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Hyperparameter tuning is an important process for optimizing the performance of machine 

learning models by fine-tuning parameters such as learning rate, batch size, and the number of 

epochs. This study systematically explored these parameters using a grid search optimization 

approach, conducting 120 experiments to enhance model accuracy and minimize loss. Key 

performance metrics, such as accuracy and loss, were used to evaluate the system's performance. 

Visualizations like line graph, heatmap, and pair plot gained insights into parameter 

interactions. The optimal configuration identified consisted of a learning rate of 0.001, a batch 

size of 32, and 50 epochs, achieving a test accuracy of 100.0% and a test loss 0.0027. These 

results represented a significant improvement over the approximated baseline configuration, 

which yielded a test accuracy of 90.4% and a test loss of 0.4164. The findings underscore the 

importance of moderate parameter values to ensure stable convergence, efficient training, and 

prevention of overfitting. By achieving substantial gains in accuracy and reductions in loss, the 

study demonstrates the transformative impact of hyperparameter tuning on model performance.  

Keywords: Hyperparameter tuning, learning rate, batch size, epochs, model optimization. 

 

INTRODUCTION 

The citrus industry is a cornerstone of global agriculture, contributing significantly to food production, economic 

growth, and international trade. Within this diverse industry, Satsuma mandarins hold a prominent position, 

particularly in Asia and the Philippines. These mandarins, known for their distinct flavor and adaptability to different 

climates, enhance citrus diversity and sustain agricultural livelihoods. The global demand for citrus fruits, including 

Satsuma mandarins, underscores their economic and nutritional significance, making them an indispensable crop in 

the fruit trade [1]. 

Citrus fruits are cultivated extensively in tropical and subtropical regions, with leading contributions from the 

European Union, the Middle East, and Africa. These regions have emerged as global exporters, fostering economic 

interdependence through citrus trade. Notably, the citrus sector has catalyzed local economic development, especially 

in citrus-producing nations like the Philippines, where it has become a linchpin of rural development and farmer 

empowerment. In 2021, these regions dominated the global trade in citrus fruits, reflecting the widespread 

importance of this industry [2][4]. 

Satsuma mandarins are especially significant in the agricultural landscapes of certain regions, such as the Gulf Coast 

states of the United States and Nueva Vizcaya in the Philippines. These mandarins serve as a primary source of 

income for many citrus growers and enhance regional agricultural identities. For instance, Nueva Vizcaya contributes 

up to 80% of the annual citrus output in the Cagayan Valley Region of the Philippines, demonstrating the critical role 

of crops in local economies. A recent study in Malabing Valley, Municipality of Kasibu, Nueva Vizcaya, Philippines, 

surveyed 196 Satsuma growers to assess the prevalent fruit diseases, current practices, and technology adoption 

approaches. The study identified Scab, Huanglongbing (Citrus Greening Disease), and Canker as the most prevalent 

diseases affecting Satsuma production in the area, highlighting local growers' challenges. Their staggered harvesting 
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seasons and early bearing characteristics also provide growers with extended market opportunities, ensuring 

sustained incomes [3]. Furthermore, their staggered harvesting seasons and early bearing characteristics provide 

growers extended market opportunities, ensuring sustained incomes [4][5]. 

Recent advancements in fruit disease detection techniques have revolutionized agricultural practices by leveraging 

computer vision and machine learning. Convolutional Neural Networks (CNNs) have been pivotal, showcasing high 

accuracy in various applications. For instance, a study on Apple defect detection using a CNN-based model achieved 

96.5% accuracy and outperformed traditional methods, showing its effectiveness for real-time use in commercial 

packing lines [7]. Expanding the scope, researchers utilized a hybrid approach combining Convolutional Neural 

Networks (CNNs) and machine learning techniques to classify various fruit diseases across a heterogeneous dataset, 

achieving an impressive accuracy of 97.10% [8]. This approach demonstrates the potential of CNN models in 

addressing diverse fruit disease detection challenges while enhancing performance compared to traditional methods. 

