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The growing need for Artificial intelligence (AI) in healthcare requires both accurate and 

explainable models. Elevating Transparency, Trust, and Decision-Making with Explainable AI 

in Medical Applications of LLMs. In this study, we conduct a comparative quantitative 

evaluation of the most important XAI methods (SHAP, LIME, and Attention-based mechanisms) 

for LLMs in healthcare. We evaluate these techniques in terms of interpretability, computational 

efficiency, fidelity, and clinical relevance. The findings underline trade-offs that matter, with 

SHAP offering very fine-tuned interpretation of model decisions at high computational costs, 

LIME giving additional insights by momentarily opening up the black-box model at moderate 

computational costs, and Attention-based methods providing clear alignment with predictions 

but no reasoning behind those predictions. This research contributes to the ethical and reliable 

deployment of AI in healthcare by revealing effective XAI strategies for improving clinical 

decisions and fostering trust among medical professionals and patients. 

Keywords: Explainability, AI Models, Quantitative Comparison, XAI Techniques, Large 

Language Models, Healthcare Applications. 

 

INTRODUCTION 

The increasing integration of Artificial Intelligence (AI) in healthcare has revolutionized medical diagnostics, 
treatment recommendations, and patient care [1]. However, the adoption of complex AI models, particularly Large 
Language Models (LLMs), raises concerns regarding their interpretability and trustworthiness in clinical decision-
making [2]. Explainable AI (XAI) techniques aim to bridge this gap by providing transparent and interpretable 
insights into AI-driven decisions, enabling healthcare professionals to validate model predictions and ensure ethical 
AI deployment [3]. 

Several XAI methods, including SHAP (Shapley Additive Explanations), LIME (Local Interpretable Model-agnostic 
Explanations), and Attention-based approaches, have been widely used to enhance model explainability [4].  

While SHAP offers a strong theoretical foundation by assigning importance scores to input features, it is 
computationally expensive [5]. LIME, on the other hand, provides local explanations by approximating model 
behavior in small perturbations, making it more efficient but less stable [6]. Attention-based mechanisms leverage 
internal model structures to highlight significant features but often lack full transparency in reasoning [7]. 
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Fig 1: Areas of Impact for AI in Healthcare. 

The infographic highlights the key areas where Artificial Intelligence (AI) is making an impact in the healthcare 
sector. It categorizes these areas into six major segments: 

1. Self-Care/Prevention/Wellness – AI supports proactive healthcare measures by providing insights into 
lifestyle management, preventive care, and wellness programs. 

2. Triage and Diagnosis – AI-driven systems assist in early disease detection, patient triage, and clinical 
diagnosis, improving efficiency and accuracy in medical decision-making. 

3. Diagnostics – AI enhances imaging, lab testing, and other diagnostic processes, leading to faster and more 
accurate disease identification. 

4. Clinical Decision Support – AI helps healthcare professionals make data-driven decisions by analyzing vast 
amounts of medical data to recommend optimal treatments. 

5. Care Delivery – AI optimizes patient care, streamlining hospital workflows, automating routine tasks, and 
ensuring better resource management. 

6. Chronic Care Management – AI aids in monitoring and managing long-term conditions like diabetes, 
hypertension, and cardiovascular diseases, improving patient outcomes. 

The infographic, sourced from McKinsey and designed by Linda Grasso, further emphasizes AI’s role in improving 
population health management, enhancing operational efficiency, and fostering innovation in healthcare. 

Given the critical nature of healthcare applications, it is essential to evaluate these techniques to determine the most 
effective XAI approach for balancing interpretability and performance. This study conducts a quantitative 
comparison of these XAI methods in the context of LLMs applied to healthcare, analyzing key metrics such as 
interpretability, computational efficiency, fidelity, and clinical relevance. The findings contribute to the advancement 
of trustworthy AI, fostering confidence among medical professionals and improving patient outcomes [8]. 

2. LITERATURE REVIEW 

This section describes various explainability techniques used in AI-driven healthcare applications, focusing on SHAP, 
LIME, and attention-based mechanisms. The first part discusses SHAP (Shapley Additive Explanations), which 
provides feature importance values to enhance transparency in predictive models, particularly in disease diagnosis 
and personalized treatment, though it faces computational challenges.  

The second part covers LIME (Local Interpretable Model-agnostic Explanations), which approximates complex 
models with interpretable local models to explain AI-driven decisions in healthcare, but its reliance on random 
perturbations can lead to inconsistencies.  

The third part explores attention-based explainability in large language models, where attention mechanisms 
highlight key features in medical text analysis, aiding in clinical documentation and automated diagnosis, though 
their reliability in causal inference remains a concern. Together, these explainability methods improve AI 
transparency in healthcare applications, yet each has its limitations. Future research should focus on optimizing these 
techniques for stability, scalability, and integration into clinical workflows to enhance trust and usability in medical 
AI systems. 
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SHAP (Shapley Additive Explanations) for Model Transparency in Healthcare 

SHAP is a powerful XAI method that assigns importance values to individual features in a model's predictions, 
making it a valuable tool for understanding AI-driven decision-making in healthcare [9]. 

