 

Table 1: UMI Path Loss Models 

Model PL [dB] 
Shadow 

Fading [dB] 
Parameters 

5GCM-SC LOS 𝑃𝐿 = 32.4 + 20𝑙𝑜𝑔10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) σ = 3.76 6GHz<f<100GHz 

5GCM-SC NLOS 
CI Model:𝑃𝐿 = 32.4 + 31.7𝑙𝑜𝑔10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) 

ABG Model:𝑃𝐿 = 22.4 + 35.3𝑙𝑜𝑔10(𝑅3𝐷) + 21.3(𝑓) 

σ = 8.09 

σ = 7.82 
6GHz<f<100GHz 

5GCM-OS LOS 𝑃𝐿 = 32.4 + 18.5𝑙𝑜𝑔10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) σ = 4.2 6GHz<f<100GHz 

5GCM-OS NLOS 
CI Model: 𝑃𝐿 = 32.4 + 28.9(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) 

ABG Model: 𝑃𝐿 = 3.66 + 41.4𝑙𝑜𝑔10(𝑅3𝐷) + 24.3(𝑓) 

σ = 7.1 

σ = 7.0 
6GHz<f<100GHz 

3GPP-SC LOS 

𝑃𝐿 − 𝐿𝑂𝑆 =  {
𝑃𝐿1, 10𝑚 ≤ 𝑅 ≤ 𝑑𝐵𝑃

𝑃𝐿2, 𝑑𝐵𝑃 ≤ 𝑅 ≤ 5𝐾𝑚
 

𝑃𝐿1 = 32.4 + 21 log10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) 

𝑃𝐿2 = 32.4 + 21 log10(𝑅3𝐷)

+ 20 log10 𝑓

−  9.5 log10(𝑑𝐵𝑃)2 + (ℎ1 − ℎ2)2 

Where dBP is a break point distance, which is given 

by eq (1). 

σ = 4.0 

0.5GHz<f<100GHz 

1.5m≤h2≤22.5m 

h 1≤10m 

3GPP-SC NLOS 

𝑃𝐿 = max(𝑃𝐿 − 𝐿𝑂𝑆, 𝑃𝐿 − 𝑁𝐿𝑂𝑆) 

𝑃𝐿 − 𝑁𝐿𝑂𝑆 = 22.4 + 35.3𝑙𝑜𝑔10(𝑅3𝐷) + 21.3𝑙𝑜𝑔10(𝑓)

− 0.3(ℎ2 − 1.5) 

σ = 7.82 

0.5GHz<f<100GHz 

10m≤R≤5000m 

1.5m≤h2≤22.5m 

h 1≤10m 

METIS-SC LOS 

𝑃𝐿 − 𝐿𝑂𝑆 =  {
𝑃𝐿1, 10𝑚 ≤ 𝑅 ≤ 𝑑𝐵𝑃1

𝑃𝐿2, 𝑑𝐵𝑃1 ≤ 𝑅 ≤ 500𝑚
 

𝑃𝐿1 = 28 + 22 log10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) + 𝑃𝐿0 

𝑃𝐿2 = 7.8 + 40 log10(𝑅3𝐷) + 20 log10 𝑓 −

 18 log10(ℎ1ℎ2) + 𝑃𝐿1(𝑑𝐵𝑃)  

Where dBP1 and PL0 are given by eq (2) and eq (3). 

σ = 3.1 

0.8GHz<f<60GHz 

1.5m≤h2≤22.5m 

h 1≤10m 

METIS-SC NLOS 

𝑃𝐿 = max(𝑃𝐿 − 𝐿𝑂𝑆, 𝑃𝐿 − 𝑁𝐿𝑂𝑆) 

𝑃𝐿 − 𝑁𝐿𝑂𝑆 = 23.15 + 36.7𝑙𝑜𝑔10(𝑅3𝐷) + 26𝑙𝑜𝑔10(𝑓)

− 0.3(ℎ2) 

σ = 4.0 

0.45GHz<f<6GHz 

10m≤R≤2000m 

1.5m≤h2≤22.5m 

h 1≤10m 

mmMAGIC-SC 

LOS 
𝑃𝐿 = 32.9 + 19.2𝑙𝑜𝑔10(𝑅3𝐷) + 20.8𝑙𝑜𝑔10(𝑓) σ = 2.0 6GHz<f<100GHz 
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mmMAGIC-SC 