However, specific fruit types and conditions have often been the focus. 

Research in this area aims to explore how hyperparameter optimization can enhance the accuracy and reliability of 

Satsuma fruit disease detection models. This study seeks to address gaps in the existing literature and contribute to 

advancements in precision agriculture by leveraging machine learning models, optimizing critical parameters, and 

evaluating performance improvements. 

The accuracy and efficiency of identifying and managing plant diseases have significantly improved. Integrating 

advanced deep learning techniques, such as transfer learning and hybrid models, has enhanced model robustness 

and efficiency [9]. For instance, transfer learning has been effectively utilized in banana disease detection with 

ResNet and InceptionV2 architectures, demonstrating its ability to handle complex features with minimal data [10].  

Furthermore, applying multi-spectral imaging technologies has expanded the capabilities of automated fruit disease 

detection systems. Researchers have developed systems capable of identifying external fruit defects by integrating 

near-infrared (NIR) and RGB imaging, employing adaptive preprocessing and threshold-based analysis [11]. These 

advancements enhance detection accuracy and address challenges posed by limited training data and diverse 

environmental conditions. 

While these methods show great promise, they also highlight the need for further research to improve model 

generalization across various fruit types and environments. Future efforts should focus on integrating these 

technologies with real-time monitoring systems to enable widespread adoption in precision agriculture. The 

agricultural industry can reduce economic losses due to fruit diseases and improve overall crop management 

practices. 

The reviewed studies highlight significant advancements in machine learning and hyperparameter optimization for 

fruit disease detection. While existing studies have explored CNN-based models for various fruits and achieved high 

accuracy rates, a clear gap still needs to be bridged in systematically addressing hyperparameter tuning precisely for 

Satsuma fruit disease detection. For instance, studies have optimized CNNs with techniques such as Dung Beetle 

Optimization for detecting tomato disease [12] and transfer learning for identifying grape leaves [13]. The benefits of 

these methods for Satsuma fruit detection still need to be explored. A systematic review of hyperparameter 

optimization techniques in Convolutional Neural Networks further emphasizes the importance of this approach in 

improving model performance [14]. However, applying these advanced techniques to Satsuma-specific datasets and 

disease categories still needs to be improved, presenting an opportunity for future research. 

Recent studies have explored grid search optimization in fruit disease detection, leveraging deep learning techniques 

to enhance accuracy and efficiency. This approach has been applied to various aspects of fruit disease detection 

models, including hyperparameter tuning, model architecture optimization, and feature selection. Moreover, the 

impact of hyperparameter tuning strategies such as the grid search approach has been well-documented across 

diverse machine learning domains. 

Deep learning models for fruit disease detection have their hyperparameters optimized through grid search. For 

instance, in a study on strawberry disease and quality detection, researchers used Grid Search (GS) to systematically 

evaluate hyperparameter combinations by discretizing their ranges [15]. This method helped fine-tune numeric and 
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integer hyperparameters for vision transformers and attention-based convolutional neural networks. Additionally, 

studies on optimization techniques like Dung Beetle Optimization and multi-objective frameworks provide valuable 

insights, although these strategies are minimally applied to Satsuma fruit disease detection. 

Furthermore, EfficientNet, a popular deep learning architecture, initially performs a grid search for the base network 

to determine the relationships between unique scaling dimensions [16]. This approach has been adapted in fruit 

detection and classification studies to optimize model architectures for specific fruit types and diseases. For example, 

the YOLO-v8 framework has been utilized for fruit detection and recognition, demonstrating the application of 

optimized architectures in this field [16]. As tuning hyperparameters can enhance model performance significantly, 

further research is needed to adapt and evaluate these strategies specifically for the Satsuma dataset. 