 It is based on cooperative game theory and calculates Shapley values to determine each feature’s contribution to the 
model output. Researchers have found SHAP useful for interpreting predictive models in disease diagnosis, 
personalized treatment plans, and risk stratification in chronic diseases such as diabetes and heart disease [10].  

For example, in a study on predicting cardiovascular disease, SHAP helped highlight key risk factors such as 
cholesterol levels and blood pressure, improving clinical trust in the AI model [11]. However, SHAP comes with 
challenges, particularly its high computational cost when applied to deep learning and complex medical models [12].  

Efforts to optimize SHAP, such as Kernel SHAP and Tree SHAP, have improved efficiency but still struggle with real-
time processing constraints in large-scale healthcare applications [13]. Despite its limitations, SHAP remains a widely 
adopted tool for ensuring transparency in AI-driven healthcare solutions. Future research should focus on making 
SHAP computationally more efficient while preserving its ability to provide reliable, human-interpretable 
explanations for AI models in clinical practice. 

LIME (Local Interpretable Model-agnostic Explanations) for Healthcare AI 

LIME is another well-established XAI technique designed to interpret AI models by generating locally faithful 
approximations of complex models [14]. It works by perturbing input data and training a simpler interpretable model 
to approximate the original black-box model’s behavior within a small neighborhood of a given prediction [15].  

LIME has been successfully used in various healthcare applications, including diagnostic decision support systems, 
patient risk assessment models, and drug discovery [16]. In a study on AI-driven cancer diagnosis, LIME was 
employed to explain deep learning model predictions by highlighting which features contributed most to detecting 
malignant tumors in medical images [17].  

This helped radiologists verify model predictions and integrate AI insights into their clinical workflow. However, 
LIME has been criticized for producing inconsistent explanations due to its reliance on random perturbations, which 
can lead to variations in feature importance across repeated runs [18].  

Researchers have attempted to enhance LIME’s stability by incorporating domain-specific constraints and optimized 
sampling techniques [19]. While LIME provides an intuitive approach to explaining AI models, further improvements 
are necessary to ensure robustness and reliability, particularly in high-stakes medical decisions where interpretability 
is critical for clinical adoption. 

Attention-Based Explainability in Large Language Models for Healthcare 

Attention-based mechanisms provide a unique approach to explainability in large language models (LLMs) by 
visualizing which parts of an input sequence are most influential in model predictions [20].  

Unlike traditional feature-importance methods such as SHAP and LIME, attention mechanisms directly highlight 
critical words or phrases within medical text data, making them particularly useful for applications in clinical note 
analysis, automated diagnosis, and medical chatbots [21].  

For example, studies on transformer-based models like BERT and GPT in healthcare have shown that attention 
weights can effectively align with key medical concepts when analyzing electronic health records (EHRs) and 
radiology reports [22-24].  

However, attention-based explanations are not always reliable, as high attention scores do not necessarily imply 
causal influence on model decisions [25-26]. Some researchers argue that attention mechanisms can be misleading, 
especially in deep learning models were multiple layers of processing obscure direct interpretability. To address this, 
hybrid explainability approaches that combine attention with SHAP or LIME have been proposed to enhance 
transparency in LLM-based healthcare applications [27-29]. While attention-based explanations have significant 
potential for improving AI interpretability in medical NLP, ongoing research is needed to refine their reliability and 
usability in real-world healthcare settings. 

3. METHODOLOGY 

This section outlines the methodological framework used to compare explainability techniques—SHAP, LIME, and 
attention-based mechanisms in AI models for healthcare applications. The approach involves data collection, model 
training, application of explainability techniques, and quantitative evaluation metrics to assess effectiveness. 
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Data Collection and Preprocessing 

For this study, publicly available healthcare datasets such as MIMIC-III and Kaggle’s medical diagnostic datasets 
were used. Data preprocessing involved: 

• Handling missing values using mean imputation for numerical features and mode imputation for categorical 
variables. 

• Normalization of numerical features: 

(1) 

where X′ is the normalized value, X is the original value, μ is the mean, and σ is the standard deviation. 

• One-hot encoding of categorical variables to ensure compatibility with machine learning models. 

Model Development 

We trained two AI models: 

1. A Deep Learning Model (Transformer-based LLM) for text-based clinical predictions. 

2. A Gradient Boosting Model (XGBoost) for tabular healthcare data. 

The models were trained using a loss function appropriate for classification tasks, such as binary cross-entropy: 

(2) 

where yi represents the actual labels, y^i represents predicted probabilities, and N is the total number of samples. 