NLOS 
𝑃𝐿 = 31.0 + 45𝑙𝑜𝑔10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) σ = 7.82 6GHz<f<100GHz 

The PSO algorithm is a search-based technique that iteratively adjusts the population to detect the optimal solution 

for a given problem. Fig. 1 presents the flowchart of the PSO algorithm. In this algorithm, initially, the number of 

iterations, cognitive (C1) and social (C2) parameters, and initial weight (W) are to be determined. The next step is to 

determine the objective function based on the PL model and determine the particle position and velocity based on 

the path difference and carrier frequency. Finally, the best position and PL as an initial value from the objective 

function are estimated, and the best path loss for a global position out of all particle positions is determined. This 

procedure should be repeated for the number of iterations or until convergence  

criteria are met. The particle position and velocity are estimated as [22], [23] 

𝑁𝑒𝑤𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑊 ∗ 𝑂𝑙𝑑𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + 𝐶1 ∗ 𝑟𝑎𝑛𝑑( ) ∗ 

(𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝐵𝑒𝑠𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) + 

𝐶2 ∗ (𝐺𝑙𝑜𝑏𝑎𝑙 𝐵𝑒𝑠𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)  (5) 

The particle’s position is updated using the new velocity, using eq (1) as 

𝑁𝑒𝑤𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑁𝑒𝑤𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦  (6) 

The obtained global best position and path loss provide the minimized path loss. In this paper, we considered 50 

iterations, 50 particles, C1=C2=1.49445, W=0.729, 1m≤D≤1000m, and 1GHz≤f≤100GHz to estimate the best 

position, velocity, and path loss.  

In this study, we aim to compare the analytical PL of an urban microenvironment using various path models with 

PSO and to identify the best PL model in multiple scenarios using PSO algorithms. 

 

Fig 1: Particle Swarm Optimization Flowchart 

RESULTS AND DISCUSSIONS 

In this section, we considered PL identification using PL models mentioned in Table 1. The PL is identified 

analytically and compared using the particle swarm optimization algorithm using MATLAB software. The basic 

parameters for calculating the path loss are h1=10 meters, h2=20 meters, path difference R=1-1000 meters, and 

operating frequency f=1-100 GHz.  
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Path loss with path difference at an operating frequency of 20 GHz, 60 GHz, and 100 GHz, which are shown in Figs 

2-4. From Fig 2, it is identified that PL increases with both path distance and operating frequency. At f=20 GHz and 

R=200 meters, the minimum PL of 103 dB is identified in the 5GCM-OS model under the LOS scenario, while the 

maximum PL of 168 dB is seen in the mmMAGIC-SC model under the NLOS scenario. As the path distance increases, 

the PL also rises i.e., at R=1000 meters, the PL in the 5GCM-OS LOS scenario reaches 119 dB, and in the mmMAGIC-

SC NLOS scenario, it increases to 200 dB. 

Figure 3 shows an increase in path loss with operating frequency compared to Fig 2. At f=60 GHz and R=200 meters, 

the 5GCM-OS model under the LOS scenario shows a minimum path loss of 112.3 dB, and at R=1000 meters, the 

path loss rises to 122.5 dB. In contrast, the mmMAGIC-SC model under the NLOS scenario exhibits a maximum path 

loss of 179.2 dB at R=200 meters and 208.6 dB at R=1000 meters.  

 

Fig 2: Path loss with Path Difference at 20 GHz 

 

Fig 3: Path loss with Path Difference at 60 GHz 
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Fig 4: Path loss with Path Difference at 100 GHz 

From Fig 4, it is observed that at f=100 GHz and R=200 meters, the 5GCM-OS model under the LOS scenario 

produces a minimum path loss of 118.3 dB, and at R=1000 meters, the path loss rises to 132.5 dB. In contrast, the 

mmMAGIC-SC model under the NLOS scenario exhibits a maximum path loss of 181.2 dB at R=200 meters and 214.6 

dB at R=1000 meters. Therefore, the increase in carrier frequency increases the PL and this increase is high at the 

lower path differences compared to the high path differences, which can be observed from Figs 2-4. 