Moreover, several studies have used grid search to compare the performance of different deep learning models for 

fruit disease detection. CNN-based methods have shown promising results in single-stage fruit detection and 

recognition [17]. These models have been optimized using grid search to improve their performance detecting various 

fruit diseases [17] [18]. Similarly, two-stage methods based on R-CNN variants, including Faster R-CNN and Mask 

R-CNN, have also been optimized using grid search for improved accuracy in fruit disease detection [18]. For 

instance, a study on citrus fruit disease detection used a Faster-CNN model with context data fusion, achieving high 

accuracy in various diseases like citrus canker, scab, melanosis, greening, blackspot, and healthy with accuracy, 97%, 

95%, 99%, 97%, 97%, and 97%, respectively [19]. 

Finally, while comprehensive reviews on the broader effects of hyperparameter optimization on deep learning models 

exist, including their influence on CNN accuracy and multi-objective applications, these insights have yet to be 

systematically extended to address the unique challenges of Satsuma fruit disease detection [20]. Future work could 

bridge this gap by developing optimization frameworks tailored to Satsuma datasets, potentially enhancing accuracy 

and applicability. Addressing these gaps, researchers can contribute to the broader goal of improving agricultural 

productivity and disease management for this economically significant fruit, the Satsuma mandarin.  

METHODS AND METHODOLOGY 

This study followed a structured approach to develop and optimize a Convolutional Neural Network (CNN) for 

classifying Satsuma fruit diseases, focusing on canker and scab. The process was divided into key stages: dataset 

preparation, data preprocessing, model selection, initial model development, hyperparameter tuning, final selection 

and testing, and analysis and reporting. 

A. Dataset Preparation 

Data collection and preparation are vital for any image-based disease detection system. In the case of the Satsuma 

mandarin fruit, the researcher meticulously acquired high-quality images of disease conditions such as scab and 

canker. The study focused on citrus orchards in the Malabing Valley of the Municipality of Kasibu, Nueva Vizcaya, 

Philippines. 

Images were captured from various angles to ensure comprehensive representation, providing a holistic view of the 

disease manifestations on the fruit. A key aspect of the data collection process was using a photo studio box, which 

provided consistent lighting conditions across all images. This controlled environment is essential for minimizing 

variations that could affect subsequent analysis's accuracy. 

The imaging equipment played a significant role in maintaining data quality. A high definition camera was employed 

for its advanced capabilities, while the researcher utilized a tripod and shutter to ensure stability during image 

capture. These measures contribute to the overall clarity and consistency of the dataset. 

The dataset comprised 1,000 images, equally distributed between the two disease conditions under study. 

Specifically, 500 images were collected for canker-affected Satsuma mandarins and another 500 for those exhibiting 

scab. This balanced dataset is crucial for training machine learning models, as it helps prevent bias towards one 

condition. 
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B. Data Preprocessing 

Data preprocessing began with meticulous image enhancement using the Canva’s product photos feature to eliminate 

subtle shadows caused by varying capture angles. All images were standardized with consistent margins and 

dimensions of 1440x1440 pixels to ensure uniformity and optimal focus on the fruit samples. 

The annotation process was conducted through the Roboflow platform, leveraging the expertise of five agricultural 

experts. The annotation team consisted of three academic experts specializing in citrus research and two 

professionals from the agriculture sector - one municipal agriculture officer and one agricultural technician. 

Following standard machine learning practices, the researcher strategically split the dataset into three sets: a training 

set comprising 80% of the data, the validation, and test sets, each receiving 10% of the total dataset. This distribution 

ensures robust model training while maintaining sufficient data for validation and testing purposes. 

C. Initial Model Development with Google Teachable Machine 

The initial model development for the Satsuma fruit disease classification project began with using Google Teachable 

Machine (GTM), a user-friendly platform for creating machine learning models. The process commenced by 

accessing the GTM application and initiating a new image project. The standard image model was selected as the 

most suitable option for this task, balancing performance and versatility. 

The standard image model operates with 224x224 pixel color images and provides the flexibility to export the trained 

model to various formats, including TensorFlow, TFLite, and TF.js. This versatility ensures compatibility with 

different deployment environments and platforms. The model's compact size of approximately 5MB makes it ideal 

for applications with limited storage or bandwidth constraints. 