Explainability Techniques Application 

SHAP (Shapley Additive Explanations) 

SHAP values were computed using: 

(3) 

where ϕj is the Shapley value for feature jjj, SSS is a subset of features, NNN is the total number of features, and 
f(S)f(S)f(S) represents the model’s output for subset SSS. 

LIME (Local Interpretable Model-agnostic Explanations) 

LIME approximates the original model with a locally interpretable surrogate model: 

(4) 

where f^(x) is the local approximation, wi are weights, and g(xi) represents a simple interpretable function. 
Perturbation-based sampling was performed around each instance to fit this local model. 

Attention Mechanisms in Large Language Models 

For transformer-based models, attention scores were computed as: 

(5) 

where Q,K, and V are the query, key, and value matrices, and dk is the scaling factor. Higher attention scores indicate 
more important words in medical text classification. 
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Evaluation Metrics 

To quantitatively compare explainability methods, we used: 

• Fidelity Score: Measures how well an explanation aligns with model predictions. 

• Stability Score: Assesses consistency across multiple runs. 

• Computational Efficiency: Evaluates time complexity for real-time deployment. 

Fidelity was calculated as: 

(6) 

where f(xi) is the original model output, and f^(xi) is the explainability method’s predicted explanation. 

Experimental Setup 

• Implemented using Python with TensorFlow, Scikit-learn, and SHAP libraries. 

• Run on an NVIDIA GPU for deep learning models and Intel i7 CPU for XGBoost. 

• Hyperparameters were optimized using Bayesian optimization to improve model performance. 

Statistical Analysis 

A one-way ANOVA test was conducted to determine the statistical significance of differences in fidelity scores among 
SHAP, LIME, and attention-based explanations: 

(7) 

where a high F-statistic with a low p-value (p<0.05) indicates significant differences. 

4. RESULTS AND DISCUSSION 

This section describes the comparative performance of SHAP, LIME, and attention-based explainability techniques 
based on fidelity, stability, computational efficiency, and their overall applicability in healthcare AI. Each evaluation 
metric is analyzed using graphical representations to provide insights into the strengths and weaknesses of each 
method. 

 

Fig 2: Fidelity Comparison 

The bar chart of figure 2 above illustrates the fidelity scores of SHAP, LIME, and attention-based mechanisms. SHAP 
achieved the highest fidelity (0.87), followed by attention mechanisms (0.83), while LIME scored the lowest (0.79). 
This suggests that SHAP provides more reliable explanations aligned with the model’s decision-making. 
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Fig 3: Stability Comparison 

The graph of figure 3 above shows the stability scores for SHAP, LIME, and attention-based explainability. Attention-
based mechanisms achieved the highest stability (0.88), followed by SHAP (0.85), whereas LIME had the lowest 
stability (0.76). This indicates that attention-based explanations remain more consistent across different instances. 

 

Fig 4: Computational Efficiency Comparison 

The graph of figure 4 above compares the computational efficiency of SHAP, LIME, and attention mechanisms in 
terms of time taken per explanation. LIME is the most efficient (0.90s), followed by SHAP (1.2s), while attention 
mechanisms are the least efficient (1.5s). This suggests that LIME is preferable when speed is critical. 

 

Fig 5: Feature Importance Consistency Comparison 

This graph of figure 5 evaluates the consistency of feature importance assignments across multiple model runs. 
Attention-based methods show the highest consistency (0.89), followed by SHAP (0.82), while LIME has the lowest 
score (0.75). This suggests that attention mechanisms provide more reliable feature importance rankings over 
repeated evaluations. 
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Fig 6: Model-Specific Applicability Comparison 

This graph of figure 6 illustrates how well different explainability methods adapt to specific AI models. Attention-
based methods have the highest applicability (0.95), making them the most adaptable. SHAP follows at 0.90, while 
LIME has the lowest applicability at 0.85, indicating it may not work as well for all models. 

CONCLUSION 

This study presents a quantitative comparison of SHAP, LIME, and attention-based explainability techniques in the 
context of large language models and healthcare applications. The evaluation metrics, including fidelity, stability, 
computational efficiency, feature importance consistency, and model-specific applicability, highlight the strengths 
and weaknesses of each approach. SHAP demonstrates the highest fidelity and strong applicability, making it a 
reliable choice for explainability. Attention-based mechanisms exhibit superior stability and feature consistency, 
making them effective for complex deep-learning models. LIME, while computationally efficient, shows lower fidelity 
and stability, limiting its reliability in high-stakes healthcare scenarios. These findings suggest that the selection of 
an explainability technique should be based on the specific requirements of the application, balancing accuracy, 
interpretability, and computational cost. Future research should focus on hybrid approaches that combine the 
advantages of these methods to enhance transparency and trust in AI-driven decision-making. Additionally, further 
validation on real-world healthcare datasets is necessary to refine these techniques and improve their clinical 
applicability. 
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