In this study, we considered a PSO algorithm to reduce path loss in an urban microenvironment and to identify the 

optimal PL model. The analytical PL estimation using the PL equations shown in Table 1 and optimal path loss 

estimation using the PSO algorithm are shown in Figs 5-9.  

 

Fig 5: PL Comparison of 5GCM-SC models 

Fig. 5 compares the analytical and PSO approaches regarding path loss using the 5GCM-SC model. The figure 

demonstrates that the PSO algorithm achieves lower path loss than the analytical approach. In the PSO approach, 

path loss is influenced by the number of iterations; as the iterations increase, path loss decreases. Initially, the path 

loss is higher with fewer iterations but gradually reduces as the iterations progress. In the LOS scenario, the minimum 

path loss occurs at a path distance of 435 meters, while in the NLOS scenario, the lowest path loss is observed at 650 

meters, which will be considered an optimal path difference in an urban microenvironment using the 5GCM-SC 

model. 

Fig. 6 compares the 5GCM-OS model path loss through analytical and PSO approaches. The optimal path difference 

in LOS and NLOS scenarios is identified as 800 meters and 270 meters respectively. These optimal values provide 

the minimum path loss of 87.8 dB, and 108.2 B in LOS and NLOS scenarios.  
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Fig. 7 compares the path loss of the 3GPP-SC model using both analytical and PSO approaches. A minimum PL of 82 

dB is identified at an optimal distance of 280 meters in the LOS scenario, and 120 dB at 870 meters in the NLOS 

scenario. These optimal values minimize path loss and enhance signal efficiency in wireless networks. 

 

Fig 6: Comparison of Path loss of 5GCM-OS model 

 

Fig 7: Comparison of Path loss of 3GPP-SC model 

Fig. 8 compares the path loss of the METIS-SC model using analytical and PSO approaches. In the LOS scenario, a 

minimal path loss of 70 dB is observed at an optimal distance of 800 meters, while in the NLOS scenario, it is 74 dB 

at 490 meters. Similarly, in Fig 9, the mmMAGIC-SC model path loss characteristics are shown. The minimum path 

loss of 86 dB is observed at an optimal path difference of 460 meters in the LOS scenario and 140 dB at 800 meters 

in the NLOS scenario.  



Journal of Information Systems Engineering and Management 
2025, 10(33s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

419 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Fig 8: PL Comparison of METIS-SC model 

 

Fig 9: PL Comparison of mmMAGIC-SC Model 

Table 2: Path Loss Error Statistics of Various Path Loss Models 

Parameter

/ Model 

5GCM- 

SC LOS 

5GCM- 

SC 

NLOS 

5GCM- 

OS LOS 

5GCM- 

OS NLOS 

3GPP- 

SC LOS 

3GPP- 

SC 

NLOS 

METIS- 

SC LOS 

METIS- 

SC 

NLOS 

mmMAGIC- 

SC LOS 

mmMAGIC-

SC NLOS 

MSE 6.99 12.75 5.15 7.84 3.85 9.97 6.00 12.16 5.71 17.20 

RMSE 2.64 3.54 2.67 2.80 1.96 3.16 2.25 3.48 2.40 4.15 

SE 1.70 2.2 1.56 1.9 1.47 1.68 2.00 2.08 1.50 3.25 

The path loss error measurements such as mean square error (MSE), root MSE (RMSE), and Standard deviation 

error (SE) are estimated by comparing the analytical path loss with optimized values, which are mentioned in Table 

2. From the table, it can be observed that the 3GPP-SC model produces the minimum error statistics in the LOS 

scenario, while the 5GCM-OS model achieves the same in the NLOS scenario. Consequently, the 3GPP-SC and 5GCM-

OS models are identified as the optimal path-loss models for urban microenvironments.  

CONCLUSION 
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In this paper, we considered a 5G wireless network with an urban microenvironment to estimate the path loss in LOS 

and NLOS scenarios The PL is identified using the multiple PL models and identified the best PL model in LOS and 

NLOS scenarios. The PSO algorithm is used to estimate the PL and its error measurements of PL models. From the 

simulation results, we identified the 3GPP-SC as the optimized PL model in LOS scenario and 5GCM-OS model in 

NLOS scenario as it provides minimized PL in an urban microenvironment. In future, we want to implement the 

same experimentally in the real world.  
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