The researcher built a robust dataset for training by downloading images from Roboflow, a popular platform for 

managing computer vision data. To maintain a balance between disease classes, the researcher selected 500 images 

for scab and canker diseases. These preprocessed Satsuma fruit images were then uploaded to the GTM platform, as 

shown in Figure 1. Careful labeling was performed to categorize the disease images into their respective classes, such 

as canker and scab. 

 

Figure 1. Uploaded Satsuma fruit images in Google Teachable Machine. 

The initial model training utilized the MobileNet architecture, a state-of-the-art convolutional neural network for 

mobile and edge devices. This choice of architecture aligns well with the model's goals, as it offers a good trade-off 

between accuracy and computational efficiency. Using the GTM and the MobileNet architecture, the study laid a solid 

foundation for developing an effective Satsuma fruit disease detection model. 

D. Hyperparameter Tuning using Grid Search 

The researcher conducted hyperparameter tuning using the grid search method to optimize the model's performance. 

This approach systematically evaluated combinations of key hyperparameters, including the number of epochs, 

learning rate, and batch size. The results of these experiments are summarized in Tables 1(a) to 1(d), which detail the 

performance metrics (accuracy and loss) for both training and testing datasets under varying configurations. 
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Table 1(a) presents the results for experiments conducted over 10 epochs, while Table 1(b), Table 1(c), and Table 1(d) 

outline results for 50 epochs, 100 epochs, and 200 epochs, respectively. Each table highlights the influence of 

different hyperparameter combinations on model performance. 

These tables collectively illustrate the systematic evaluation of hyperparameter combinations, providing insights into 

their effects on both accuracy and loss. The analysis reveals the importance of achieving a balanced configuration to 

ensure optimal model performance. 

E. Final Model Selection and Testing 

This study began with identifying the best-performing model based on the results of hyperparameter tuning. The 

model with the optimal combination of hyperparameters was selected for further refinement, as determined by the 

highest test accuracy and lowest test loss. The researcher retrained this model using the combined training and 

validation datasets to maximize its learning capacity and ensure robust generalization. Following retraining, the 

researcher evaluated the selected model on a held-out test dataset to assess its performance on unseen data. Key 

performance metrics, including accuracy and loss, were calculated and analyzed to validate the effectiveness of the 

fruit disease detection model. Finally, the optimized model was exported and prepared for deployment, ensuring its 

integration into the target application or system for practical use. 

Table 1(a). Experiment results showcasing the impact of varying hyperparameter combinations (learning rate, 

batch size, accuracy, and loss) for 10 epochs 

Experiment 

No. 

Learning 

Rate 
Batch Size 

Accuracy Loss 

Train Test Train Test 

1 0.1 16 0.500235295 0.500000000 4.186222887 4.605220795 

2 0.1 32 0.499882358 0.500000000 4.584222651 4.605220366 

3 0.1 64 0.727764738 0.734666681 2.362277704 2.439478219 

4 0.1 128 0.503411770 0.500000000 4.554040575 4.605220795 

5 0.1 256 0.499882355 0.500000000 4.488973260 4.605220318 

6 0.1 512 0.501529413 0.500000000 4.370074511 4.605221272 

7 0.01 16 0.996000010 1.000000000 0.013361842 0.000203080 

8 0.01 32 0.990235317 0.998000002 0.130621797 0.010382780 

9 0.01 64 0.989176482 0.992000008 0.071627125 0.014184124 

10 0.01 128 0.965294147 0.980000007 0.299268581 0.150237464 

11 0.01 256 0.945058852 0.991999966 0.232302721 0.023955843 

12 0.01 512 0.889411813 0.941999990 0.627381901 0.193951146 

13 0.001 16 0.996470594 1.000000000 0.222619582 0.203781826 

14 0.001 32 0.993411773 1.000000000 0.040126299 0.009117263 

15 0.001 64 0.990588242 1.000000000 0.071060724 0.007231903 

16 0.001 128 0.981764740 0.994000006 0.116686334 0.054659977 

17 0.001 256 0.984470618 0.997333282 0.075211652 0.034798627 

18 0.001 512 0.961764753 0.982000017 0.142378217 0.107636555 

19 0.0001 16 0.891635124 0.992666674 0.077844089 0.050116538 

20 0.0001 32 0.973176521 0.986000013 0.150369481 0.119448031 

21 0.0001 64 0.970117694 0.986666673 0.182678549 0.147170970 
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Experiment 

No. 

Learning 

Rate 
Batch Size 

Accuracy Loss 

Train Test Train Test 

22 0.0001 128 0.894705939 0.954000014 0.408366266 0.369308048 

23 0.0001 256 0.909418476 0.904000017 0.457296905 0.416415323 

24 0.0001 512 0.726823574 0.770666665 0.635090500 0.605100194 

25 0.00001 16 0.928117704 0.367142709 0.932666689 0.352248397 

26 0.00001 32 0.790117681 0.823333359 0.599628720 0.523257282 

27 0.00001 64 0.919294167 0.924000037 0.505561969 0.495822170 

28 0.00001 128 0.662352979 0.653196579 0.652805072 0.654437643 

29 0.00001 256 0.576000023 0.596666682 0.649600452 0.634260952 

30 0.00001 512 0.497764736 0.513745189 0.755617070 0.758092856 

Table 1(b). Experiment results showcasing the impact of varying hyperparameter combinations (learning rate, 

batch size, accuracy, and loss) for 50 epochs 

Experiment 

No. 

Learning 

Rate 

Batch 

Size 

Accuracy Loss 

Train Test Train Test 

31 0.1 16 0.499647063 0.500000000 4.600047588 4.605220318 

32 0.1 32 0.501529413 0.500000000 4.579988575 4.605220795 

33 0.1 64 0.502352947 0.500000000 4.554415846 4.605220318 

34 0.1 128 0.497176474 0.500000000 4.560686111 4.605219841 

35 0.1 256 0.912117696 0.920666671 0.687031870 0.713608091 

36 0.1 512 0.525058830 0.500000000 4.244945359 4.605220318 

37 0.01 16 0.992352957 0.992666674 0.023971816 0.020930748 

38 0.01 32 0.992235303 0.996666670 0.026078442 0.008257028 

39 0.01 64 0.975764734 0.995333338 0.066179253 0.012828836 

40 0.01 128 0.971058851 0.998000002 0.077336651 0.007497785 

41 0.01 256 0.940235323 0.989333302 0.258844613 0.026697355 

42 0.01 512 0.915882373 0.968666637 0.197101715 0.072640024 

43 0.001 16 0.997294128 1.000000000 0.010958936 0.003400818 

44 0.001 32 0.994470596 1.000000000 0.017323309 0.002661103 

45 0.001 64 0.984000027 1.000000000 0.042381167 0.012898028 

46 0.001 128 0.973647088 0.996000004 0.058958527 0.022378182 

47 0.001 256 0.970470607 0.997333276 0.102879866 0.051043681 

48 0.001 512 0.873069602 0.991333282 0.133973394 0.089443948 

49 0.0001 16 0.910493729 1.000000000 0.075445634 0.045487585 

50 0.0001 32 0.988000035 0.992666674 0.098567154 0.071142640 

51 0.0001 64 0.976941204 0.990666676 0.151083306 0.123757328 

52 0.0001 128 0.902567941 0.910544086 0.293518953 0.229656052 



Journal of Information Systems Engineering and Management 
2025, 10(33s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

465 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Experiment 

No. 

Learning 

Rate 

Batch 

Size 

Accuracy Loss 

Train Test Train Test 

53 0.0001 256 0.900941199 0.944666636 0.291208424 0.330217773 

54 0.0001 512 0.847111708 0.406190001 0.898666686 0.347362870 

55 0.00001 16 0.908705926 0.936000013 0.304948511 0.288376336 

56 0.00001 32 0.957411808 0.974666685 0.292893664 0.290249754 

57 0.00001 64 0.784705919 0.794000012 0.421684742 0.418428443 

58 0.00001 128 0.799176532 0.822000009 0.442271334 0.437186429 

59 0.00001 256 0.854117697 0.466670147 0.850666690 0.483631414 

60 0.00001 512 0.706117678 0.728666687 0.607600242 0.587479722 

Table 1(c). Experiment results showcasing the impact of varying hyperparameter combinations (learning rate, 

batch size, accuracy, and loss) for 100 epochs 

Experiment 

No. 

Learning 

Rate 

Batch 

Size 

Accuracy Loss 

Train Test Train Test 

61 0.1 16 0.500000000 0.500000000 4.601576400 4.605220318 

62 0.1 32 0.500705883 0.500000000 4.592268491 4.605220318 

63 0.1 64 0.509411767 0.500000000 4.506344438 4.605220318 

64 0.1 128 0.499764708 0.500000000 4.577202201 4.605220318 

65 0.1 256 0.499588236 0.500000000 4.550764680 4.605220938 

66 0.1 512 0.920411813 0.901432388 0.615778235 0.596673449 

67 0.01 16 0.941117671 0.963666663 0.154696742 0.090282939 

68 0.01 32 0.995705888 1.000000000 0.014666312 0.000440174 

69 0.01 64 0.992313731 0.997000003 0.067000630 0.105332136 

70 0.01 128 0.983588248 0.996000001 0.038336037 0.011435778 

71 0.01 256 0.966058844 0.980999961 0.109200791 0.056469477 

72 0.01 512 0.941117671 0.963666633 0.154741635 0.140565804 

73 0.001 16 0.997117653 1.000000000 0.007944104 0.002122768 

74 0.001 32 0.996352947 0.999666667 0.010343391 0.002787920 

75 0.001 64 0.996235305 0.999333334 0.016093008 0.004415038 

76 0.001 128 0.988470611 0.996666670 0.030996326 0.019935395 

77 0.001 256 0.989000025 0.949496365 0.039323474 0.019600416 

78 0.001 512 0.969470608 0.963556138 0.092485594 0.059976876 

79 0.0001 16 0.992117661 0.999333334 0.045187414 0.026718322 

80 0.0001 32 0.992294142 0.996000004 0.063690395 0.044323306 

81 0.0001 64 0.984058851 0.945562404 0.094350549 0.124031009 

82 0.0001 128 0.969411799 0.981666678 0.159569135 0.179218113 

83 0.0001 256 0.955647090 0.978999981 0.194962953 0.225335468 

84 0.0001 512 0.925143239 0.945682451 0.312952035 0.279205376 
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Experiment 

No. 

Learning 

Rate 

Batch 

Size 

Accuracy Loss 

Train Test Train Test 

85 0.00001 16 0.973823556 0.993000004 0.188411326 0.172941799 

86 0.00001 32 0.901294143 0.912333351 0.285837300 0.281518676 

87 0.00001 64 0.903588280 0.910000008 0.322407996 0.329799598 

88 0.00001 128 0.870117709 0.893333346 0.362400334 0.397233804 

89 0.00001 256 0.873117703 0.899666634 0.380456151 0.418019665 

90 0.00001 512 0.752117693 0.523881967 0.746000010 0.565707110 

Table 1(d). Experiment results showcasing the impact of varying hyperparameter combinations (learning rate, 

batch size, accuracy, and loss) for 200 epochs 

Experiment 

No. 

Learning 

Rate 

Batch 

Size 

Accuracy Loss 

Train Test Train Test 

91 0.1 16 0.500000000 0.500000000 4.603796371 4.603795910 

92 0.1 32 0.501862746 0.500000000 4.600944455 4.605220795 

93 0.1 64 0.501647059 0.500000000 4.586048142 4.605220318 

94 0.1 128 0.498666668 0.500000000 4.594326576 4.605219841 

95 0.1 256 0.498941177 0.500000000 4.569311420 4.605221272 

96 0.1 512 0.500000000 0.500000000 4.527073089 4.605221272 

97 0.01 16 0.997882356 1.000000000 0.006205114 0.000234933 

98 0.01 32 0.997647063 0.999333334 0.006566757 0.002770884 

99 0.01 64 0.993098046 0.999333334 0.025767571 0.001409600 

100 0.01 128 0.988862753 0.992888894 0.027347423 0.015803373 

101 0.01 256 0.970627477 0.991777730 0.092543424 0.018577503 

102 0.01 512 0.956509826 0.968888863 0.113300156 0.097804258 

103 0.001 16 0.999019611 1.000000000 0.003776477 0.000512920 

104 0.001 32 0.996745102 0.998888890 0.009550057 0.004031184 

105 0.001 64 0.994823533 0.997777780 0.015208454 0.007452758 

106 0.001 128 0.995058835 0.993333340 0.020700078 0.019739335 

107 0.001 256 0.991450995 0.996444398 0.029903942 0.054956274 

108 0.001 512 0.973764727 0.993555508 0.068778149 0.047225130 

109 0.0001 16 0.993921586 0.998222224 0.035561693 0.024697517 

110 0.0001 32 0.992078455 0.999333334 0.046690202 0.034508211 

111 0.0001 64 0.986039239 0.990444452 0.079205729 0.071272759 

112 0.0001 128 0.977960811 0.987333337 0.123259639 0.123206185 

113 0.0001 256 0.968509833 0.973999959 0.162231565 0.154155389 

114 0.0001 512 0.955568647 0.967777753 0.221043634 0.212814956 

115 0.00001 16 0.974196108 0.981333339 0.168757119 0.161574151 

116 0.00001 32 0.938196106 0.925111120 0.224227631 0.235501641 
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Experiment 

No. 

Learning 

Rate 

Batch 

Size 

Accuracy Loss 

Train Test Train Test 

117 0.00001 64 0.917647084 0.925333343 0.273670566 0.267966468 

118 0.00001 128 0.881460782 0.895555570 0.319762941 0.313311989 

119 0.00001 256 0.873117703 0.899666634 0.380456151 0.418019665 

120 0.00001 512 0.745217693 0.756000010 0.533484967 0.565707110 

F. Analysis and Reporting 

This study examined how hyperparameters affect model performance. The researcher analyzed various combinations 

of learning rate, batch size, and epochs to find the optimal configuration. Through detailed analysis and visualization 

techniques like heatmaps and line plots, patterns emerged showing how different hyperparameters influenced 

accuracy and loss. 

The optimal configuration with a learning rate of 0.001, batch size of 32, and 50 epochs significantly improved model 

performance compared to the baseline. This research highlights the importance of systematic hyperparameter tuning 

in enhancing the accuracy and efficiency of machine learning models. The findings provide valuable insights for 

future projects and practical applications. 

RESULTS AND DISCUSSION 

This study optimized hyperparameters to improve test accuracy and minimize test loss by tuning the learning rate, 

batch size, and number of epochs. Key findings are discussed below, with supporting evidence from tables and 

visualizations. 

A. Performance Metrics 

The optimal hyperparameters identified were a learning rate of 0.001, a batch size 32, and 50 epochs. This 

configuration achieved a training accuracy of 99.45%, a test accuracy of 100.0%, and a test loss of 0.0027, as shown 

in Table 2. Compared to the approximated baseline configuration, which achieved a test accuracy of 90.4% and a test 

loss 0.4164, the tuned model demonstrated a significant improvement. The baseline metrics correspond to 

Experiment 23 as shown in Table 1(c), which used 10 epochs, a learning rate 0.0001, and a batch size 256. This 

improvement highlights the impact of hyperparameter tuning on optimizing model performance. 

Table 2. Summary of optimal hyperparameters and their corresponding performance metrics 

Hyperparameter Optimal Value 

Learning Rate 0.001 

Batch Size 32 

Number of Epoch 50 

Metric Training Validation Test 

Accuracy (%) 99.45 99.00 100.00 

Loss 0.0173 0.0200 0.0027 

B. Impact of Epochs 

Figure 2 illustrates the relationship between epochs and performance. Accuracy improves steadily as the number of 

epochs increases, stabilizing at 50 epochs. At 50 epochs, the researcher does not observe significant performance 

gains, suggesting an ideal balance between learning and computational efficiency. 
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Figure 2 Impact of epochs on test accuracy and test 

loss 

 

Figure 3 Test accuracy heatmap for batch size and 

learning rate 

C. Learning Rate and Batch Size 

Figure 3 shows that the optimal combination of a learning rate of 0.001 and batch size of 32 yielded the highest test 

accuracy and lowest loss. Larger batch sizes of 128 or more and extreme learning rates, such as 0.1, resulted in 

degraded performance. This finding highlights the importance of selecting moderate parameter values to ensure 

stable convergence and improved outcomes. 

D. Relationships Between Hyperparameters 

The pair plot in Figure 4 reveals crucial insights into the relationships between hyperparameters and performance 

metrics. A learning rate of 0.001 emerges as optimal, consistently delivering the highest test accuracy and lowest test 

loss, while higher rates lead to instability, and lower rates result in suboptimal performance. Batch size also 

significantly impacts model performance, with a size of 32 producing the highest test accuracy by balancing frequent 

weight updates and gradient noise. As for epochs, test accuracy improves steadily up to 50 epochs before plateauing, 

with excessive epochs risking overfitting. 

The interactions between hyperparameters underscore the need for a balanced approach. A learning rate of 0.001 

combined with a batch size of 32 and 50 epochs consistently achieves the best trade-off between accuracy and loss. 

Larger batch sizes paired with higher learning rates produce erratic results, while smaller batch sizes and moderate 

learning rates ensure stable learning and robust generalization. These insights emphasize the importance of tuning 

hyperparameters in combination, as their interactions significantly affect model performance and stability. Figure 4 

validates the selected optimal configuration and highlights the necessity of systematic exploration for achieving 

superior outcomes. 
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Figure 4 Pair plot visualizing hyperparameter relationships with performance metrics 

E. Interpretation of Results 

The optimal configuration demonstrates the effectiveness of systematic hyperparameter tuning in enhancing 

performance. By balancing convergence stability, generalization, and computational cost, the model achieves 100.0% 

accuracy with a test loss of 0.0027, far outperforming the baseline configuration. 

F. Comparison to Baseline 

Compared to the approximated baseline, represented by Experiment 23, the tuned configuration improved test 

accuracy by 9.6%, increasing from 90.4% to 100.0%, and reduced test loss by 0.4137, decreasing from 0.4164 to 

0.0027. These substantial improvements underline the importance of optimizing hyperparameters to realize a 

model's potential fully. 

CONCLUSION 

This study highlights the critical role of hyperparameter tuning in maximizing machine learning model performance. 

By systematically exploring the effects of learning rate, batch size, and number of epochs, the researcher identified 

the optimal configuration: a learning rate of 0.001, 32, and 50 epochs. This setup achieved exceptional results, with 

a test accuracy of 100.0% and a test loss 0.0027. These results represent a significant improvement over the 

approximated baseline configuration, which achieved a test accuracy of 90.4% and a test loss 0.4164. The tuned 
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model demonstrated a 9.6% increase in accuracy and a substantial reduction in loss, underscoring the transformative 

impact of targeted hyperparameter optimization. 

The findings emphasize the importance of selecting moderate learning rates and batch sizes to ensure stable 

convergence and practical training. Limiting the number of epochs also prevents overfitting and avoids unnecessary 

computational costs. These adjustments allow for a balanced approach that optimizes both accuracy and efficiency. 

The visualizations provided, including line graphs, heatmaps, and pair plots, offer valuable insights into parameter 

interactions, helping to guide the tuning process and ensuring reproducible results. 

This study demonstrates the potential of hyperparameter tuning to unlock the full potential of machine learning 

models, making them more accurate and resource efficient.  
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